数学物理方法简明教程 林福民编 北京大学出版社 第1-6章总结

合集下载

数学物理方法第一章

数学物理方法第一章
存在,并且与 z 0 的方式无关,则称函数 w=f(z) 在 z 点可导(或单演),此(有限的)极限称为函数 f(z) 在 z 的导数
(或微商),以 f '(z) 或 df/dz 表示
讨论:
1、从形式上看,复变函数导数的定义与实变函数的定义相同,
因而实变函数论中关于导数的规则和公式往往可以适用于实变 函数。

x cos y sin

z (cos i sin )
z e
i

指数式
讨论:i)复数的辐角不能唯一地确定。如果 0 是其中一个辐角, 则
0 2k (k 0,1,2,) 也是其辐角,把属于 [0,2 ) 的辐角称为主值辐角,记为arg z .
存在,且连续,并
且满足柯西-黎曼条件。 证明:由于这些偏导数连续,二元函数 u 和 v 的增量可分别写为
各 个
,于是有
根据柯西-黎曼条件,上式即
这一极限是与 z 0 无关的有限值。证毕。
讨论:复变函数与实变函数的导数有本质上的差别,复变函数 可微,不但要求复变函数的实部与虚部可微,而且还要求其实 部与虚部满足柯西-黎曼条件。
单连通区域:在区域 B 做任何简单的闭曲线,曲线包围 的点全属于 B。否则为多连通区域。
三、复变函数例
多项式
a0 a1 z a2 z an z
2
n
n 为正整数
有理分式
a0 a1 z a2 z 2 an z n b0 b1 z b2 z 2 bm z m
ii)当 1时,z cos i sin ei 称为单位复数。
iii)复数 z 的共轭复数
z x iy (cos isin ) e

物理学简明教程1-9章课后习题答案

物理学简明教程1-9章课后习题答案

第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;t d d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1 -4 质点的运动方程为 23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v 0x =-10 m·s-1 , v 0y =15 m·s-1 ,则初速度大小为 120200s m 0.18-⋅=+=y x v v v设v 0与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta x x v , 2s m 40d d -⋅-==t a y y v 则加速度的大小为 222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则 32tan -==x y a a β β=-33°41′(或326°19′)1 -5 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1)由 ⎰⎰=txx t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1)、(2)得 v 0=-1 m·s-1, x 0=0.75 m于是可得质点运动方程为75.0121242+-=t t x 1 -6 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?题 1-13 图 分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan==x y θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g g a n α1 -7 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为 b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -8 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v 20221gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即 20202121gt t h at t -+=+v v s 705.02=+=ag h t (2) 螺丝相对升降机外固定柱子下降的距离为 m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-= s 705.02=+=ag h t (2) 由于升降机在t 时间内上升的高度为2021at t h +='v 则 m 716.0='-=h h d题 1-8 图1 -9 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)题 1-19 图分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得 1o 12s m 36.575tan -⋅==v v 1 -10 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.题 1-20 图解 由122v v v -='[图(b)],有θθcos sin arctan221v v v -=α 而要使hlαarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -11 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( )(A) 不为零,但保持不变(B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变(D) 无法确定分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).1 -12 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( )(A) 不得小于gR μ (B) 必须等于gR μ(C) 不得大于gR μ (D) 还应由汽车的质量m 决定分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).1-13 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程Rm θmg F N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).*1 -14 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( )(A) 5/8 mg (B) 1/2 mg (C) mg (D) 2mg分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中a A 应斜向上.对a A 、a B 、a 和a ′之间还要用到相对运动规律,求解过程较繁琐.有兴趣的读者不妨自己尝试一下.1 -15 在如图(a )所示的轻滑轮上跨有一轻绳,绳的两端连接着质量分别为1 kg 和2 kg 的物体A 和B ,现以50 N 的恒力F 向上提滑轮的轴,不计滑轮质量及滑轮与绳间摩擦,求A 和B 的加速度各为多少?题 1-15 图分析 在上提物体过程中,由于滑轮可以转动,所以A 、B 两物体对地加速度并不相同,故应将A 、B 和滑轮分别隔离后,运用牛顿定律求解,本题中因滑轮质量可以不计,故两边绳子张力相等,且有T 2F F =.解 隔离后,各物体受力如图(b )所示,有滑轮 02T =-F FA A A A T a m g m F =-B B B B T a m g m F =-联立三式,得 2.15A =a 7.2s m B 2=⋅-a ,2s m -⋅讨论 如由式a m m g m m F )()(B A B A +=+-求解,所得a 是A 、B 两物体构成的质点系的质心加速度,并不是A 、B 两物体的加速度.上式叫质心运动定理.1 -16 一质量为m 的小球最初位于如图(a)所示的A 点,然后沿半径为r 的光滑圆轨道ADCB 下滑.试求小球到达点C 时的角速度和对圆轨道的作用力.题 1-16 图分析 该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度a t,与其相对应的外力F t是重力的切向分量mg sin α,而与法向加速度a n 相对应的外力是支持力F N 和重力的法向分量mg cos α.由此,可分别列出切向和法向的动力学方程F t=m d v/d t 和F n =ma n .由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解 小球在运动过程中受到重力P 和圆轨道对它的支持力F N .取图(b)所示的自然坐标系,由牛顿定律得tm αmg F t d d sin v =-= (1) Rm m αmg F F N n 2cos v =-= (2) 由tαr t s d d d d ==v ,得v αr t d d =,代入式(1),并根据小球从点A 运动到点C 的始末条件,进行积分,有 ()⎰⎰-=απαα2/sin 0d rg d v v v v 得 αrg cos 2=v则小球在点C 的角速度为 r αg rω/cos 2==v 由式(2)得 αmg αmg rm m F N cos 3cos 2=+=v由此可得小球对圆轨道的作用力为αmg F F N Ncos 3-=-=' 负号表示F ′N 与e n 反向.1 -17 光滑的水平桌面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v 0 ,求:(1) t 时刻物体的速率;(2) 当物体速率从v 0减少2/0v 时,物体所经历的时间及经过的路程.题 1-17 图分析 运动学与动力学之间的联系是以加速度为桥梁的,因而,可先分析动力学问题.物体在作圆周运动的过程中,促使其运动状态发生变化的是圆环内侧对物体的支持力F N 和环与物体之间的摩擦力F f ,而摩擦力大小与正压力F N ′成正比,且F N 与F N ′又是作用力与反作用力,这样,就可通过它们把切向和法向两个加速度联系起来了,从而可用运动学的积分关系式求解速率和路程.解 (1) 设物体质量为m ,取图中所示的自然坐标,按牛顿定律,有Rm ma F n N 2v == tma F t d d f v -=-= 由分析中可知,摩擦力的大小F f=μF N ,由上述各式可得tR μd d 2v v -= 取初始条件t =0 时v =v 0 ,并对上式进行积分,有⎰⎰-=v v v v 020d d μR t t tμR R 00v v v += (2) 当物体的速率从v 0 减少到2/0v 时,由上式可得所需的时间为v μR t ='物体在这段时间内所经过的路程⎰⎰''+==t t t tμR R t s 0000d d v v v 2ln μR s =第二章动量守恒定律和能量守恒定律2 -1对质点系有以下几种说法:(1) 质点组总动量的改变与内力无关;(2) 质点组总动能的改变与内力无关;(3) 质点组机械能的改变与保守内力无关.下列对上述说法判断正确的是( )(A) 只有(1)是正确的(B) (1)、(2)是正确的(C) (1)、(3)是正确的(D) (2)、(3)是正确的分析与解在质点组中内力总是成对出现的,它们是作用力与反作用力.由于一对内力的冲量恒为零,故内力不会改变质点组的总动量.但由于相互有作用力的两个质点的位移大小以及位移与力的夹角一般不同,故一对内力所作功之和不一定为零,应作具体分析,如一对弹性内力的功的代数和一般为零,一对摩擦内力的功代数和一般不为零,对于保守内力来说,所作功能使质点组动能与势能相互转换,因此保守内力即使有可能改变质点组的动能,但也不可能改变质点组的机械能.综上所述(1)(3)说法是正确的.故选(C).2 -2有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则( )(A) 物块到达斜面底端时的动量相等(B) 物块到达斜面底端时动能相等(C) 物块和斜面(以及地球)组成的系统,机械能不守恒(D) 物块和斜面组成的系统水平方向上动量守恒分析与解对题述系统来说,由题意知并无外力和非保守内力作功,故系统机械能守恒.物体在下滑过程中,一方面通过重力作功将势能转化为动能,另一方面通过物体与斜面之间的弹性内力作功将一部分能量转化为斜面的动能,其大小取决其中一个内力所作功.由于斜面倾角不同,故物体沿不同倾角斜面滑至底端时动能大小不等.动量自然也就不等(动量方向也不同).故(A)(B)(C)三种说法均不正确.至于说法(D)正确,是因为该系统动量虽不守恒(下滑前系统动量为零,下滑后物体与斜面动量的矢量和不可能为零.由此可知,此时向上的地面支持力并不等于物体与斜面向下的重力),但在水平方向上并无外力,故系统在水平方向上分动量守恒.2 -3如图所示,质量分别为m1和m2的物体A和B,置于光滑桌面上,A和B之间连有一轻弹簧.另有质量为m1和m2的物体C和D分别置于物体A与B 之上,且物体A和C、B和D之间的摩擦因数均不为零.首先用外力沿水平方向相向推压A和B,使弹簧被压缩,然后撤掉外力,则在A和B弹开的过程中,对A、B、C、D 以及弹簧组成的系统,有( )(A) 动量守恒,机械能守恒(B) 动量不守恒,机械能守恒(C) 动量不守恒,机械能不守恒(D) 动量守恒,机械能不一定守恒分析与解由题意知,作用在题述系统上的合外力为零,故系统动量守恒,但机械能未必守恒,这取决于在A、B 弹开过程中C 与A 或D 与B 之间有无相对滑动,如有则必然会因摩擦内力作功,而使一部分机械能转化为热能,故选(D).2 -4 如图所示,子弹射入放在水平光滑地面上静止的木块后而穿出.以地面为参考系,下列说法中正确的说法是( )(A) 子弹减少的动能转变为木块的动能(B) 子弹-木块系统的机械能守恒(C) 子弹动能的减少等于子弹克服木块阻力所作的功(D) 子弹克服木块阻力所作的功等于这一过程中产生的热分析与解子弹-木块系统在子弹射入过程中,作用于系统的合外力为零,故系统动量守恒,但机械能并不守恒.这是因为子弹与木块作用的一对内力所作功的代数和不为零(这是因为子弹对地位移大于木块对地位移所致),子弹动能的减少等于子弹克服阻力所作功,子弹减少的动能中,一部分通过其反作用力对木块作正功而转移为木块的动能,另一部分则转化为热能(大小就等于这一对内力所作功的代数和).综上所述,只有说法(C)的表述是完全正确的.2 -5质量为m的物体,由水平面上点O以初速为v0抛出,v0与水平面成仰角α.若不计空气阻力,求:(1) 物体从发射点O到最高点的过程中,重力的冲量;(2) 物体从发射点到落回至同一水平面的过程中,重力的冲量.分析重力是恒力,因此,求其在一段时间内的冲量时,只需求出时间间隔即可.由抛体运动规律可知,物体到达最高点的时间gαt sin Δ01v =,物体从出发到落回至同一水平面所需的时间是到达最高点时间的两倍.这样,按冲量的定义即可求得结果.另一种解的方法是根据过程的始、末动量,由动量定理求出.解1 物体从出发到达最高点所需的时间为gαt sin Δ01v =则物体落回地面的时间为 gt t αsin Δ2Δ0122v == 于是,在相应的过程中重力的冲量分别为 j j F I αsin Δd 011Δ1v m t mg t t -=-==⎰j j F I αsin 2Δd 022Δ2v m t mg t t -=-==⎰解2 根据动量定理,物体由发射点O 运动到点A 、B 的过程中,重力的冲量分别为j j j I αm y m mv Ay sin 001v v -=-=j j j I αm y m mv By sin 2002v v -=-=2 -6 高空作业时系安全带是非常必要的.假如一质量为51.0 kg 的人,在操作时不慎从高空竖直跌落下来,由于安全带的保护,最终使他被悬挂起来.已知此时人离原处的距离为2.0 m ,安全带弹性缓冲作用时间为0.50 s .求安全带对人的平均冲力.分析 从人受力的情况来看,可分两个阶段:在开始下落的过程中,只受重力作用,人体可看成是作自由落体运动;在安全带保护的缓冲过程中,则人体同时受重力和安全带冲力的作用,其合力是一变力,且作用时间很短.为求安全带的冲力,可以从缓冲时间内,人体运动状态(动量)的改变来分析,即运用动量定理来讨论.事实上,动量定理也可应用于整个过程.但是,这时必须分清重力和安全带冲力作用的时间是不同的;而在过程的初态和末态,人体的速度均为零.这样,运用动量定理仍可得到相同的结果.解1 以人为研究对象,按分析中的两个阶段进行讨论.在自由落体运动过程中,人跌落至2 m 处时的速度为gh 21=v (1)在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有()12Δv v m m t -=+P F (2)由式(1)、(2)可得安全带对人的平均冲力大小为()N 1014.1Δ2ΔΔ3⨯=+=+=tgh mg t m Δmg F v解2 从整个过程来讨论.根据动量定理有N 1014.1/2Δ3⨯=+=mg g h tmg F 2 -7 如图所示,在水平地面上,有一横截面S =0.20 m 2 的直角弯管,管中有流速为v =3.0 m·s-1 的水通过,求弯管所受力的大小和方向.题 3-12 图分析 对于弯曲部分AB 段内的水而言,由于流速一定,在时间Δt 内,从其一端流入的水量等于从另一端流出的水量.因此,对这部分水来说,在时间Δt 内动量的增量也就是流入与流出水的动量的增量Δp =Δm (v B -v A );此动量的变化是管壁在Δt 时间内对其作用冲量I 的结果.依据动量定理可求得该段水受到管壁的冲力F ;由牛顿第三定律,自然就得到水流对管壁的作用力F′=-F .解 在Δt 时间内,从管一端流入(或流出) 水的质量为Δm =ρυS Δt ,弯曲部分AB 的水的动量的增量则为Δp =Δm (v B -v A ) =ρυS Δt (v B -v A )依据动量定理I =Δp ,得到管壁对这部分水的平均冲力()A B t S ρtv v v -==ΔΔI F 从而可得水流对管壁作用力的大小为N 105.2232⨯-=-=-='v S ρF F作用力的方向则沿直角平分线指向弯管外侧.2 -8 质量为m′ 的人手里拿着一个质量为m 的物体,此人用与水平面成α角的速率v 0 向前跳去.当他达到最高点时,他将物体以相对于人为u 的水平速率向后抛出.问:由于人抛出物体,他跳跃的距离增加了多少? (假设人可视为质点)分析 人跳跃距离的增加是由于他在最高点处向后抛出物体所致.在抛物的过程中,人与物之间相互作用力的冲量,使他们各自的动量发生了变化.如果把人与物视为一系统,因水平方向不受外力作用,故外力的冲量为零,系统在该方向上动量守恒.但在应用动量守恒定律时,必须注意系统是相对地面(惯性系)而言的,因此,在处理人与物的速度时,要根据相对运动的关系来确定.至于,人因跳跃而增加的距离,可根据人在水平方向速率的增量Δv 来计算.解 取如图所示坐标.把人与物视为一系统,当人跳跃到最高点处,在向左抛物的过程中,满足动量守恒,故有()()u m m αm m -+'='+v v v cos 0式中v 为人抛物后相对地面的水平速率, v -u 为抛出物对地面的水平速率.得u m m m α'++=cos 00v v 人的水平速率的增量为 u m m m α'+=-=cos Δ0v v v 而人从最高点到地面的运动时间为 gαt sin 0v =所以,人跳跃后增加的距离 ()gm m αm t x '+==sin ΔΔ0v v 2 -9 一质量为0.20 kg 的球,系在长为2.00 m 的细绳上,细绳的另一端系在天花板上.把小球移至使细绳与竖直方向成30°角的位置,然后从静止放开.求:(1) 在绳索从30°角到0°角的过程中,重力和张力所作的功;(2) 物体在最低位置时的动能和速率;(3) 在最低位置时的张力.题 2-9 图分析 (1) 在计算功时,首先应明确是什么力作功.小球摆动过程中同时受到重力和张力作用.重力是保守力,根据小球下落的距离,它的功很易求得;至于张力虽是一变力,但是,它的方向始终与小球运动方向垂直,根据功的矢量式⎰⋅=s d F W ,即能得出结果来.(2) 在计算功的基础上,由动能定理直接能求出动能和速率.(3) 在求最低点的张力时,可根据小球作圆周运动时的向心加速度由重力和张力提供来确定.解 (1) 如图所示,重力对小球所作的功只与始末位置有关,即 ()J 53.0cos 1Δ=-==θmgl h P W P在小球摆动过程中,张力F T 的方向总是与运动方向垂直,所以,张力的功s F d T T ⋅=⎰W(2) 根据动能定理,小球摆动过程中,其动能的增量是由于重力对它作功的结果.初始时动能为零,因而,在最低位置时的动能为J 53.0k ==P W E小球在最低位置的速率为1P K s m 30.222-⋅===mW m E v (3) 当小球在最低位置时,由牛顿定律可得lm P F 2T v =- N 49.22T =+=lm mg F v 2 -10 一质量为m 的质点,系在细绳的一端,绳的另一端固定在平面上.此质点在粗糙水平面上作半径为r 的圆周运动.设质点的最初速率是v 0 .当它运动一周时,其速率为v 0 /2.求:(1) 摩擦力作的功;(2) 动摩擦因数;(3) 在静止以前质点运动了多少圈?分析 质点在运动过程中速度的减缓,意味着其动能减少;而减少的这部分动能则消耗在运。

数学物理方法(第四版)高等教育出版社第一章1

数学物理方法(第四版)高等教育出版社第一章1
表示到点2i和到 两点距离相 表示到点 和到-2两点距离相 和到 等点的轨迹。 等点的轨迹。既过原点的直线
-2
(x,y)
x
(0,-1)
(3) Im(i+ z) = 4
Im[i + (x −iy)] = Im[x + i(1− y)] = 4
1− y = 4
表示y= 的直线 表示 -3的直线
y=-3
5、复平面与复数球之关系
例3 设 z =
z1 7 1 ( )=− + i z2 5 5
−1 3i 求 − , Re( z ), Im(z ) 与 zz i 1− i
−1 3i 3i(1+ i) 3 3 3 1 z= − =i − =i − i+ = − i i 1− i (1− i)(1+ i) 2 2 2 2
3 ∴Re(z) = 2
2 x 2
3、复数的三种表示: 、复数的三种表示
1). 代数式 2). 三角式
z = x + iy
z =ρ
x = ρ cosθ
y = ρ sinθ
z = ρ (cos θ + i sin θ )
3). 指数式
e = cosθ + i sin θ

欧拉公式
z = ρe

θ = Argz
4、复数的运算
A
S
•作业:P6 作业: 作业
•1(2)( )( ) ( )( )(5) )(3)( •2(1)( )( )( ) ( )( )(5)( )(4)( )(6) •3(1)( ) ( )( )(4)
§1.2
复变函数
复变函数的定义与定义域: 一、复变函数的定义与定义域: 复变函数定义: 1、复变函数定义: 复数平面上存在一个点集E, 复数平面上存在一个点集 , 对于E的每一点( 每一个 值 ) , 对于 的每一点(每一个z值 的每一点 按照一定的规律, 按照一定的规律 , 有一个或多 ω 与之相对应, 个复数值 与之相对应 , 则称 为z的函数 的函数——复变函数,z称为 复变函数, 称为 的函数 复变函数

数学物理方法01

数学物理方法01

2
2
因为 z1 z2 z1 z2 z1 z2 z1 z 2 2 Re( z1 z2 ),
z1 z2 z1 z2 2 Re( z1 z2 )
z1 z2 2 [Re( z1 z2 )] [Im( z1 z2 )] z1 z2 2 z1 z2
2 2 2 2 2 2
z1 z2 z1 z2
2016/9/13 16
乘法运算
z1 z2 ( x1 x2 y1 y2 ) i ( x1 y2 x2 y1 )
两个复数相乘 1 2 cos(1 2 ) i sin( 1 2 ) 等于它们的模相乘, 幅角相加 1 2 exp[i (1 2 )]
2016/9/13
2
x y .
2
2 2 2 注意: z ( x y ) i 2 xy
共轭复数的性质:
z z (1) z1 z2 z1 z2 ; z1 z2 z1 z2 ; 1 1 ; z2 z2
( 2) z z;
( 3) z z Re( z ) Im( z ) ;
2016/9/13 10
3.复数的几何表示
复数 z = x + iy 与有序实数对 (x ,y )成一一
对应 . 因此 , 一个建立了直角坐标系 的平面可以 用来表示复数 , 通常把横轴叫实轴或 x 轴 , 纵轴
叫虚轴或 y 轴 .这种用来表示复数的平 面叫复平 面.
复数的向量表示法
复数 z x iy 可以用复平 面上的点向量oz 表示.
( z1 z1 )( z2 z2 ) z1 z2 .
(2) z1 z2 ( z1 z2 )( z1 z2 ) ( z1 z2 )( z1 z2 )

数学物理方法笔记摘要

数学物理方法笔记摘要

《数学物理方法》笔记摘要【写在学习本课程之前】对于本课程本人的学习目标是熟悉数学物理方程本身的物理实质,对常见的分离变量法等要掌握解法,但公式等不必记住,会解决简单条件下的实际问题,如扩散方程、电测深问题、三维电场问题等。

第一章 数学物理方程基本概念一、数学物理方程的提出要解决物理量在时间和多维空间上的变化规律问题,这就导致了偏微分方程的产生。

注意:所谓变化规律就是微分的思想,而在时间和空间上的多维变化就是偏微分方程。

二、定解问题定解问题由泛定方程、边界条件、初始条件组成。

①泛定方程:数学物理方程本身叫做泛定方程,不含有边界条件和初始条件。

②边界条件:即物理问题所处的“环境”,也就是物理量在边界上的状况。

③初始条件:及物理问题的“历史”,也就是开始时刻物理量的状况。

所以,解决物理问题,泛定方程是纽带,将边界值和初始值通过纽带推算到每个点、每个时刻,这就是解决数学物理问题的实质过程!三、泊松方程和拉普拉斯方程的物理本质①泊松方程是解决的物理场中的“有源”问题。

②拉普拉斯方程解决的是物理场中的“无源”问题。

四、扩散方程详见课本p145,将在后面的部分解决常见的扩散方程。

五、边界条件分类(1)第一类边界条件指的是在边界上物理量本身的值。

(2)第二类边界条件指的是在边界上物理量法向导数的值,【物理意义】针对电场、热传导、扩散问题来说就是在边界上的“对外”或“对内”的流量问题。

(3)第三类边界条件对于热传导问题就是描述的自由冷却问题,即杆端热流强度与温度差之间的关系,详见课本p156.六、线性偏微分方程的分类(1)线性偏微分方程的定义(2)分类双曲型抛物线型椭圆型第二章 分离变量法一、偏微分方程能够进行分离变量的条件(1)方程是常系数线性偏微分方程;(2)边界条件是齐次的。

二、分离变量法解决偏微分方程的步骤(1)将非齐次边界条件化为齐次边界条件;(2)将非齐次泛定方程表示成两个泛定方程的线性组合;(3)将分离变量形式代入泛定方程,得到两个常微分方程;(4)将分离变量代入边界条件,和一个常微分方程组成特征方程,解出特征值;(5)将特征值代入另一个常微分方程并解之;(6)综合两个常微分方程的解,写出偏微分方程的解,然后代入初始条件,接触系数。

大学物理简明教程

大学物理简明教程
应用伯努利:方程解决流体力学问 题的步骤与技巧
与伯努利方:程相关的流体力学基 本概念与性质介绍
3 第3章 刚体力学基础
第3章 刚体力学基础
3.1 刚体刚体定轴转动的描述
刚体的定义与分类 刚体定轴转动的定义与描述方法 与刚体定轴:转动相关的基本概念 与性质介绍
第3章 刚体力学基础
3.2 刚体定轴转 动的转动定律
2 第2章 质点动力学
2.1 牛顿运动 定律
第一定律的内 容及意义
第二定律的内容 及数学表达形式
第三定律的内 容及意义
第2章 质点动力学
第2章 质点动力学
2.2 动量动量守恒定律
动量的定义及计算 动量定理的内容及数学表达形式 动量守恒定律的内容及适用条件
第2章 质点动力学
2.3 功动能势能机械能守恒定律
20xx
大学物理简明教程
-
目录
CONTENTSLeabharlann 1第1章 质点运动学
2
第2章 质点动力学
3 第3章 刚体力学基础
2
1 第1章 质点运动学
第1章 质点运动学
1.1 参考系坐标系物理模型 参考系的选择 坐标系的目的 简述物理模型
1.2 位矢位移 速度加速度
位矢的概念
位移的计算与 物理意义
速度的定义及 计算
功的定义及计算方法
动能定理的内容及数学表 达形式
势能的概念及分类
机械能守恒:定律的内容 及适用条件
第2章 质点动力学
2.4 质点的角动量和角动量守恒定律
角动量的定义及计算方法
质点的角动:量定理的内 容及数学表达形式
质点的角动:量守恒定律 的内容及适用条件
2.5 流体伯努利方程

大学物理简明教程课后习题加答案

大学物理简明教程课后习题加答案

大学物理简明教程习题解答习题一1-1 |r ∆|与r ∆有无不同t d d r 和t d d r 有无不同 t d d v 和t d d v有无不同其不同在哪里试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即t d d r ==v t sd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ+=式中dt dv就是加速度的切向分量.(t t r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确为什么两者差别何在解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a tr v ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。

数学物理方法第1章复变函数-2016解答

数学物理方法第1章复变函数-2016解答

【解】 设方根为 w k ,根据上面公式有
wk

1 e n
i 2kπ n
k 0,1,2,…,n 1
当 n=2 时,其根为 1. 对应于单位圆与实轴
的两交点.
22
当 n 3 时,各根分别位于单位圆 z 1的内接正多边
形的顶点处,其中一个顶点对应着主根: w0 1 , (k 0 ) .
面上的一个矢量, 为矢量长度,
为幅角 。记
z ei
z=x+iy=2k 幅角主值:0 Arg z 2 , Arg z ,
(z 0, ; k 0,1,2,...)
注:arg :argument (幅角、宗量,自变量)
数学物理方程(方法)
共60学时,3学分.
(以课堂讲授为主,加强课前和课后练习)
考试时间:暂定11月30日下午 考核方式:30%作业+70%期末考试
主要参考书目:
1. 梁昆淼 《数学物理方法》(第四版)高等教育出版社. 2. 吴崇试,《数学物理方法》,北京大学出版社 3. 冉扬强,《数学物理方法》, 科学出版社。 4. 王友年等《数学物理方法》,大连理工大学出版社
等式,对于 x 0 ,其辐角不满足要求.
24
1.2 复变函数 (一) 复变函数的定义
在复平面上一点集 E 中每一点z ,都有一个或几个 复数w与之对应,称w为 z 的函数,E 为定义域,记 w =f(z),z E 。z有时称为宗量(argument) 或自变量。 实函数: y=f(x)= ± x^(1/2), x>=0 多值
17
N
A’
A
S
球的南极与复数平面的原 点相切,平面上任意点 A 与球的北极由一条直线相 连,直线与球相交于 A’ 。 由此,每一有限的复数 投 影到球上一点 。这个投影 叫测地投影,这个球叫复 数球。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 复数与复变函数1. 复数的定义2. 区域与复变函数 区域 具备:1. 开集性;2. 连通性符合上述两个性质的复平面上的点集称为区域复变函数当复变数z 在复平面上变动时,如果复数ω的值随着复数z 的值而定,就称ω为z 的函数,记作()f z ω=复数的表示形式直角坐标表示形式 z x iy =+Re Im x z y z i ==实部:;虚部:;虚数单位三角函数表示形式()cos sin z i ρθθ=+ 22arctan y x y xθρ==+辐角;模:指数形式 i z e θρ= 相等 121212x x y y z z ===当,时,则称 共轭12121212x x y y z z z z ==-==当,时,则称或运算规则加法 ()()121212z z z x x i y y =+=+++ 减法 ()()121212z z z x x i y y =-=-+-乘法()()()()()121211221212122112121212exp i i z z z x iy x iy x x y y i x y x y z z z e ei θθρρρρθθ==++=-++==⋅=+⎡⎤⎣⎦或除法()12111121221122222222222211112222exp i i z x iy x x y y x y x y z i z x iy x y x y z e z i z e θθρρθθρρ++-===++++===-⎡⎤⎣⎦或乘方()()cos sin cos sin nn i n in nz e e i n i n θθρρθθθθ==+=+里莫夫公式开方()cos sin 22(cossin)0,1, (1)nnz i k k z i k n nnρθθθπθπωρ=+++==+=-3. 单值函数和多值函数单值函数幂函数 n z n ω= 为整数指数函数()exp z e z ω==三角函数 sin ,cos ,,z z tgz ctgz 双曲函数 ,,,shz chz thz cthz多值函数根函数1n n z z n ω== 为整数对数函数ln ln z z iArgz ω==+第二章 复变函数微积分1. 极限与连续 极限000()(,)(,)lim (,);lim (,)lim ()x x x x z z y y y y f z u x y iv x y u x y a v x y b f z a ib →→→→→=+==⇒=+连续 00lim ()()z z f z f z →=2. 复变函数的导数定义00000()()lim()z f z z f z z zf z z ∆→+∆-∆对于点,如果存在,则此极限称为在的导数。

函数在点z 导数存在的充要条件 ()(,)(,)()(,),(,)(,)- ,f z u x y iv x y D f z D u x y v x y x y u vu v x yy x=+∂∂∂∂==-∂∂∂∂设定义在区域内,则在内一点可导的充要条件是:在点处可微,并且在该点满足柯西黎曼条件:3. 复变函数的解析 定义函数不仅在一点可导,而且在该点的ε邻域内点点是可导的,则称函数在该点是解析的。

函数在点z 解析的充要条件 ()()1 (,),(,)2-z u v u vu x y v x y x y y xε∂∂∂∂∂∂∂∂在点的邻域内的各点:连续且,,,存在;柯西黎曼条件成立。

4. 调和函数与解析函数 调和函数 ()22220,u uu x y x y∂∂+=∂∂满足拉普拉斯方程解的称为调和函数共轭调和函数 满足柯西-黎曼条件的两个调和函数(),u x y 和(),v x y 称为一对共轭调和函数解析函数与调和函数的关系 解析函数()()(),,f z u x y iv x y =+的实部(),u x y 与虚部(),v x y 是一对共轭调和函数5. 复变函数的积分定义 ()11()lim ()nk k k cn k f z dz f z z ξ-→∞==-∑⎰分解成两个实变函数的积分 ()()()()(),,,,cc c f z dz u x y dx v x y dy i v x y dx u x y dy =-++⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰⎰ 积分曲线用参数方程表示 积分曲线可用参数方程()z t 表示,线积分可写成()()21()t t ct t f z dz f z t z t dt =='=⎡⎤⎣⎦⎰⎰6. 柯西定理柯西定理若函数()f z 在单连通区域D 内解析,则(1) 只要起点和终点固定不变,积分路径连续变形时,函数的积分值不变 (2) ()0cf z dz =⎰多连通区域的柯西定理1()()0i ni cc f z dz f z dz =+=∑⎰⎰1()()ini cc f z dz f z dz ==∑⎰⎰7. 柯西公式柯西公式000()1()()2cf z B c B z B f z f z dz i z z π=-⎰ 若在闭单连通区域上解析,为的边界线,为内的任一点,则有n 阶导数的柯西公式 ()010!()()(1,2,...)2()n n cn f z f z dz n i z z π+==-⎰第三章 复变函数的幂级数展开1. 复数项级数的收敛和绝对收敛收敛各项为复数的级数0k k a ∞=∑的部分和0nk k a =∑在n →∞时趋于有限的极限,则称级数收敛,并称S 为它的和。

绝对收敛 如果级数中各复数项模所构成的级数0k k a ∞=∑收敛,就称级数0nk k a =∑绝对收敛。

2. 复变函数项级数的收敛收敛121120000()()()...()...()()()...()lim ()()nn n n n n n fz f z f z f z n S z f z f z f z D z S z S z z ∞=→∞=++++=+++=∑其前面项的和,如果对于内的某一点,极限存在,则称级数在处收敛。

3. 收敛的性质 连续函数项收敛(1) 级数的和是连续函数;(2) 级数可以逐项积分。

解析函数项收敛 (1) 级数的和是解析函数;(2) 级数可以逐项求导;(3) 级数可以逐项积分,且积分与路径无关。

4. 幂级数的性质阿贝尔定理000100(0)n n n c z z z z z z z z z z z z ∞==≠<=>∑如果级数在收敛,则对满足的一切,级数绝对收敛。

如果在级数发散,则对满足的,级数发散。

幂级数的收敛半径 1limnn n c R c →∞+=5. 解析函数展开成泰勒级数泰勒级数()00()000()()()()!n nn n n f z z z R f z z f z f z c z z c n ∞=-==-=∑设在圆的内部解析,则在点的幂级数展开称为泰勒级数:其中系数泰勒展开式和收敛半径R201......2!!!n nzn z z z e z R n n ∞==+++++==+∞∑3521210sin ...(1)...3!5!(21)!(1)(21)!n nn nn z z z z z n zR n ++∞==-+-+-++=-=+∞+∑24220cos 1...(1)...2!4!(2)!(1)(2)!nn nnn z z z z n zR n ∞==-+-+-+=-=+∞∑2341ln(1)...(1) (12341)n n z z z z z z z n ++=-+-+-+ <+ 2(1)(1)(2)(1)1...2!3!(1)[(1)]1!n z z z n zz n αααααααααα---+=++++-⋅⋅⋅--+<6. 解析函数的洛朗展开洛朗级数 (双边幂级数)()()102010()()1()(0,1,2,...)2()C nnn n n C f z R z z R z f z f z c z z f z c dz n i z z π∞=-∞+<-<=-==±±-∑⎰ 设函数在圆环域内解析,则对环域上任一点,可展开成洛朗级数:系数积分路径为环域内按逆时针方向绕内圆一周的任一闭合曲线。

第四章 留数及其应用1. 解析函数的奇点 孤立奇点 ()()()00000z f z f z z z z R z f z <-<若点是的奇点,但在的某一个去心邻域内解析,则称是函数的孤立奇点。

2. 孤立奇点的分类 奇点名称 极限性质以0z z =为中心,在去心邻域中()f z 的洛朗级数展开形式可去奇点 ()0lim z z f z →=有限值 不含负幂项极点 ()0lim z z f z →=∞含有限个负幂项 本性奇点 ()0lim z z f z →不存在含无限个负幂项3. 留数定理和留数的求法留数定理11()22Res ()nk ck f z dz ici f z ππ-===∑⎰()()Res k k f z f z z 称为函数在点的留数0z 是()f z 的可去奇点0Res ()0f z =0z 是()f z 的本性奇点把()f z 在0z 展开成洛朗级数求1c -0z 是()f z 的极点如果0z 是()f z 的一阶极点,000Res ()lim()()z z f z z z f z →=-如果0z 是()f z 的m 阶极点,010011Res ()lim {()()}(1)!m m m z z d f z z z f z m dz--→=--()()()P z f z Q z =,()P z 、()Q z 都在0z 处解析,如果0()0P z ≠,0()0Q z '≠,0()0Q z =,则0z 为()f z 的一阶极点,且000()Res ()()P z f z Q z ='4. 三类典型的实函数的定积分类型I20(sin ,cos )R d πθθθ⎰22111()(,)22z z f z R iz iz z-+=令201(sin ,cos )2Res ()nk k R d i f z πθθθπ==∑⎰类型II()R x dx +∞-∞⎰若实轴上没有奇点,则{}1()()2Res ()()()2()n k k P x R x dx dx i R z Q x R x dx i R z ππ+∞+∞-∞-∞=+∞-∞===∑⎰⎰⎰即在上半平面所有奇点的留数之和若实轴上有有限个一阶极点,则()2Res ()+Res ()R x dx iR z iR z ππ+∞-∞==∑∑⎰上半平面实轴上类型III (0)a >()aix R x e dx +∞-∞⎰()cos R x axdx +∞-∞⎰ ()sin R x axdx +∞-∞⎰{}1()2Res ()()2()knaiz aixk k aix aiz R x e dx i R z e R x e dx i R z e ππ+∞-∞=+∞-∞⎡⎤=⎣⎦=∑⎰⎰即在上半平面所有奇点的留数之和1()cos Re 2Res ()k naiz k k R x axdx i R z e π+∞-∞=⎧⎫⎡⎤=⎨⎬⎣⎦⎩⎭∑⎰1()sin Im 2Res ()k naiz k k R x axdx i R z e π+∞-∞=⎧⎫⎡⎤=⎨⎬⎣⎦⎩⎭∑⎰第五章 拉普拉斯变换及其应用1. 拉普拉斯变换定义()()()[]()()0-1()0()00()()()()()()()pt pt t t t t p t e dtt t e dt t p p t L t p L p t ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ∞-∞- (≤<+∞)⎧=⎨(<)⎩===⎡⎤⎣⎦⎰⎰设函数则称为的拉普拉斯变换,其中称为拉普拉斯积分。

相关文档
最新文档