2013年全国高考理科数学试题分类汇编1集合

合集下载

2013高考集合汇编集合

2013高考集合汇编集合

高 考 集 合 汇 编1.2013(全国)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )62.(2013全国文)设集合{}{}1,2,3,4,5,1,2,u U A A ===集合则ð(A ){}1,2 (B ){}3,4,5 (C ){}1,2,3,4,5 (D )∅3.(2013海南)已知集合M={x|(x-1)2 < 4,x ∈R },N={-1,0,1,2,3},则M ∩N=()(A ){0,1,2} (B ){-1,0,1,2} (C ){-1,0,2,3} (D ){0,1,2,3}4.(2013海南文)已知集合A={1,2,3,4},B={x|x=n2,n ∈A },则A ∩B= ( )(A ){0} (B ){-1,,0} (C ){0,1} (D ){-1,,0,1}5.(2013全国文)设集合{}{}1,2,3,4,5,1,2,u U A A ===集合则ð(A ){}1,2 (B ){}3,4,5 (C ){}1,2,3,4,5 (D )∅6.(2013新课标1卷)已知集合{}022>-=x x x A ,{}55B <<-=x x ,则(A )=B A ∅ (B )R =B A (C )A B ⊆ (D )B A ⊆7.(2013新课标1文)已知集合A={1,2,3,4},B={x|x=n2,n ∈A },则A ∩B=( )(A ){0} (B ){-1,,0} (C ){0,1} (D ){-1,,0,1}8.( 2013广东 )设集合M={x ∣x2+2x=0,x ∈R},N={x ∣x2-2x=0,x ∈R},则M ∪N=A. {0}B. {0,2}C. {-2,0} D {-2,0,2}9.( 2013广东文 )设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T = A .{0} B .{0,2} C .{2,0}- D .{2,0,2}-10(2013山东)已知集合}2,1,0{=A ,则集合},|{A y A x y x B ∈∈-=中元素的个数是( )(A )1 (B )3 (C )5 (D )911.(2013山东文)已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}UA B =ð,{1,2}B =,则U A B =ð(A){3} (B){4} (C){3,4} (D)∅ 12.(2013辽宁)设集合{}12A =,,则满足{}123A B =,,的集合B 的个数是( )A.1 B.3 C.4 D.813.(2013辽宁文)已知集合{}{}1,2,3,4,|2,A B x x A B ==<=则(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,214.(2013北京)已知集合A={-1,0,1},B={x|-1≤x <1},则A ∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}15.(2013天津)已知集合{{},2013A x yB x x m ===-<,若A B A =,则m 的取值范围是16.(2013江苏)集合}1,0,1{-共有 个子集17.(2013福建文)若集合{}{}=1,2,3=1,3,4A B ⋂,,则A B 的子集个数为A .2B .3C .4D .618.(2013安徽文)已知A={x|x+1>0},B={-2,-1,0,1},则(错误!未找到引用源。

2013年北京高三(一模)数学(理)分类汇编系列二解析版1集合

2013年北京高三(一模)数学(理)分类汇编系列二解析版1集合

【解析分类汇编系列二:北京2013(一模)数学理】1:集合1.(2013届北京石景山区一模理科)1.设集合M= {x|x 2≤4),N={x|log 2 x≥1},则MN 等于( )A . [-2,2]B .{2}C .[2,+∞)D . [-2,+∞)【答案】B{22}M x x =-≤≤,{2}N x x =≥,所以{2}{2}M N x x ===,选B.2.(2013届北京朝阳区一模理科)(2)已知集合{}23Mx x =-<<,{}lg(2)0N x x =+≥,则MN =A. (2,)-+∞B. (2,3)-C. (2,1]--D. [1,3)-【答案】D{}lg(2)0{21}{1}N x x x x x x =+≥=+≥=≥-,所以{13}MN x x =-≤<,选D.3.(2013届北京海淀一模理科)集合2{6},{30}A x x B x x x =∈≤=∈->N|R|,则AB =( )A .{3,4,5}B .{4,5,6}C .{|36}x x <≤D .{|36}x x ≤<【答案】B{0,1,2,3,4,5,6}A =,{30}B x x x =><或,所以{4,5,6}AB =,选B.4.(2013届北京市延庆县一模数学理)已知集合},3,1{m A =,},1{m B =,A B A = ,则=m ( )A .0或3B .0或3C .1或3D .1或3【答案】B因为A B A = ,所以B A ⊆,即3m =或m =解得3m =,0m =或1m =,当1m =时,集合,A B 不成立。

所以3m =或0m =,选B.5.(2013届北京西城区一模理科)已知全集U =R ,集合{|02}A x x =<<,2{|10}B x x =->,那么U AB =ð( )A .{|01}x x <<B .{|01}x x <≤C .{|12}x x <<D .{|12}x x ≤<【答案】B2{|10}={11}B x x x x x =->><-或,所以{|11}U B x x =-≤≤ð,所以{01}U AB x x =<≤ð,选B.6.(2013届东城区一模理科)已知全集{1,2,3,4}U =,集合{1,2}A =,那么集合U A ð为( )A .{3}B .{3,4}C .{1,2}D .{2,3}【答案】B因为{1,2}A =,所以={3,4}U A ð,选B.7.(2013届房山区一模理科数学)已知全集U =R ,集合2{|1},{|4}M x x N x x =≤=>,则()MC N =R( )A .(2,1]-B .[2,1]-C .(,1]-∞-D .(,2)-∞-【答案】B{22}N x x x =><-或,所以(){22}C N =x x -≤≤R ,所以(){21}MC N =x x -≤≤R ,选B.8.(2013届房山区一模理科数学)设集合M 是R 的子集,如果点0x ∈R 满足:00,,0a x M x x a ∀>∃∈<-<,称0x 为集合M 的聚点.则下列集合中以1为聚点的有:{|}1n n n ∈+N ; ②*2{|}n n∈N ; ③Z ; ④{|2}x y y = ( )A .①④B .②③C .①②D .①②④【答案】A ①中,集合{|}1nn n ∈+N 中的元素是极限为1的数列, 除了第一项0之外,其余的都至少比0大, ∴在12a <的时候,不存在满足得0<|x|<a 的x , ∴0不是集合{|}1nn n ∈+N 的聚点 ②集合*2{|}n n∈N 中的元素是极限为0的数列, 对于任意的a >0,存在2n a >,使0<|x|=2a n<,∴0是集合*2{|}n n ∈N 的聚点③对于某个a <1,比如a=0.5,此时对任意的x ∈Z ,都有|x ﹣0|=0或者|x ﹣0|≥1,也就是说不可能0<|x ﹣0|<0.5,从而0不是整数集Z 的聚点 ④故选A9.(2013届门头沟区一模理科)已知全集U = R ,集合A {}24x x=≤,B {}1x x =<,则集合AB 等于( )A .{}2x x ≥-B .{}12x x ≤≤ C .{}1x x ≥D .R【答案】A{}24{22}A x x x x =≤=-≤≤,{1}U B x x =≥ð,所以={2}U A B x x ≥-ð,选A.10.(2013届北京丰台区一模理科)已知M 是集合{}1,2,3,,21(*,2)k k N k -∈≥的非空子集,且当x M ∈时,有2k x M -∈.记满足条件的集合M 的个数为()f k ,则(2)f = ;()f k = 。

2013年高考理科数学全国卷1-答案

2013年高考理科数学全国卷1-答案

故选A.故选A.综上可知:[,0]2a ∈-.(步骤4)【提示】由1n n a a +=可知n n n A B C △的边n n B C 为定值1a ,由111112(2)2n n n n b c a b c a +++=+--及1112b c a +=得12n n b c a +=,则在n n n A B C △中边长1n n B C a =为定值,另两边n n n n A C A B 、的长度之和12n n b c a +=为定值,由此可知顶点n A 在以n n B C 、为焦点的椭圆上,根据111()2n n n n b c b c ++=---,得1111()2n n n b c b c -⎛⎫=- ⎪⎝⎭-,可知n →+∞时n n b c →,据此可判断n n n A B C △的边n n B C 的高n h 随着n 的增大而增大,再由三角形面积公式可得到答案.51111得1AB AC ⊥; (Ⅱ)易证OA ,1OA ,OC 两两垂直.以O 为坐标原点,OA u u u r的方向为x 轴的正向,||OA u u u r 为单位长,建立r u u u r【提示】(Ⅰ)设动圆的半径为R ,由已知动圆P 与圆M 外切并与圆N 内切,可得1212()()|+|+++4PM PN R r r R r r ==-=||,而||2NM =,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,求出即可;(Ⅱ)设曲线C 上任意一点,()P x y ,由于||2222PM PN R ≤|-|=-,所以2R ≤,当且仅当圆P 的圆心为所以可设l :4)+(y k x =,与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出. 【考点】圆的标准方程及其性质,椭圆的的定义及其几何性质,直线与双曲线的位置关系. 21.【答案】(Ⅰ)4a =2b = 2c = 2d =(Ⅱ)2[1,]e【解析】(Ⅰ)由已知得(0)2f =,(0)2g =,(0)4f '=,(0)4g '=.(步骤1)而+()2f x x a =',((+))+xg x e cx d c '=,故2b =,2d =,4a =,+4d c =.(步骤2)从而4a =,2b =,2c =,2d =.(步骤3)(Ⅱ)由(Ⅰ)知,2()+4+2f x x x =,()21)+(x g x e x =.设函数2()()()2()+142x F x kg x f x ke x x x =-=---,则()2+()2242+1(2())x x F x ke x x x ke '=--=-.由题设可得(0)0F ≥,即1k ≥(步骤4)令()0F x '=得1ln x k =-,22x -=.(步骤5)①若21k e ≤<,则120x <≤-.从而当12(),x x ∈-时,()0F x '<;当1(),+x x ∈∞时,()0F x '>.即()F x 在1()2,x -单调递减,在1(),+x ∞单调递增.故()F x 在[)2,+-∞的最小值为1()F x .(步骤6)而1111211()2+24+0)22(F x x x x x x =--=-≥-.故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤7)②若2k e =,则2222+()()()2x F e x e e x -'=-.从而当2x >-时,)0(F x '>,即F (x )在()2,+-∞单调递增.而()20F -=,故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤8)③若2k e >,则22222+220()()F ke e k e ---=-=-<-.从而当2x ≥-时,()()f kg x x ≤不可能恒成立.综上,k 的取值范围是2[1,]e .(步骤9)【提示】(Ⅰ)对()f x ,()g x 进行求导,已知在交点处有相同的切线及曲线()y f x =和曲线()y g x =都过点(0,2)P ,从而解出a ,b ,c ,d 的值;(Ⅱ)由(Ⅰ)得出()f x ,()g x 的解析式,再求出()F x 及它的导函数,通过对k 的讨论,判断出()F x 的【提示】(Ⅰ)对于曲线1C 利用三角函数的平方关系式22sin cos 1t t +=即可得到圆1C 的普通方程;再利用极坐标与直角坐标的互化公式即可得到1C 的极坐标方程;(Ⅱ)先求出曲线2C 的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标3⎝⎦21||23|2|x x y x +-=---,画出函数y 的图象,数形结合可得结论.。

2013年高考真题解析分类汇编(理科数学)含解析

2013年高考真题解析分类汇编(理科数学)含解析

2013高考试题解析分类汇编(理数)5:平面向量一、选择题1 .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为;以D为起点,其余顶点为终点的向量分别为.若分别为的最小值、最大值,其中,,则满足()A. B. C. D.D.【解答】作图知,只有,其余均有,故选D.2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知点()A. B. C. D.A,所以,所以同方向的单位向量是,选A.3 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))设是边上一定点,满足,且对于边上任一点,恒有.则()A. B. C. D.D以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,C(a,b),P(x,0)则BP0=1,A(﹣2,0),B(2,0),P0(1,0)所以=(1,0),=(2﹣x,0),=(a﹣x,b),=(a﹣1,b)因为恒有所以(2﹣x)(a﹣x)≥a﹣1恒成立整理可得x2﹣(a+2)x+a+1≥0恒成立所以△=(a+2)2﹣4(a+1)≤0即△=a2≤0所以a=0,即C在AB的垂直平分线上所以AC=BC故△ABC为等腰三角形故选D4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))在四边形ABCD中,,,则四边形的面积为()A. B. C.5 D.10C由题意,容易得到.设对角线交于O点,则四边形面积等于四个三角形面积之和即S= .容易算出,则算出S=5.故答案C5 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))在平面直角坐标系中,是坐标原点,两定点满足则点集所表示的区域的面积是()A. B. C. D.D.在本题中,.建立直角坐标系,设A(2,0),所以选D6 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在平面上,,,.若,则的取值范围是()A. B. C. D.D【命题立意】本题考查平面向量的应用以及平面向量的基本定理。

2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2013年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0] 12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.2013年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B nC n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,﹣c n+1=,∴=a1﹣b n,又由题意,b n+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos <,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,。

2013高考 数学(理)真题专业解析(全国卷)汇总

2013高考 数学(理)真题专业解析(全国卷)汇总

2013年普通高等学校招生全国统一考试数学试卷(理科)(全国卷)解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合={1,2,3}M∈∈,则M中元素的个数为,,={x|x=a+b,a A,b B}A,B={45}()A.3 B.4 C.5 D.6答案:B思路分析:考点解剖:本题主要考查集合的性质与分类讨论思想.解题思路:弄清集合M中的元素与集合A和集合B中元素的关系,从而求集合M中的元素即可.解答过程:集合B中的元素4分别与集合A中的元素求和为5、6、7,集合B中的元素5分别与集合A中的元素求和得6、7、8.所以M={5,6,7,8},元素个数为4.故选B.规律总结:要弄清集合的表示方法,特别是描述法,容易忽略互异性.2.3(1)=()A.-8 B.8 C.8i- D.8i答案:A思路分析:考点解剖:本题考查复数的运算.解题思路:运用完全平方和公式与平方差公式化简复数.解答过程:3=-=-.故选A.(1)(12)8规律总结:要记住21i=-这个复数里面最常用的结论,还容易计算出错.3.已知向量(1,1)+⊥-,则λ=()=+,若()()m n m nmλ=+,(2,2)nλA.-4 B.-3 C.-2 D.-1答案:B思路分析:考点剖析:本题主要考查向量的坐标运算与两向量垂直.解题思路:运用“若a b ⊥,则有0a b ⋅=”及“22||a a =”即可求解.解答过程:因为()()m n m n +⊥-,所以有22222()()[(1)1][(2)2]0m n m n m n λλ+⋅-=-=++-++=,从而有3λ=-.故选B.规律总结:要记住两向量垂直的充要条件是它们的数量积为零,可能数量积分式会用错. 4.已知函数f(x)的定义域为(1,0)-,则函数(21)f x +的定义域( ) A .(1,1)- B .1(1,)2-- C .(1,0)- D .1(,1)2答案:B 思路分析:考点剖析:本题主要考查复合函数的定义域.解题思路:弄清函数()f x 与(21)f x +定义域的关系求解即可. 解答过程:由1210x -<+<,得112x -<<-.故选B.规律总结:由两函数的定义域的关系,列出不等式,求解. 5.函数21()log (1)f x x=+(x>0)的反函数1()f x -=( )A .1(0)21x x >- B .1(0)21x x ≠- C .21()x x R -∈ D .21(0)x x -> 答案:A 思路分析:考点剖析:本题主要考查求反函数的解析式.解题思路:由原函数的解析式解出x (即用y 表示x ),即可得反函数的解析式. 解答过程:由121yx =+,得121y x =-.因此11()(0)21x f x x -=>-.故选A. 规律总结:对于求反函数的解析式,关键是把原函数的解析式中的x 当作未知数求解. 需要特别注意要求反函数的定义域也就是求原函数的值域.6.已知数列{}n a 满足130n n a a ++=,243a =-,则{}n a 的前10项和等于( )A .106(13)--- B .101(13)9- C .103(13)-- D .103(13)-+ 答案:C 思路分析:考点剖析:本题主要考查等比数列的判断方法与求和公式. 解题思路:先判断数列为等比数列,再用求和公式求解. 解答过程:由于113n n a a +=-,从而知数列{}n a 是首项14a =,公比13q =-的等比数列,因此前101014[1()]33(13)113---=++.故选C. 规律总结:根据数列的递推关系,若为特殊数列直接代公式求解,若为其它数列再选用其它方法.7.84(1)(1)x y ++的展开式中22x y 的系数是( )A .56B .84C .112D .168 答案:D 思路分析:考点解析:本题主要考查二项式定理解题思路:运用求二项式定理展开式系数的方法求解. 解答过程:8(1)x +展开式中2x 的系数是2828C =,4(1)y +展开式中2y 的系数是246C =,所以84(1)(1)x y ++的展开式中22x y 的系数是286168⨯=.故选D.规律总结:解决二项式定理系数问题常用通项公式k n kkna b C-求解,容易计算出错或用错公式.8.椭圆C:22143x y +=的左右顶点分别为12,A A ,点P 在C 上且直线2PA 斜率的取值范围是[2,1]--,那么直线1PA 斜率的取值范围是( )A .13[,]24B .33[,]84C .1[,1]2D .3[,1]4答案:B 思路分析:考点剖析:本题主要考查直线与椭圆的位置关系、数形结合的思想. 解题思路:先设出点P 的坐标,然后得直线2PA 与直线1PA 斜率的积为常数求解.解答过程:设P 点坐标为00(,)x y ,则2200143x y +=,2002pA y k x =-,1002pA y k x =+,于是122200222003334244PA PA x y k k x x -⋅===---,故12314PA PA k k =-.2[2,1]PA k ∈--133[,]84PA k∴=.故选B. 规律总结:设出点P 的坐标,再由斜率公式是求解此类问题的常用方法.容易分析计算出错.9.若函数21()f x x ax x =++在1(,)2+∞是增函数,则a 的取值范围是( ) A .[1,0]- B .[1,)-+∞ C .[0,3] D .[3,)+∞ 答案:D 思路分析:考点剖析:本题主要考查导数判断函数的单调性、恒成立问题,考查化归转化思想. 解题思路:先将问题转化为不等式恒成立问题,再转化为求函数最值问题. 解答过程:由条件知21()20f x x a x =+-≥在1(,)2+∞上恒成立,212a xx≥-在1(,)2+∞上恒成立. 212y x x =-在1(,)2+∞上为减函数,max 211232()2y <-⨯=,3a ∴≥,故选D. 规律总结:运用函数的导数的应用将含有参数的函数的单调性转化为不等式恒成立问题是解决此类问题的常用方法.10.已知正四棱柱1111ABCD A BC D -中,12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B.3D .13答案:A 思路分析:考点剖析:本题主要考查直线与平面所成的角解题思路:先证明线面垂直,找出线面角的平面角,再求三角形的内角. 解答过程:如下图,连接AC 交BD 于点O ,连接1C O ,过C 作1CH C O ⊥于H11BD ACBD AA AC AA A ⊥⎫⎪⊥⇒⎬⎪⋂=⎭1111BD ACC A CH ACC A ⊥⎫⎬⊂⎭平面平面11CH BDCH C O BD C O O ⊥⎫⎪⇒⊥⎬⎪⋂=⎭1CH C BD ⇒⊥平面HDC ∴∠为CD 与平面1BDC设122AA AB ==,则2AC OC ==,1C O ====由等面积法,得11C O CH OC CC ⋅=⋅,即222CH =⋅,23CH ∴=,223sin 13HC HDC DC ∴∠===.故选A.规律总结:求线面角的常用方法是先找出线面角的平面角再转化为求三角形的内角,易出现平面角找不对而出错.11.已知抛物线C:28y x =与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B两点,若0MA MB ∙=,则k=( )A .12B.2C.2 答案:D 思路分析:考点剖析:本题主要考查直线与抛物线的位置关系与向量知识的交汇.解题思路:先设出A 、B 两点的坐标,再将0MA MB ∙=化成只含k 的等式求解. 解答过程:由题意知抛物线C 的焦点坐标为,则直线AB 的方程为(2)y k x =-, 其代入28y x =得22224(2)40k x k x k -++=设11(,)A x y ,22(,)B x y ,则21224(2)k x x k ++=,124x x =. ①由1122(2)(2)y k x y k x =-⎧⎨=-⎩有1212212()4[122(12)4]y y k x x k y y k x x x x +=+-⎧⎨⋅=-++⎩②0MA MB ⋅=∴ 1122(2,2)(2,2)0x y x y +-∙+-=所以:121212122()2()80x x x x y y y y +++-++= ③ 由①②③解得k=2,故选D规律总结:解这类问题通常用一种设而不求(本题设出点A 、B 的坐标而不必求出)的方法求解,易选错方法与增加计算量.12.已知函数()cos sin 2f x x x =,下列结论中错误的是( )A .()y f x =的图像关于点(,0)π中心对称B .()y f x =的图像关于直线2x π=对称C .()f x.()f x 既是奇函数,又是周期函数 答案:C 思路分析:考点剖析:本题主要考查三角恒等变换与三角函数的图象和性质.解题思路:本题首先用同角三角函数的基本关系式中的平方关系,通过换元,再用导数求最值.解答过程:由题意知22()2cos sin 2(1sin )sin f x x x x x ==-令sin ,[1,1],t x t =∈- 则23()2(1)22g t t t t t =-=-令2`()260g t t =-=,得t =当1t =±时,函数值为0;(1)0g ±=,(g =,g =所以max()g x =,即()f x.故选C.规律总结:解本类选择题通过观察从容易判断的选项入手,恰好选项C 求最值是一种非常常见需要熟练掌握的,易看错求错,换成正确答案;对称性,奇偶性,最值判断方法没有掌握导致出错.二、填空题:本大题共4小题,每小题5分. 13.已知α是第三象限角,1sin 3α=-,则cot α=答案:思路分析:考点剖析:本题主要考查三角恒等变换化简求值. 解题思路:先求出cos α,再用公式cos cot sin ααα=求解.解答过程:由题意知cos 3α===-,故c o sc o t 22s i nααα==规律总结:求解三角三函数的问题须要牢记公式并灵活运用,易忽略象限角致符号出错. 14. 6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答) 答案:480 思路分析:考点剖析:本题主要考查排列问题;解题思路:先将排除甲、乙外的4人,再排甲、乙. 解答过程:先排除甲、乙外的4人,方法有44A 再将甲、乙插入这4人形成的5个间隔中,有25A 的排法,因此甲、乙不相邻的不同排法有4245A A =480规律总结:不相邻问题常用的解决方法就是插空法. D.若直15.记不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,所表示的平面区域为线(1)y a x =+与D 有公共点,则a 的取值范围是答案:1[,4]2思路分析:考点剖析:本题主要考查线性规划问题.解题思路:先作出平面区域D ,再由直线(1)y a x =+的过定点求解. 解答过程:作出题中不等式组表示的可行域如图中阴影部分所示.∵直线(1)y a x =+过定点(1,0)C -,由图并结合题意可知12BCk =,4AC k =,若直线(1)y a x =+与平面区域D 有公共点,则142a ≤≤. 规律总结:解决此类问题常用的方法是准确作图运用数形结合的思想方法求解. 16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,32OK =,且圆O 与圆K 所在的平面所成的一个二面角为060,则球O 的表面积等于答案:16π思路分析:考点剖析:本题主要考查空间几何体、空间想象能力与分析问题的能力. 解题思路:先由二面角求出球的半径,再用表面积公式求解.解答过程:如右图,没MN 为两圆的公共弦,E 为MN 的中点,则OE MN ⊥,KE MN ⊥ 结合题意可知60OEK ∠=︒,又MN=R ,OMN ∴∆为正三角形,OE R∴=又OK EK ⊥,3sin 602OE R ∴=⋅︒=2R ∴=.2416S R ππ∴== 规律总结:解决球类问题常运用弦的中点与球(圆)心的连线将空间问题转化为平面问题.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 等差数列{}n a 的前n 项和为n S .已知232S a =,且124,,S S S 成等比数列,求{}na 的通项公式.答案:3n a =或21n a n =-思路分析:考点剖析:本题主要考查等差数列的通项公式与前n 项和公式及等比中项的概念. 解题思路:(1)先求出2a 与公差,(2)求通项公式.解答过程:设数列{}na 的公差为d .由232S a =得2223a a =,故20a =或23a =. 由124,,S S S 成等比数列得2214S S S =⋅.又12S a d =-,222S a d =-,4242S a d =+. 故2222(2)()(42)a d a d a d -=-+.若20a =,则222d d =-,所以0d =,此时0n S =,不合题意;若23a =,则2(6)(3)(122)d d d-=-+,解得0d =或2d =.因此{}na 的通项公式为3n a =或21na n =-规律总结:关于等差、等比数列的问题,通常的解法是灵活运用通项公式与求和公式. 18.(本小题满分12分)设ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,()()a b c a b c ac ++-+=.(Ⅰ)求B;(Ⅱ)若sin sin A C =,求C.答案:(Ⅰ)120B =︒;(Ⅱ)15C =︒或45C =︒ 思路分析:考点剖析:本题主要考查解斜三角形.解题思路:(1)先用佘弦定理求得角B ,(2)用c o s ()c o s ()2s i n s i n A C A C A C-=++求解.解答过程:(Ⅰ)因为()()a b c a b c ac ++-+=,所以222a c b ac +-=-由佘弦定理得2221cos 22a cb B ac +-==-,因此120B =︒ (Ⅱ)由(Ⅰ)知60A C +=︒,所以cos()cos cos sin sin cos cos sin sin 2sin sin cos()2sin sin 112242A C A C A CA C A C A C A C A C -=+=-+=++=+⨯=故30A C -=︒或30A C -=-︒,因此15C =︒或45C =︒规律总结:通常解正佘弦定理的运用问题要根据已知条件的特点恰当选用定理求解,若与三角函数综合还须要恰当凑角灵活运用公式,三角形求角通常还要用内角和定理.19.(本小题满分12分)如图,四棱锥P-ABCD 中,090ABC BAD ∠=∠=,2BC AD =,PAB ∆和PAD ∆都是等边三角形.(Ⅰ)证明:PB CD ⊥; (Ⅱ)求二面角A-PD-C 的大小. 答案:(Ⅰ)详见解答过程;(Ⅱ)arccos3π-思路分析:考点剖析:本题主要考查空间直线与直线垂直的证明和求二面角.解题思路:(1)运用三垂线定理证明空间线线垂直,(2)找出二面角的平面角转化为解三角形或用空间向量求解.解答过程:(Ⅰ)取BC 的中点为E ,连结DE ,则ABED 为正方形.过P 作PO ⊥平面ABCD ,垂足为O.连结OA ,OB ,OD ,OE.由PAB ∆和PAD ∆都是等边三角形知PA=PB=PD.所以OA=OB=OD ,即点O 为正方形ABED 对角线的交点,故OE BD ⊥,从而PB OE ⊥.因为O 是BD 的中点,E 是BC 的中点,所以//OE CD .因此PB CD ⊥(Ⅱ)解法一:由(Ⅰ)知PB CD ⊥,PO CD ⊥,PB PO P ⋂=.故CD ⊥平面PBD.又PD PBD ⊂平面,所以CD PD ⊥. 取PD 的中点为F ,PC 的中点G ,连结FG. 则FG//CD ,FG ⊥PD连结AF ,由APD ∆为等边三角形可得AF PD ⊥. 所以AFG ∠为二面角A-PD-C 的平面角. 连结AG ,EG ,则EG//PB. 又PB AE ⊥,所以EG AE ⊥. 设AB=2,则AE=112EG PB == 故3AG ==在AFG ∆中,12FG CD ==AF ,3AG =.所以222cos 2FG AF AG AFG FG AF +-∠==⨯⨯.因此二面角A-PD-C的大小为π-.解法二:由(Ⅰ)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE 的方向为z 轴的正方向建立如图所示的空间直角坐标系O-xyz. 设||2AB =,则(A,(0,D,C,PPC =,(0,PD =,(2,0,AP =,(2,AD =.设平面PCD 的法向量为1(,,)n x y z=,则1(,,)0n PC x y z ⋅=⋅=,1(,,)(0,0n PD x y z ⋅=⋅=.可得20x y z --=,0y z +=. 取1y =-,得0,1x z ==,故1(0,1,1)n =-设平面PAD 的法向量为2(,,)n m p q,则2(,,)0n AP m p q ⋅=⋅=,2(,,)0n AD m p q ⋅=⋅=,可得0m q +=,0m q -=.取1m =,得1p =,1q =-,故2(1,1,1)n =-.于是121212cos ,3||||n n n n n n ⋅<>==-⋅由于12,n n <>等于二面角A-PD-C 的平面角,所以二面角A-PD-C 的大小为a r c c π-.规律总结:解决立体几何问题通常有几何法与向量法.用几何法求解时,考查空间想象能力运用化归转化的数学思想方法,有时需要灵活运用线线、线面、面面位置关系的判定定理与性质定理,有时需要把空间问题转化为平面几何问题求解;运用向量法关键是找三条共点两两垂直的直线建立坐标系并运用好法向量与相关公式.20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结束相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X 表示前4局中乙当裁判的次数,求X 的数学期望. 答案:(Ⅰ)14(Ⅱ)98思路分析:考点剖析:本题主要考查独立性事件的概率与随机变量的数学期望.解题思路:(1)运用独立性事件的概率公式求得第4局甲当裁判的概率,(2)分别求出各个随机变量对应的概率再运用数学期望的公式求解.解答过程:(Ⅰ)记1A 表示事件“第2局结果为甲胜“,2A 表示事件“第3局甲参加比赛时,结果为甲负“.A 表示事件“第4局甲当裁判“. 则A=12A A ⋅.12121()()()()4P A P A A P A P A =⋅=⋅=(Ⅱ)X 的可能值为0,1,2.记3A 表示事件“第3局乙和丙比赛时,结果为乙胜丙“1B 表示事件“第1局结果为乙和丙”.2B 表示事件“第2局乙和甲比赛时,结果为乙胜甲”.3B 表示事件“第3局乙参加比赛时,结果为乙负”.则1231231(0)()()()()8P X P B B A P B P B P A ==⋅⋅=⋅⋅=13131(2)()()()4P X P B B P B P B ==⋅=⋅=115(1)1(0)(2)1848P X P X P X ==-=-==--=.90(0)1(1)2(2)8EX P X P X P X =⋅=+⋅=+⋅==规律总结:解决概率问题时,通常要认真读题弄清独立事件与互斥事件正确求出概率,求解数学期望时可用随机变量的分布列的性质检验计算结果并掌握快速准确计算的方法.21.(本小题满分12分) 已知双曲线C:22221x y a b -=(a>0,b>0)的左、右焦点分别为1F 、2F ,离心率为3,直线y=2与C(Ⅰ)求a,b;(Ⅱ)设过2F 的直线l 与C 的左、右两支分别交于A 、B 两点,且11||||AF BF =,证明:2||AF 、||AB 、2||BF 成等比数列.答案:(Ⅰ)1,a b ==(Ⅱ)详见解答过程思路分析:考点剖析:本题主要考查双曲线的几何性质和直线与双曲线的位置关系.解题思路:(1)由离心率即可得a 和b 的关系,(2)再由直线y=2与C 的两个交点间的(Ⅰ),(3)由直线l 与C 的方程联立消y 后运用一元二次方程根与系数的关系和两点间的距离公式求解.解答过程:(Ⅰ)由题设知3ca=,即2229a b a+=,故228b a =.所以C 的方程为22288x y a -=.将2y =代入上式,求得x =由题设知=21a =.所以1,a b ==(Ⅱ)由(Ⅰ)知,1(3,0)F -,2(3,0)F ,C 的方程为2288x y -= ①由题意可设l 的方程为(3)y k x =-,||k <,代入①并化简得2222(8)6980k x k x k --++=.设11(,)A x y ,22(,)B x y ,则11x ≤,21x ≥,212268k x x k +=-,2122988k x x k +⋅=-.于是,11||(31)AF x ==-+.12||31BF x ===+.由12||||AF BF =得12(31)31x x -+=+,即1223x x +=-.226283k k =--,解得245k =,从而12199x x ⋅=-由于21||13AF x ===-.22||31BF x ===-.故2212||||||23()4AB AF BF x x =-=-+=.221212||||3()9116AF BF x x x x ⋅=+--=因而222||||||AF BF AB ⋅=,所以2||AF 、||AB 、2||BF 成等比数列.规律总结:解决圆锥曲线类的解答题时,需要熟练掌握圆锥曲线的几何性质、定义、标准方程,对于直线与圆锥曲线问题通常的解决方法是联立直线与双曲线的方程然后消元运用一元二次方程根与系数的关系及其它解析几何的常见的公式(如两点间的距离公式,斜率公式…)求解.22.(本小题满分12分) 已知函数(1)()ln(1)1x x f x x xλ+=+-+.(Ⅰ)若0x ≥时,()0f x ≤,求λ的最小值; (Ⅱ)设数列{}n a 的通项111123n a n =++++,证明:21ln 24n n a a n-+>. 答案:(Ⅰ)12;(Ⅱ)详见解答过程思路分析:考点剖析:本题考察函数与数列的综合应用,是一创新性题目,主要考察了学生对问题的分析、推理、解决;掌握函数、数列的性质,具有良好的分析、逻辑推理能力是解决本题的前提.解题思路:(1)运用导数即可求得λ的最小值,(2)运用所要证明的不等式与问题(Ⅰ)中结论的联系即可求解.解答过程:(Ⅰ)由已知(0)0f =,2'2(12)()(1)x x f x x λλ--=+,'(0)0f =.若12λ<,则当02(12)x λ<<-时,'()0f x >,所以()0f x >. 若12λ≥,则当0x >时,'()0f x <,所以当0x >时,()0f x <. 综上,λ的最小值是12.(Ⅱ)证明:令12λ=.由(Ⅰ)知,当0x >时,()0f x <, 即(2)ln(1)22x x x x+>++.取1x k =,则211ln()2(1)k k k k k++>+. 于是212111()422(1)n n n k n a a n k k -=-+=++∑21212(1)n k n k k k -=+=+∑211lnn k nk k -=+>∑ln 2ln n n =- ln 2=.所以21ln 24n n a a n-+>. 规律总结:函数与数列综合题考在解答案题中考查,通过构造、推理、分类、放缩等方法,融知识、能力与素质与一体,综合问题对分析问题,解决问题能力具有很高要求.。

北京2013届高三理科数学最新模拟试题分类汇编1集合

北京2013届高三理科数学最新模拟试题分类汇编1:集合一、选择题1 .(2013北京海淀二模数学理科试题及答案)集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B =( ) A .(,0]-∞ B .(,1]-∞ C .[1,2] D .[1,)+∞2 .(2013届北京西城区一模理科)已知全集U =R ,集合{|02}A x x =<<,2{|10}B x x =->,那么U A B =ð( ) A .{|01}x x << B .{|01}x x <≤ C .{|12}x x << D .{|12}x x ≤< 3 .(2013届北京市延庆县一模数学理)已知集合},3,1{m A =,},1{m B =,A B A = ,则=m( ) A .0或3 B .0或3 C .1或3 D .1或34 .(2013届房山区一模理科数学)已知全集U =R ,集合2{|1},{|4}M x x N x x =≤=>,错误!未找到引用源。

错误!未找到引用源。

则()M C N =R ( )A .(2,1]-B .[2,1]-C .(,1]-∞-D .(,2)-∞-5.(2013北京昌平二模数学理科试题及答案)已知集合{|21}x A x =>,{|1}B x x =<,则A B =( ) A .{|1}x x > B .{|0}x x > C .{|01}x x << D .{|1}x x < 6 .(2013北京东城高三二模数学理科)已知集合{|(1)0,}A x x x x =-<∈R ,{|22,}B x x x =-<<∈R ,那么集合B A 是( ) A .∅ B .{|01,}x x x <<∈RC.{|22,}x x x -<<∈R D .{|21,}x x x -<<∈R7 .(2013北京朝阳二模数学理科试题)已知集合{}0,1,3M =,集合{}3,N x x a a M ==∈,则M N =() A . {}0 B .{}0,3 C .{}1,3,9 D .{}0,1,3,9 8 .(2013届门头沟区一模理科)已知全集U = R ,集合A {}24x x =≤,B {}1x x =<,则集合A B 等于UA .{}2x x ≥-B .{}12x x ≤≤C .{}1x x ≥D .R 9 .(北京市顺义区2013届高三第一次统练数学理科试卷(解析))已知集合{}()(){}021,012<-+∈=<+∈=x x x B x x A R R ,则=⋂B A ( )A .()1,-∞-B .⎪⎭⎫ ⎝⎛--21,1C .⎪⎭⎫ ⎝⎛-2,21D .()+∞,210.(2013北京顺义二模数学理科试题及答案)已知集合{}{}034,232≥+-∈=<<-∈=x x x B x x A R R ,则=⋂B A( ) A .(]1,3- B .()1,3- C .[)2,1 D .()[)+∞⋃∞-,32,11.(北京市石景山区2013届高三一模数学理试题)设集合M= {x|x 2≤4),N={x|log 2 x≥1},则M N 等于( ) A .[-2,2] B .{2} C .[2,+∞) D .[-2,+∞)12.(北京市朝阳区2013届高三第一次综合练习理科数学)已知集合{}23M x x =-<<,{}lg(2)0N x x =+≥,则M N =( ) A .(2,)-+∞ B .(2,3)- C .(2,1]-- D .[1,3)-13.(2013届房山区一模理科数学)设集合M 是R 的子集,如果点0x ∈R 满足:00,,0a x M x x a ∀>∃∈<-<,称0x 为集合M 的聚点.则下列集合中以1为聚点的有: {|}1n n n ∈+N ; ②*2{|}n n ∈N ; ③Z ; ④{|2}xy y =( ) A .①④ B .②③ C .①② D .①②④14.(2013届东城区一模理科)已知全集{1,2,3,4}U =,集合{1,2}A =,那么集合U A ð为( ) A .{3} B .{3,4} C .{1,2} D .{2,3}15.(2013届北京海滨一模理科)集合2{6},{30}A x x B x x x =∈≤=∈->N|R|,则A B =( ) A .{3,4,5} B .{4,5,6} C .{|36}x x <≤ D .{|36}x x ≤<二、填空题16.(2013届北京丰台区一模理科)已知M 是集合{}1,2,3,,21(*,2)k k N k -∈≥的非空子集,且当x M ∈时,有2k x M -∈.记满足条件的集合M 的个数为()f k ,则(2)f = ;()f k = 。

2022年高考数学理科总复习2013年高考真题分类汇编:A单元 集合与常用逻辑用语

A 单元 集合与常用逻辑用语 A1 集合及其运算1.A1[2013·新课标全国卷Ⅰ] 已知集合A ={x|x 2-2x >0},B =x }-5<x <5,则( )A .A ∩B = B .A ∪B =RC .B AD .A B1.B [解析] A ={x|x<0或x>2},故A ∪B =R .1.A1[2013·北京卷] 已知集合A ={-1,0,1},B ={x|-1≤x<1},则A ∩B =( )A .{0}B .{-1,0}C .{0,1}D .{-1,0,1}1.B [解析] ∵-1∈B ,0∈B ,1B ,∴A ∩B ={-1,0},故选B.1.A1[2013·广东卷] 设集合M ={x|x 2+2x =0,x ∈R },N ={x|x 2-2x =0,x ∈R },则M ∪N =( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}1.D [解析] ∵M ={-2,0},N ={0,2},∴M ∪N ={-2,0,2},故选D.2.A1[2013·湖北卷] 已知全集为R ,集合A =x 错误!错误!x ≤1,B ={x|x 2-6x +8≤0},则A ∩(∁R B)=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x<2或x>4}D .{x|0<x ≤2或x ≥4}2.C [解析] A ={x|x ≥0},B ={x|2≤x ≤4},∁R B ={x|x<2或x>4},可得答案为C.16.A1,A3,B6[2013·湖南卷] 设函数f(x)=a x +b x -c x ,其中c>a>0,c>b>0.(1)记集合M ={(a ,b ,c)|a ,b ,c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)①x ∈(-∞,1),f(x)>0;②x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长;③若△ABC 为钝角三角形,则x ∈(1,2),使f(x)=0.16.(1){x|0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f(x)=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c>a>0,c>b>0,故a +b =2a<c ,令f(x)=2a x -c x =0,即f(x)=c x ⎣⎡⎦⎤2⎝⎛⎭⎫a c x -1=0,故可知⎝⎛⎭⎫a c x =12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x|0<x ≤1}. (2)因f(x)=a x +b x -c x =c x⎣⎡⎦⎤⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x -1,因c>a>0,c>b>0,则0<a c <1,0<b c <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x >a c +b c,又a ,b ,c 为三角形三边,则定有a +b>c ,故对x ∈(-∞,1),⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x -1>0,即f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x-1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n +⎝⎛⎭⎫b c n<1,即a n +b n <c n ,故②正确;对于③,因f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知,x ∈(1,2),使f(x)=0,故③正确.故填①②③.4.A1[2013·江苏卷] 集合{-1,0,1}共有________个子集.4.8 [解析] 集合{-1,0,1}共有3个元素,故子集的个数为8.1.A1,L4[2013·江西卷] 已知集合M ={1,2,zi},i 为虚数单位,N ={3,4},M ∩N ={4},则复数z =( )A .-2iB .2iC .-4iD .4i1.C [解析] zi =4z =-4i ,故选C.2.A1[2013·辽宁卷] 已知集合A ={}x|0<log 4x<1,B ={}x|x ≤2,则A ∩B =( )A .(0,1)B .(0,2]C .(1,2)D .(1,2]2.D [解析] ∵A ={x|1<x<4},B ={x|x ≤2},∴A ∩B ={x|1<x ≤2},故选D.1.A1[2013·全国卷] 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )A .3B .4C .5D .61.B [解析] 1,2,3与4,5分别相加可得5,6,6,7,7,8,根据集合中元素的互异性可得集合M 中有4个元素.2.A1[2013·山东卷] 已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( )A .1B .3C .5D .92.C [解析] ∵x ,y ∈{}0,1,2,∴x -y 值只可能为-2,-1,0,1,2五种情况,∴集合B 中元素的个数是5.1.A1[2013·陕西卷] 设全集为R ,函数f(x)=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞)1.D [解析] 要使二次根式有意义,则M ={x ︱1-x 2≥0}=[-1,1],故∁R M =(-∞,-1)∪(1,+∞).1.A1[2013·四川卷] 设集合A ={x|x +2=0},集合B ={x|x 2-4=0},则A ∩B =( )A .{-2}B .{2}C .{-2,2}D .1.A [解析] 由已知,A ={-2},B ={-2,2},故A ∩B ={-2}.1.A1[2013·天津卷] 已知集合A ={x ∈R ||x|≤2},B ={x ∈R |x ≤1},则A ∩B =( )A .(-∞,2]B .[1,2]C .[-2,2]D .[-2,1]1.D [解析] A ∩B ={x ∈R |-2≤x ≤2}∩{x ∈R |x ≤1}={x ∈R |-2≤x ≤1}.1.A1[2013·新课标全国卷Ⅱ] 已知集合M ={x|(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( )A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}1.A [解析] 集合M ={x|-1<x<3},则M ∩N ={0,1,2}.2.A1[2013·浙江卷] 设集合S ={x|x>-2},T ={x|x 2+3x -4≤0},则(∁R S)∪T =( )A .(-2,1]B .(-∞,-4]C .(-∞,1]D .[1,+∞)2.C [解析] ∁R S ={x|x ≤-2},T ={x|(x +4)(x -1)≤0}={x|-4≤x ≤1},所以(∁R S)∪T =(-∞,1].故选择C. 22.A1、A2,J1[2013·重庆卷] 对正整数n ,记I n ={1,2,…,n},P n =⎩⎨⎧⎭⎬⎫m k⎪⎪⎪ m ∈I n ,k ∈I n ). (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”,求n 的最大值,使P n 能分成两个不相交的稀疏集的并.22.解:(1)当k =4时,⎩⎨⎧m k m ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n I n .不妨设1∈A ,则因1+3=22,故3A ,即3∈B.同理6∈A ,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求,当k =1时,⎩⎨⎧m km ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14.当k =4时,集⎩⎨⎧m km ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可分解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132. 当k =9时,集⎩⎨⎧m km ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133,B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143. 最后,集C =⎩⎨⎧mk m ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14.综上,所求n 的最大值为14.注:对P 14的分拆方法不是唯一的.1.A1[2013·重庆卷] 已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B)=( )A .{1,3,4}B .{3,4}C .{3}D .{4}1.D [解析] 因为A ∪B ={1,2,3},所以∁U (A ∪B)={4},故选D.A2 命题及其关系、充分条件、必要条件4.A2、B5[2013·安徽卷] “a ≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.C [解析] f(x)=|(ax -1)x|=|ax 2-x|,若a =0,则f(x)=|x|,此时f(x)在区间(0,+∞)上单调递增;若a<0,则二次函数y =ax 2-x 的对称轴x =12a<0,且x =0时y =0,此时y =ax 2-x 在区间(0,+∞)上单调递减且y<0恒成立,故f(x)=|ax 2-x|在区间(0,+∞)上单调递增,故a ≤0时,f(x)在区间(0,+∞)上单调递增,条件是充分的;反之若a>0,则二次函数y =ax 2-x 的对称轴x =12a >0,且在区间0,12a 上y<0,此时f(x)=|ax 2-x|在区间0,12a上单调递增,在区间12a ,1a上单调递减,故函数f(x)不可能在区间(0,+∞)上单调递增,条件是必要的.3.A2、C3[2013·北京卷] “φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.A [解析] ∵曲线y =sin(2x +φ)过坐标原点,∴sin φ=0,∴φ=k π,k ∈Z ,故选A.2.A2[2013·福建卷] 已知集合A ={1,a},B ={1,2,3},则“a =3”是“A B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.A [解析] 当a =3时,A ={1,3},A B ;当A B 时,a =2或a =3,故选A.3.A2[2013·湖北卷] 在一次跳伞中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(q) B.p∨(瘙綈q)C.(q) D.p∨q3.A[解析] “至少一位学员没降落在指定区域”即“甲没降落在指定区域或乙没降落在指定区域”,可知选A.7.A2[2013·山东卷] 给定两个命题p,q,若瘙綈p是q的必要而不充分条件,则p是瘙綈q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.A[解析] ∵瘙綈p是q的必要不充分条件,∴q是瘙綈p的充分而不必要条件,又“若p,则瘙綈q”与“若q,则瘙綈p”互为逆否命题,∴p是瘙綈q的充分而不必要条件.3.F1,A2[2013·陕西卷] 设a,b为向量,则“|a·b|=|a||b|”是“a∥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.C[解析] 由已知中|a·b|=|a|·|b|可得,a与b同向或反向,所以a∥b.又因为由a∥b,可得|cos〈a,b〉|=1,故|a·b|=|a|·|b||cos〈a,b〉|=|a|·|b|,故|a·b|=|a|·|b|是a∥b的充分必要条件.4.A2[2013·四川卷] 设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:x∈A,2x∈B,则()A.瘙綈p:x∈A,2x BB.瘙綈p:x A,2x BC.瘙綈p:x A,2x∈BD.瘙綈p :x ∈A ,2x B 4.D [解析] 注意到全称命题的否定为特称命题,故应选D.图1-44.A2[2013·天津卷] 已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18; ②若两组数据的平均数相等,则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切. 其中真命题的序号是( )A .①②③B .①②C .①③D .②③4.C [解析] 由球的体积公式V =43πR 3知体积与半径是立方关系,①正确.平均数反映数据的所有信息,标准差反映数据的离散程度,②不正确.圆心到直线的距离为|0+0+1|1+1=22=r ,即直线与圆相切,③正确. 4.A2[2013·浙江卷] 已知函数f(x)=Acos (ωx +φ)(A>0,ω>0,φ∈R ),则“f(x)是奇函数”是“φ=π2”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.B [解析] f(x)=Acos (ωx +φ)是奇函数的充要条件是f(0)=0,即cos φ=0,φ=k π+π2,k ∈Z ,所以“f(x)是奇函数”是“φ=π2”的必要不充分条件,故选择B.22.A1、A2,J1[2013·重庆卷] 对正整数n ,记I n ={1,2,…,n},P n =⎩⎨⎧⎭⎬⎫m k⎪⎪⎪ m ∈I n ,k ∈I n ). (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”,求n 的最大值,使P n 能分成两个不相交的稀疏集的并.22.解:(1)当k =4时,⎩⎨⎧m km ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n I n .不妨设1∈A ,则因1+3=22,故3A ,即3∈B.同理6∈A ,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾. 再证P 14符合要求,当k =1时,⎩⎨⎧m k m ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14.当k =4时,集⎩⎨⎧m k m ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可分解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132. 当k =9时,集⎩⎨⎧m km ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133,B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143. 最后,集C =⎩⎨⎧mk m ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14.综上,所求n 的最大值为14.注:对P 14的分拆方法不是唯一的.A3 基本逻辑联结词及量词16.A1,A3,B6[2013·湖南卷] 设函数f(x)=a x +b x -c x ,其中c>a>0,c>b>0.(1)记集合M ={(a ,b ,c)|a ,b ,c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)①x ∈(-∞,1),f(x)>0;②x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长;③若△ABC 为钝角三角形,则x ∈(1,2),使f(x)=0.16.(1){x|0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f(x)=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c>a>0,c>b>0,故a +b =2a<c ,令f(x)=2a x -c x =0,即f(x)=c x ⎣⎡⎦⎤2⎝⎛⎭⎫a c x -1=0,故可知⎝⎛⎭⎫a c x =12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x|0<x ≤1}. (2)因f(x)=a x +b x -c x =c x⎣⎡⎦⎤⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x -1,因c>a>0,c>b>0,则0<a c <1,0<b c <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x >a c +b c,又a ,b ,c 为三角形三边,则定有a +b>c ,故对x ∈(-∞,1),⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x -1>0,即f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x -1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n +⎝⎛⎭⎫b c n <1,即a n +b n <c n ,故②正确;对于③,因f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知,x ∈(1,2),使f(x)=0,故③正确.故填①②③.2.A3[2013·重庆卷] 命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0 D .存在x 0∈R ,使得x 20<02.D [解析] 根据定义可知命题的否定为:存在x 0∈R ,使得x 20<0,故选D.A4 单元综合10.A4,B14[2013·福建卷] 设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f(x)满足:(1)T ={f(x)|x ∈S};(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f(x 1)<f(x 2),那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .A =N *,B =NB .A ={x|-1≤x ≤3},B ={x|x =-8或0<x ≤10}C .A ={x|0<x<1},B =RD .A =Z ,B =Q10.D [解析] 函数f(x)为定义域S 上的增函数,值域为T.构造函数f(x)=x -1,x ∈N , 如图①,则f(x)值域为N ,且为增函数,A 选项正确;构造函数f(x)=⎩⎪⎨⎪⎧-8,x =-1,52(x +1),-1<x ≤3,如图②,满足题设条件,B 选项正确;构造函数f(x)=tanx -错误!π,0<x<1,如图③,满足题设条件,C 选项正确;假设存在函数f(x),f(x)在定义域Z 上是增函数,值域为Q ,则存在a<b 且a 、b ∈Z ,使得f(a)=0,f(b)=1,因为区间(a ,b)内的整数至多有有限个,而区间(0,1)内的有理数有无数多个,所以必存在有理数m ∈(0,1),方程f(x)=m 在区间(a ,b)内无整数解,这与f(x)的值域为Q 矛盾,因此满足题设条件的函数f(x)不存在,D 选项错误,故选D.。

2013高考数学各省题目分类整理:集合与逻辑用语

2013高考:集合于逻辑用语【2013高考题组】(一)集合运算问题1、(2013北京,文理1)已知集合{1,0,1}A =-,{|11}B x x =-≤<,则A B = ( )A 、{0}B 、{1,0}-C 、{0,1}D 、{1,0,1}-2、(2013全国大纲,文1)设全集{1,2,3,4,5}U =,集合{1,2}A =,则U A =ð( )A 、{1,2}B 、{3,4,5}C 、{1,2,3,4,5}D 、∅3、(2013全国课标I ,文1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )A 、{1,4}B 、{2,3}C 、{9,16}D 、{1,2}4、(2013全国课标I ,理1)已知集合2{|20}A x x x =->,{|B x x =<<,则( )A 、AB =∅ B 、A B R =C 、B A ⊆D 、A B ⊆5、(2013全国课标II ,文1)已知集合{|31}M x x =-<<,{|3,2,1,0,1}N x =---,则M N = ( )A 、{2,1,0,1}--B 、{3,2,1,0}---C 、{2,1,0}--D 、{3,2,1}---6、(2013全国课标II ,理1)已知集合2{|(1)4,}M x x x R =-<∈,{1,0,1,2,3}N =-,则M N = ( ) A 、{0,1,2} B 、{1,0,1,2}- C 、{1,0,2,3}- D 、{0,1,2,3}7、(2013山东,文2)已知集合A 、B 均为全集{1,2,3,4}U =的子集,且(){4}U A B = ð,{1,2}B = 则U A B = ð( )A 、{3}B 、{4}C 、{3,4}D 、∅8、(2013安徽,文2)已知{|10}A x x =+>,{2,1,0,1}B =--,则()R A B = ð( )A 、{2,1}--B 、{2}-C 、{1,0,1}-D 、{0,1}9、(2013浙江,文1)设集合{|2}S x x =>-,{|41}T x x =-≤≤,则S T = ( )A 、[4,)-+∞B 、(2,)-+∞C 、[4,1]-D 、(2,1]-10、(2013浙江,理2)设集合{|2}S x x =>-,2{|340}T x x x =+-≤,则()R S T = ð( )A 、(2,1]-B 、(,4]-∞-C 、(,1]-∞D 、[1,)+∞11、(2013天津,文理1)已知集合{|2}A x R x =∈≤,{|1}B x R x =∈≤,则A B = ( )A 、(,2]-∞B 、[1,2]C 、[2,2]-D 、[2,1]-12、(2013辽宁,文1)已知集合{0,1,2,3,4}A =,{|2}B x x =<,则A B = ( )A 、{0}B 、{0,1}C 、{0,2}D 、{0,1,2}13、(2013辽宁,理2)已知集合4{|0log 1}A x x =<<,{|2}B x x =≤,则A B = ( )A 、(0,1)B 、(0,2]C 、(1,2)D 、(1,2]14、(2013陕西,文1)设全集为R ,函数()f x =M ,则R M ð为( )A 、(,1)-∞B 、(1,)+∞C 、(,1]-∞D 、[1,)+∞15、(2013陕西,理1)设全集为R ,函数()f x =M ,则R M ð为( )A 、[1,1]-B 、(1,1)-C 、(,1][1,)-∞-+∞D 、(,1)(1,)-∞-+∞16、(2013湖南,文10)已知集合{2,3,6,8}U =,{2,3}A =,{2,6,8}B =,则()U A B = ð 。

2013届高三最新数学(精选试题26套)分类汇编1:集合

江苏省2013届高三最新数学(精选试题26套)分类汇编1:集合一、填空题1 .(江苏省常州市奔牛高级中学2013年高考数学冲刺模拟试卷)已知全集U ={1,2,3,4,5,6,7},集合2{|650}M x x x =∈-+Z ≤,则集合U M =______.【答案】{6,7} 2 .(江苏省南通市海门中学2013届高三下学期5月月考数学试卷)已知集合{}0322<-+=x x x A ,{}21<-=x x B ,则=⋂B A __________.【答案】)1,1(-3 .(江苏省西亭高级中学2013届高三数学终考卷)设A ,B 是两个非空的有限集合,全集U =A ∪B ,且U 中含有m 个元素.若()()A B U U C C 中含有n 个元素,则A ∩B 中所含有元素的个数为 ▲ .【答案】m -n4 .(江苏省启东中学2013届高三综合训练(1))已知全集{12345}U =,,,,,集合2{|320}A x x x =-+=,{|2}B x x a a A ==∈,,则集合()U A B =__.【答案】{3,5};5 .(江苏省常州市第五中学2013年高考数学文科)冲刺模拟试卷)已知全集U =R ,集合2{|log 1}A x x =>,则U A =____.【答案】(-∞,2] 6 .(武进区湟里高中2013高三数学模拟试卷)集合{}1,0,1A =-,A 的子集中,含有元素0的子集共有__________个【答案】解析:子集中的元素为来自集合{}1,1-,所以子集的个数为224=. 7 .(江苏省常州市金坛市第一中学2013年高考冲刺模拟试卷)集合{}1,0,1A =-,{}2|1,B x x m m R ==+∈,则A B =________.【答案】{}1;8 .(江苏省2013届高三高考压轴数学试题)在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1]; ②-3 ∈ [3]; ③z=[0]∪[1] ∪[2] ∪[3] ∪[4];④“整数a,b 属于同一‘类”的充要条件是“a -b∈[0]”其中,正确结论的个数是________个【答案】39 .(江苏省扬州市2013届高三下学期5月考前适应性考试数学(理)试题)已知集合{1,2},{2,3}A B ==,则AB =______. 【答案】{}1,2,310.(江苏省南通市通州区姜灶中学2013届高三5月高考模拟数学试题 )若已知集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)A B n -,则=n ______.【答案】111.(江苏省徐州市2013届高三考前模拟数学试题)若集合{}1,0,1A =-,{}21,B x x m m ==+∈R ,则B A =________.【答案】{1}12.(江苏省常州市第二中学2013年高考数学(文科)冲刺模拟试卷doc )全集R U =,{|A x y ==,(){|lg 11}B x x =-<则=⋂B A __________.【答案】(]2,113.(江苏省常州市横山桥中学2013年高考数学冲刺模拟试卷doc )已知集合A ={-1,0,1,2},B ={x |x 2-x ≤0},则A ∩B =_____.【答案】{0, 1} 14.(江苏省常州高级中学2013年高考数学模拟试卷)已知数集{}1 0 2M x =--,,中有3个元素,则实数x 不能取的值构成的集合为______.【答案】{}1 2,; 15.(南京师大附中2013届高三模拟考试5月卷)已知集合A ={x |x 2-2x ≥0},B ={-1, 0, 1, 2, 3},则A ∩B =_____.【答案】{-1,0,2,3}16.(江苏省常州市戴埠高级中学2013年高考数学(文科)冲刺模拟试卷)已知集合2{3,},{1,3,32},A m B m ==--若,A B A =,则实数m 的值为___________..【答案】12or17.(江苏省启东中学2013届高三综合训练(3))已知R 为实数集,2{|20},{|1}M x x x N x x =-<=≥,则=)(N C M R _____.【答案】{|01}x x <<18.(江苏省常州市华罗庚高级中学2013年高考数学冲刺模拟试卷)已知集合{}{}x N x M ,1,,12==,且集合N M =,则实数x 的值为_________.【答案】019.(江苏省扬州中学2013届高三最后一次模拟考试数学试题)已知集合{}{}12,1A x x B x x =-=<≤≤,则()A B R =________.【答案】{|12}x x ≤≤20.(江苏省2013届高三高考模拟卷(二)(数学) )已知集合M ={x |y =lg x },N ={ x |y =1-x },则M ∩N =________.【答案】(0,1]21.(江苏省2013届高三高考压轴数学试题)设全集{}4,3,2,1,0=U ,{}4,3,0=A ,{}3,1=B ,则B A C U ⋃)(=________.【答案】{1,2,3}22.(江苏省常州市西夏墅中学2013年高考冲刺模拟试卷)已知集合{}11M =-,,11242x N x x +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N =_________.【答案】}1{- 23.(江苏省常州市武进高级中学2013年高考数学文科)冲刺模拟试卷doc )设全集{}2,1,0,1,2U =--,集合{}1,1,2A =-,{}1,1B =-,则()U A C B 为______【答案】{}2二、解答题24.(江苏省启东中学2013届高三综合训练(1))已知集合[]{}|2,2,3x A y y x ==-∈,{}22|330B x x x a a =+-->,(1)当4a =时,求A B ;(2)若A B ⊆,求实数a 的取值范围【答案】解:(1)[]8,4A =--,当4a =时,()(),74,B =-∞-+∞,由数轴图得:[)8,7A B =--(2)方程22330x x a a +--=的两根分别为,3a a --,①当3a a =--时,33,,22B ⎛⎫⎛⎫=-∞--+∞ ⎪ ⎪⎝⎭⎝⎭,满足A B ⊆; ②当32a <-时,3a a <--,()(),3,B a a =-∞--+∞,则4a >-或38a --<-, 得342a -<<-; ③当32a >-时,3a a >--,()(),3,B a a =-∞--+∞,则8a <-或34a -->- 得312a -<< 综上所述,实数a 的取值范围是()4,1- 25.(江苏省常州市西夏墅中学2013年高考冲刺模拟试卷)已知集合{}n a a a a A ,,,,321⋅⋅⋅=,其中()2,1>≤≤∈n n i R a i ,()A l 表示()n j i a a j i ≤<≤+1的所有不同值的个数.(1)已知集合{}8,6,4,2=P ,{}16,8,4,2=Q ,分别求()P l ,()Q l ;(3)求()A l 的最小值.【答案】(1)由2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,得l (P )=5由2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,得l (Q )=6(3)不妨设a 1<a 2<a 3<<a n ,可得a 1+a 2<a 1+a 3<<a 1+a n <a 2+a n <a 3+a n <<a n -1+a n ,故a i +a j (1≤i <j ≤n )中至少有2n -3个不同的数,即l (A )≥2n -3.事实上,设a 1,a 2,a 3,,a n 成等差数列,考虑a i +a j (1≤i <j ≤n ),根据等差数列的性质,当i +j ≤n 时, a i +a j =a 1+a i +j -1;当i +j >n 时, a i +a j =a i +j -n +a n ;因此每个和a i +a j (1≤i <j ≤n )等于a 1+a k (2≤k ≤n )中的一个,或者等于a l +a n (2≤l ≤n -1)中的一个.故对这样的集合A ,l (A )=2n -3,所以l (A )的最小值为2n -3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年全国高考理科数学试题分类汇编1:集合
一、选择题
1 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))
已知全集1,2,3,4U,集合=12A,,=23B,,

则=UABð( )
A.134,, B.34, C. 3 D. 4
【答案】
D
2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))
已知集合

4
|0log1,|2AxxBxxAB,则

A.01, B.02, C.1,2 D.12,
【答案】
D
3 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))
已知集合A = {x∈R| |x|≤2}, A = {x∈R| x≤1},
则AB
(A) (,2] (B) [1,2] (C) [2,2] (D) [-2,1]
【答案】
D
4 .(2013年普通高等学校招生统一考试福建数学(理)试题)
设S,T,是R的两个非空子集,如果存在一个从S到T的函数

()yfx满足:(){()|};()iTfxxSii
对任意12,,xxS当12xx时,恒有12()()fxfx,那么称这两个集合“保

序同构”.以下集合对不是“保序同构”的是( )
A.*,ANBN B.
{|13},{|8010}AxxBxxx或

C.{|01},AxxBR D.,AZBQ【答案】D
5 .(2013年高考上海卷(理))
设常数aR,集合{|(1)()0},{|1}AxxxaBxxa,若ABR,则a的
取值范围为( )
(A) (,2) (B) (,2] (C) (2,) (D) [2,)
【答案】
B.
6
.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))
已知集合A={0,1,2},则集合
B

,xyxAyA
中元素的个数是

(A) 1 (B) 3 (C)5 (D)9
【答案】
C

7 .(2013年高考陕西卷(理))
设全集为R, 函数2()1fxx的定义域为M, 则CMR为
(A) [-1,1] (B) (-1,1)
(C) ,1][1,)( (D) ,1)(1,)(
【答案】
D

8 .(2013年普通高等学校招生统一考试大纲版数学(理))
设集合

1,2,3,4,5,|,,,ABMxxabaAbB

则M中的元素个数为
(A)3 (B)4 (C)5 (D)6
【答案】
B
9 .(2013年高考四川卷(理))
设集合{|20}Axx,集合2{|40}Bxx,则AB( )

(A){2} (B){2} (C){2,2} (D)
【答案】
A
10.(2013年高考新课标1(理))
已知集合2|20,|55AxxxBxx,则 ( )
A.A∩B= B.A∪B=R C.B⊆A D.A⊆B

【答案】B. 11.(2013年高考湖北卷(理))
已知全集为R,集合112xAx,2|680Bxxx,则

R
ACB
( )

A.|0xx B.|24xx
C. |024xxx或 D.|024xxx或
【答案】
C
12.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理))
已知集合2|(1)4,,1,0,1,2,3MxxxRN,
则NM
(A)2,1,0 (B)2,1,0,1 (C)3,2,0,1 (D)3,2,1,0
【答案】
A
13
.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))
设集合

2|20,MxxxxR,
2
|20,NxxxxR

,则MN( )

A . 0 B.0,2 C.2,0 D.2,0,2
【答案】
D

14.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))
设集合}043|{},2|{2xxxTxxS,

则TSCR)(
A.
(2,1]
B. ]4,( C. ]1,( D.),1[

【答案】
C
15
.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))
设整数4n,集合1,2,3,,Xn.令集合

,,|,,,,,SxyzxyzXxyzyzxzxy且三条件恰有一个成立,若,,xyz和
,,zwx
都在S中,则

下列选项正确的是( )
A . ,,yzwS,,,xywS B.,,yzwS,,,xywS

C.,,yzwS,,,xywS D.,,yzwS,,,xywS
(一)必做题(9~13题)
【答案】
B
16.(2013年高考北京卷(理))
已知集合A={-1,0,1},B={x|-1≤ x<1},则A∩B= ( )
A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}
【答案】
B
17.(2013年上海市春季高考数学试卷(含答案))
设全集UR,下列集合运算结果为R的是( )

(A)uZNð (B)uNNð (C)()uu痧 (D)
{0}
u
ð

【答案】
A
二、填空题

18.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))
集合}1,0,1{共有___________
个子集.
【答案】
8
三、解答题
19.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))
对正整数n,记


1,2,3,,mIn
,,mmmmPmIkIk.

(1)求集合7P中元素的个数;
(2)若mP的子集A中任意两个元素之和不是..整数的平方,则称A为“稀疏集”.求n的最大值,使mP能分成两人上不相
交的稀疏集的并.
【答案】

相关文档
最新文档