【数学建模】3.1飞行管理

【数学建模】3.1飞行管理
【数学建模】3.1飞行管理

一个飞行管理模型

(1995年全国大学生数学建模竞赛A题)

在约10,000米高空的某边长160公里的正方形区域内,经常有若干架飞机作水平飞行. 区域内每架飞机的位置和速度均由计算机记录其数据,以便进行飞行管理. 当一架欲进入该区域的飞机到达区域边缘,记录其数据后,要立即计算并判断是否会与区域内的飞机发生碰撞。如果会碰撞,则应计算如何调整各架(包括新进入的)飞机飞行方向角,以避免碰撞。现假定条件如下:

1)不碰撞的标准为任意两架飞机的距离大于8公里;

2)对飞机飞行方向角调整的幅度不应超过30度;

3)所有飞机飞行速度均为每小时800公里;

4)进入该区域的飞机在到达区域边缘时,与区域内飞机

1

的距离应在60公里以上;

5)最多需考虑6架飞机;

6)不必考虑飞机离开此区域后的状况。

请你对这个避免碰撞的飞行管理问题建立数学模型,列出计算步骤,对以下数据进行计算(方向角误差不超过0.01度).要求飞机飞行方向角调整的幅度尽量小.设该区域4个顶点的座标为(0,0),(160,0),(160,160),(0,160)。记录数据为:

飞机编号横坐标x纵坐标y 方向角(度)

1 150 140 243

2 85 85 236

3 155 155 220.5

4 50 50 159

2

数学建模 飞机管理模型

Air Traffic Control Abstract 本文讨论了如何对新进入区域内的飞机是否会与区域内原有的飞机碰撞的问题,和如若碰撞,调整各架飞机方向角,使得飞机均能安全飞出正方形区域的问题。 针对判断飞行的飞机之间是否发生碰撞亦即可碰撞问题,把各架飞机的运动轨迹端点坐标用时间表示后,就可以写出第六架飞机与其它五架飞机的距离表达式,判断这个最小距离是否小于8km,如果小于,则碰撞,否则不碰撞。这一过程的实现可通过MATLAB编程动态模拟飞机在区域内的飞行过程。在时间轴上连续取样,最后得出第六架飞机和第五架相碰,碰撞时事件飞机的坐标位(),相碰时刻为? 针对检测到碰撞的存在并采取措施进行规避,即碰撞规避问题。需要对各架飞机的方向角进行调整,并且使得飞机方向角调整幅度最小。建立非线性规划模型,利用MATLAB求得第i架飞机)6,5,4,3,2,1 i调整的角度分别为: ( 关键字:飞机碰撞方向角最优解非线性规划

Contents

I. Introduction Grow inside 160 kilometers of exact square districts in the about 10,000 meters high empty some side, usually how many the airplane make level flight.Position and speed vector of each airplane inside the district are recorded its data by the calculator, so that they carry on a flight management.When desire gets into the airplane of the district to arrive a district edge, after recording its data, immediately compute and judge whether meeting and airplane occurrence in the district collision.If will collide, then should compute how to adjust each(including is lately ingoing) direction Cape that the airplane flies.To avoid collision.Now suppose a condition as follows: 1)The standard that don't collide is more than 8 kilometers for the distance of arbitrarily two airplanes. 2)The airplane flies the range that the direction Cape adjusts to be higher than 30 degrees. 3)All airplane airspeeds are all per hours are 800 kilometers. 4)The airplane that gets into the district while arriving a district edge, with the distance of airplane inside the district in response to above 60 kilometers. 5)At most need to consider 6 airplanes. 6)Need not consider that the airplane leaves the condition of this empress in the district. Please to the problem establishment mathematics model of the flight management that avoid collision.List to compute a step, carry on a calculation to the following data.(direction Cape the error margin isn't higher than 0.01 degrees)Requesting airplane to fly the range that the direction Cape adjusts is as far as possible small. The coordinates that establishes the district's 4 tops (0,0),(160,0) , (160,160) , (0,160) Airplane serial number Abscissa x Ordinate y Direction Cape (degree) 1 150 140 243 2 85 85 236 3 150 155 220.5 4 14 5 50 159 5 130 150 230 New 0 0 52

数学建模报告 飞行问题

《数学建模》课程设计 报告 课题名称:___飞行管理问题 系(院):理学院 专业:数学与应用数学 班级:10122111 学生姓名:邵仁和 学号:1012211122 指导教师:陈宏宇 开课时间:2011-2012 学年二学期

飞行管理问题的优化模型 摘要 为了避免较多飞机在区域内会发生碰撞,让飞机在某正方形区域内安全飞行,便于进行飞行管理,所以在飞机飞行过程中,要适当调整各架飞机的方向角(调整幅度尽量小),所以这是个优化问题。 本文我们根据题目所给的数据,利用matlab软件绘制出飞机的位置图标及飞行路径,并利用lingo软件找出了碰撞发生的飞机、碰撞发生的点和时间。同时再寻找判断两架飞机是否会相撞的方法,我们发现可以在飞机飞出区域之前每隔一段较短的时间对飞机进行监控,看是否与别的飞机相撞。 然后,我们根据问题讨论了飞行方向角的调整时间和次数对最优解的影响,发现调整时间越早,调整角度就越小,所以我们决定在第六架飞机刚飞到区域边缘的时候就进 行飞行角度的调整,并且达到了优化目标:∑ =? = 6 1 |) ( | min i i a。 由题意,我们找到约束条件,然后把这些约束条件在lingo中用语言描述出来,再针对运算方面进行改进,得到我们的lingo程序,运行后我们得到了飞机调整的飞行方向角和方案。 关键词:简化,最小调整幅度,最优

一、问题重述 6. 飞行管理问题(优化模型) 在约10000米高空的某边长160km的正方形区域内,经常有若干架飞机作水平飞行.区域内飞行的每架飞机的位置和速度向量均由计算机记录其数据,以便进行飞行管理.当一架欲进入该区域的飞机到达区域的边界时,记录其数据后,须立即判断是否将与区域内的飞机相碰撞.若可能发生碰撞,则应计算如何调整各架飞机的飞行的方向角,以避免碰撞。 作如下假设: (1)任意两架飞机的安全飞行距离为8公里; (2)所有飞机的飞行速度为800公里/小时; (3)进入该区域的飞机在到达区域边界时,与区域内的飞机的距离应在60公里以上; (4)最多考虑6架飞机; (5)不必考虑飞机离开此区域后的情况. 请你对这个避免碰撞的飞行管理问题建立数学模型,列出计算步骤,对以下数据进行计算(方向角误差不超过0.01),要求飞机飞行方向角调整的幅度尽量小。 设该区域四个顶点的坐标为:(0,0),(160,0),(160,160),(0,160) 记录数据为:

飞行管理问题优化模型

飞行管理问题优化模型内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

飞行管理问题的优化模型 摘要 根据问题我们知道,飞机如果要避免在区域内发生碰撞,则需要调整各自的飞行角,并强调要使调整幅度尽量小,所以这是个最优控制问题。 首先,我们根据本题所给的数据,利用matlab软件绘制出图形,对正方形区域内有可能发生的碰撞做一个大致的估计,并利用lingo软件找出了碰撞发生的飞机、碰撞发生的点和时间。同时寻找判断两架飞机是否会相撞的方法,经探讨,我们发现可以在飞机飞出区域之前每隔一段较短的时间对飞机进行监控,看是否与别的飞机相撞。 然后,我们根据问题讨论了飞行方向角的调整时间和次数对最优解的影响,发现调整时间越早,调整角度就越小,所以我们决定在第六架飞机刚飞到区域边缘的时候就进行飞行角度的调整;同时我们发现调整次数是越少,调整角度总和就越小,所以我们决定只在第六架飞机刚飞到区域边缘时对所有的飞机的飞行角度进行一次调整。我们由此简化了飞机碰撞模型,使飞机在区域内的飞行轨迹更加明了,同时找到了我们的优化目标——调整角度总和最小。 针对优化目标,我们找到约束条件,然后把这些约束条件在lingo中用语言描述出来,再针对运算方面进行改进,得到我们的lingo程序,运行后我们得到了飞机调整的飞行方向角和方案。 最后我们考虑模型的改进和推广。针对模型求解过程中,lingo程序运行时间过长,我们对6架飞机的飞行方向角改变的大小进行预估,然后代入程序中的角度约束,使程序运行量减少。同样我们发现在对飞机进行实时监控时的间隔时

间可以加大,这样可加快程序运行速度,减少运行时间。这样就对模型进行了优化。 关键词:简化,最小调整幅度,最优 一、问题重述 在约10000米的高空某边长为160公里的正方形区域内,经常有若干架飞机作水平飞行。区域内每架飞机的位置和速度向量均由计算机记录其数据,以便进行飞行管理。当一架欲进入该区域的飞机到达区域边缘时,记录其数据后,要立即计算并判断是否会与区域内的飞机发生碰撞。如果会碰撞,则应计算如何调整各架(包括新进入的)飞机飞行的方向角,以避免碰撞。现假定条件如下: 1)不碰撞的标准为任意两架飞机的距离大于8公里; 2)飞机飞行方向角调整的幅度不应超过30度; 3)所有飞机飞行速度均为每小时800公里; 4)进入该区域的飞机在到达区域边缘时,与区域内飞机的距离应在60公里以上; 5)最多需考虑6架飞机; 6)不必考虑飞机离开此区域后的状况。请你对这个避免碰撞的飞机管理问题建立数学模型,列出计算步骤,对以下数据进行计算(方向角误差不超过0.01度),要求飞机飞行方向角调整的幅度尽量小。设该区域内4个顶点的坐标为(0,0),(160,0),(160,160),(0,160)。记录数据为:

数学建模案例应用罚函数法实施航空港管理

01级混合八班徐涛3013001231 01级混合八班王菁3013001215 01级混合六班赵晓楠3013001155罚函数求解带约束的规划问题(教案) §1求解带约束的非线性规划问题 罚函数法求解带约束的非线形规划问题的基本思想是:利用问题的目标函数和约束函数构造出带参数的所谓增广目标函数,把约束非线形规划问题转化为一系列无约束非线形规划问题来求解。增广目标函数由两个部分构成,一部分是原问题的目标函数,另一部分是由约束函数构造出的“惩罚”项,“惩罚”项的作用是对“违规”的点进行“惩罚”。罚函数法主要有两种形式。一种称为外部罚函数法,或称外点法,这种方法的迭代点一般在可行域的外部移动,随着迭代次数的增加,“惩罚”的力度也越来越大,从而迫使迭代点向可行域靠近;另一种成为内部罚函数法,或称内点法,它从满足约束条件的可行域的内点开始迭代,并对企图穿越可行域边界的点予以“惩罚”,当迭代点越接近边界,“惩罚”就越大,从而保证迭代点的可行性。 1.外部罚函数法(外点法) 约束非线形规划问题 min f(x), s.t.g(x)>=0, 其中g(x)=(g1(x),…,gm(x)), 将带约束的规划问题转化为无约束非线形规划问题来求解的一个直观想法是:设法加大不可行点处对应的目标函数值,使不可行点不能成为相应无约束问题的最优解,于是对于可行域S={x|g(x)>=0}作一惩罚函数 P(x)=0,x∈S; K,else 其中K是预先选定的很大的数。然后构造一个增广目标函数 F(x)=f(x)+P(x), 显然x∈S时,F(x)与f(x)相等,而x S时,相应的F值很大。因此以F(x)为目标函数的无约束问题 minF x)=f(x)+P(x)(1)的最优解也是原问题(NP)的最优解。 上述P(x)虽然简单,但因它的不连续性导致无约束问题(1)求解的困难。为此将P(x)修改为带正参数M(称为罚因子)的函数 P(x)=M∑[min(0,gj(x))]2 则 min F(x,M)=f(x)+M∑[min(0,gj(x))]2 的最优解x(M)为原问题的最优解或近似最优解。这时,若x(M)∈S则它必定是问题的最优解;若对于某一个罚因子M,使得x(M)-∈S,则加大M的值,罚函数的“惩罚”作用也将随之加大,因此当M是很大的数时,即使x(M)-∈S,它与S的“距离”

国赛历届数学建模赛题题目与解题方法

历届数学建模题目浏览:1992--2009 1992年 (A) 施肥效果分析问题(北京理工大学:叶其孝) (B) 实验数据分解问题(华东理工大学:俞文此; 复旦大学:谭永基) 1993年 (A) 非线性交调的频率设计问题(北京大学:谢衷洁) (B) 足球排名次问题(清华大学:蔡大用) 1994年 (A) 逢山开路问题(西安电子科技大学:何大可) (B) 锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此) 1995年 (A) 飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此) (B) 天车与冶炼炉的作业调度问题(浙江大学:刘祥官, 李吉鸾) 1996年 (A) 最优捕鱼策略问题(北京师范大学:刘来福) (B) 节水洗衣机问题(重庆大学:付鹂) 1997年 (A) 零件参数设计问题(清华大学:姜启源) (B) 截断切割问题(复旦大学:谭永基,华东理工大学:俞文此) 1998年 (A) 投资的收益和风险问题(浙江大学:陈淑平) (B) 灾情巡视路线问题(上海海运学院:丁颂康) 1999年 (A) 自动化车床管理问题(北京大学:孙山泽) (B) 钻井布局问题(郑州大学:林诒勋) 1999年(C) 煤矸石堆积问题(太原理工大学:贾晓峰)

(D) 钻井布局问题(郑州大学:林诒勋) 2000年 (A) DNA序列分类问题(北京工业大学:孟大志) (B) 钢管订购和运输问题(武汉大学:费甫生) (C) 飞越北极问题(复旦大学:谭永基) (D) 空洞探测问题(东北电力学院:关信) 2001年 (A) 血管的三维重建问题(浙江大学:汪国昭) (B) 公交车调度问题(清华大学:谭泽光) (C) 基金使用计划问题(东南大学:陈恩水) (D) 公交车调度问题(清华大学:谭泽光) 2002年 (A) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此) (B) 彩票中的数学问题(解放军信息工程大学:韩中庚) (C) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此) (D) 赛程安排问题(清华大学:姜启源) 2003年 (A) SARS的传播问题(组委会) (B) 露天矿生产的车辆安排问题(吉林大学:方沛辰) (C) SARS的传播问题(组委会) (D) 抢渡长江问题(华中农业大学:殷建肃) 2004年 (A) 奥运会临时超市网点设计问题(北京工业大学:孟大志) (B) 电力市场的输电阻塞管理问题(浙江大学:刘康生) (C) 酒后开车问题(清华大学:姜启源)

航空延误数学建模

航班延误问题研究论文 摘要 近年来,随着航班延误事件的增多,引起的乘客和航空公司之间纠纷也逐渐增多,如果不能及时解决,会激发两者之间的矛盾,造成社会不稳定因素。本文运用两种关于航班延误的算法(美国关于航班延误问题的算法和中国关于航班延误问题的算法)来判断中国是否是航班延误最严重的国家。并基于收集得到的数据,通过数据拟合,分析得出国内航班延误的主要原因。最后,针对我国航班延误的主要原因提出改进措施。 针对问题一,我们首先对原始数据进行统计并处理,得到航班总数,正常航班数,不正常航班数的时间序列数据。通过题中所给网站https://www.360docs.net/doc/d114429574.html,。我们发现所给数据是以美国统计航班延误数据的标准进行统计的。由于我国统计航班延误数据的标准与美国航班统计方法不一致,我们决定分别运用我国关于航班延误问题统计方法和美国关于航班延误问题统计方法处理数据。然后通过数据判断我国是否是航班延误最严重的国家。 针对问题二,我们首先对原始数据进行整理,得到各个年份的导致航班延误影响因素的分布表,紧接着做出这个比例分布表的直方图和折线图。进而依据数据特征运用excel做出X Y散点图,通过添加趋势线合成多项式曲线,利用软件得多项式方程以及R平方值。通过R平方值,具体且直观的反应出因数影响程度的大小。再通过使用SAS软件对数据进行多因素之间的多重对比,得到与多项式方程比较相同的结果。至此,得以证明结果所得合理且正确。 针对问题三,通过第二问我们得出影响航班延误的主要原因是航空公司自身的原因,所以我们主要阐述了关于改进航空公司自身原因的措施,并且对于其他影响航班延误的原因也提出了一些改进建议。我们认为,航班延误治理是一项系统工程也是一个难题,应对措施及策略可从文中所给出的几方面进行考虑。我们通过对分析所得数据,查阅网上及书本资料,本着具体问题具体解决的思路对应对影响因素的根源提出方案。 关键字:延误因素决定系数拟合多重比较

飞行管理 数学建模

B 题:飞行管理问题 摘要: 飞行管理问题是一个既现实又重要的课题,本文利用偏转角度尽可能的小建立两个非线性规划模型。 模型一:时间模型。考虑到各架飞机的偏转角有正有负,在此模型中,对于各架飞机调整选取各个偏转角的绝对值的和作为目标函数,要求任意两架飞机任意时刻的距离大于8公里,则可以求出任意两架飞机的距离ij d 。此时,两架飞机距离ij d 是时间t 与各个飞机偏转角i θ?的函数,编写程序时将t 离散化,且t 有最大值0.2828s (沿对角线飞过的时间),这样可得到表1-1的结果: 表1-1 模型二:闭塞区域模型。在两架飞机中,将其中一架看成“静止”,另一架相对于它而运动。而以“静止”飞机为圆心,km 8为半径的圆形区域构成该飞机的闭塞区域,任意一架飞机的方向角均不能在此区域内,则为不相撞。为此,本文用复变函数的知识表示各架飞机的速度,从而算出相对速度,再求出相对位移,以相对速度与相对位移的夹角大于每两架飞机的临界夹角来刻画不相撞。目标函数为每架飞机偏转角的平方和。利用计算机编程得到表1-2的结果: 表1-2 对于上述两个非线性规划,在理论方面,本文利用SUTM 内点法(障碍函数法)进行算法描述,在操作方面,分别利用lingo 语言与MATLAB 语言直接编写程序进行计算 关键词:非线性规划、复变函数、SUMT 内点法、闭塞区域、禁飞角

一、问题重述 1.背景知识 与其他交通工具相比,飞机以其速度快、安全舒适等特点在交通领域占据了绝对地位。而近年来飞机事故的频繁发生也预示着飞机存在一定的安全隐患。经调查造成飞机相撞事故的原因主要是人、飞机(设备)、环境,而人的因素是事故中通常起主体作用的因素,直接影响事故的发生和结局。飞机事故的发生难以预测且死亡率极高,所以航空安全机制的健全,航空人员素质的提高已变得刻不容缓。 2.问题重述 在约10000米的高空某边长为160公里的正方形区域内,经常有若干架飞机作水平飞行。区域内每架飞机的位置和速度向量均由计算机记录其数据,以便进行飞行管理。当一驾欲进入该区域的飞机到达区域边缘时,记录其数据后,要立即计算并判断是否会与区域内的飞机发生碰撞。如果会碰撞,则应计算如何调整各架(包括新进入的)飞机飞行的方向角,以避免碰撞。现假定条件如下: 1)不碰撞的标准为任意两架飞机的距离大于8公里; 2)飞机飞行方向角调整的幅度不应超过30度; 3)所有飞机飞行速度均为每小时800公里; 4)进入该区域的飞机在到达区域边缘时,与区域内飞机的距离应在60公里以上; 5)最多需考虑6架飞机; 6)不必考虑飞机离开此区域后的状况。 请你对这个避免碰撞的飞机管理问题建立数学模型,列出计算步骤,对以下数据进行计算(方向角误差不超过0.01度),要求飞机飞行方向角调整的幅度尽量小。 设该区域内4个顶点的坐标为(0,0),(160,0),(160,160),(0,160)。 记录数据为:

12.1一个飞行管理问题

在中国大学生数学建模竞赛(China undergraduate mathematical contest in modeling,CUMCM)中,曾经出现过大量的优化建模赛题.本章从中选择了部分典型赛题,举例分析其优化建模过程,说明如何应用LINDO/LINGO软件包求解这些赛题. 12.1 一个飞行管理问题 12.1.1 问题描述 1995年全国大学生数学建模竞赛中的A题(“一个飞行管理问题”). 在约10000m高空的某边长为160km的正方形区域内,经常有若干架飞机作水平飞行.区域内每架飞机的位置和速度向量均由计算机记录其数据,以便进行飞行管理.当一架欲进入该区域的飞机到达区域边缘时,记录其数据后,要立即计算并判断是否会与区域内的飞机发生碰撞.如果会碰撞,则应计算如何调整各架(包括新进入的)飞机飞行的方向角,以避免碰撞.现假定条件如下:(1)不碰撞的标准为任意两架飞机的距离大于8km; (2)飞机飞行方向角调整的幅度不应超过30°; (3)所有飞机飞行速度均为800km/h; (4)进入该区域的飞机在到达该区域边缘时,与该区域内的飞机的距离应在60km以上; (5)最多需考虑6架飞机; (6)不必考虑飞机离开此区域后的状况. 请你对这个避免碰撞的飞行管理问题建立数学模型,列出计算步骤,对以下数据进行计算(方向角误差不超过0.01°),要求飞机飞行方向角调整的幅度尽量小. 设该区域4个顶点的坐标为(0,0),(160,0),(160,160),(0,160).记录数据见表12-1. 试根据实际应用背景对你的模型进行评价和推广. 12.1.2 模型1及求解 模型建立 这个问题显然是一个优化问题.设第i架飞机在调整时的方向角为(题目中已经给出),调整后的方向角为=+(=1,2,…,6).题目中就是要求飞机飞 行方向角调整的幅度尽量小,因此优化的目标函数可以是 . (1)

航空公司数据挖掘数学建模

2013年广东工业大学大学生数学建模竞赛 承诺书 我们仔细阅读了2013年广东工业大学大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛的题目是:A题航空客运数据挖掘 我们的参赛报名号为:00号 参赛队员(打印并签名) : 姓名____袁嘉蔚__学号__3111008344__院系班级应数11统2 姓名___王文冲__ 学号_3111008197___院系班级应数11信安1 姓名____庄楚贤__学号_3211008315__院系班级___应数11统1 日期:2013 年 5 月 13 日

航空客运数据挖掘模型 摘要 随着交通工具的不断发展,目前航空公司的主要竞争对手已不局限于同行业之间,而更多的倾向于其他的交通行业,如:火车,长途汽车等。为了使自己能在目前的激烈竞争中取得更大的优势,航空公司大都采取自己独特的经营策略,虽然他们的形式各异,但最终都是通过降低自己的空座率来提高自己的盈利。然而要降低空座率,首先需要对客户进行一定的分析,其中包括:客户的流失预测,客户的细分和客户的价值评估等方面。因此本文着重建立客户流失模型,客户细分模型以及客户价值评估模型,以供航空公司参考。 对于客户流失模型,本文首先通过定义流失度来衡量某一客户的流失情况,再找出客户某些固有的属性与流失度之间的映射关系,来判断客户的流失情况。由于每个顾客的属性较多,所以就要对这些属性进行塞选,并从中找出一些主要的影响因素。首先是通过查找相关资料及与专业人士交流,把一些明显无关紧要的因素给去除掉;再利用神经网络算法,找出剩下的对流失度影响较大的属性。最后将这些主要因素与流失度建立一个较好的映射关系。 针对客户价值评估模型,本文通过参考相关文献确定几个能对航空公司营业产生影响的主要因素进行综合评价,根据客户综合得分的高低对其价值作出判断。基于所给的数据量较大,我们运用随机抽样原理,采用因子分析方法,确定主要因子的个数和各因子的权重,导出衡量客户价值大小的总表达式,在断定该表达式有较好的稳定性后,用它来计算各个客户的价值大小。 根据上面的流失预测以及客户价值评估这两方面对客户进行细分,并且根据所分不同类别的客户采取不同的优惠策略,从而来实现降低空座率。 关键词:数据挖掘,客户流失,客户细分,价值评估,神经网络,因子分析

飞行管理数学建模

摘要近年来,随着现代航空运输不断发展,为了维护航空器的航空秩序,保证 飞机飞行安全,对于同一区域的飞行管理问题提出了要求。 本文讨论了在一定区域范围内飞机飞行管理的最优化问题,通过建立数学模型计算求解,对飞机是否发生碰撞冲突进行预测,根据计算机求解结果对如何解脱冲突给出了较好的解决方法。 对于飞机是否发生碰撞冲突问题,本文提出了基于飞机位置速度矢量关系的碰撞冲突检测方案,证明了只有位置差与速度差矢量内积小于零,即 0△△+-+-2 ij ij j j i i n m n m απβ-<+-+-22 6/0pi m i << 6/0pi m j << 其中2 i i i m θθ??+= ,2 i i i n θθ??-= 。再运用LINGO11编程求得该模型最优解 为 3.6326,第3架飞机的调整角为 2.8419,第6架飞机(新进入的飞机)的调整角为 0.7907,其余飞机不进行调整,从而给出了冲突解决方案。 之后,本文对计算结果做出了分析和评价,同时还分析了滞后时间和转弯半

径和限定在区域范围内对飞机航向调整的影响,使问题更符合实际情况。在对模型进行评价与分析的同时,本文又对模型进行了推广,对速度不同、飞行高度不同的情况下进行了分析,并给出了合理的解释;增强了模型的实际应用意义。关键词:飞行管理碰撞冲突线性规划

《飞行管理问题》

多架飞机同层飞行安全分析 摘要 随着经济的发展和航空航天技术的进步,航空飞行出行在居民出行方式所占的比重也越来越大。因此,航空安全问题也越来越受到人们的关注,解决航空安全问题月发迫切。 本文主要讨论飞机同一水平层安全飞行,避免碰撞的问题,通过运用非线性规划模型,对不同角度飞行对飞机安全的影响进行了分析与评价。 问题一中采用非线性规划程序对6架飞机中两两进行分析,根据所给的数据计算,结果发现第6架飞机和第3架、第5架飞机会发生碰撞,碰撞是在第6架飞机进入飞行区域后,在飞行区域边缘并不会发生碰撞。 问题二中将t等分成若干小段,利用动态规划,使得在每小段时间上都满足距离大于8公里,这样使得在飞行区域内基本满足距离值大于8公里。 关键词:航空安全、非线性规划,动态规划

一、问题提出 在约10000米的高空某边长为160公里的正方形区域内,经常有若干架飞机作水平飞行。区域内每架飞机的位置和速度向量均由计算机记录其数据,以便进行飞行管理。当一驾欲进入该区域的飞机到达区域边缘时,记录其数据后,要立即计算并判断是否会与区域内的飞机发生碰撞。如果会碰撞,则应计算如何调整各架(包括新进入的)飞机飞行的方向角,以避免碰撞。 根据题目,提出以下问题: 1.判断新进入区域的飞机是否会与此区域的飞机发生碰撞; 2.怎样调整角度以避免碰撞且使角度最小; 3.模型评价与推广。 二、基本假设 1、假设1:不碰撞的标准为任意两架飞机的距离大于8公里; 2、假设2:飞机飞行方向角调整的幅度不应超过30度; 3、假设3:所有飞机飞行速度均为每小时800公里; 4、假设4:进入该区域的飞机在到达区域边缘时,与区域内飞机的距离应在60公里以 上; 5、假设5:最多需考虑6架飞机; 6、假设6:不必考虑飞机离开此区域后的状况. 三、符号说明

飞行管理数学建模论文

飞行管理问题 摘要让飞机在某正方形区域内安全飞行,便于进行飞行管理,所以在飞机飞行过程中,要适当调整各架飞机的方向角(调整幅度尽量小),以避免发生碰撞。本文通过对两两飞机飞行过程最小临界距离大于8km为入手点,以t时刻后飞机所处状态为研究对象。通过点的向量平移,找出临界距离(8km)视为界点,再通过两点距离公式列出一元二次不等式,转化为一元二次方程根的情况,判断t的取值。 当?<0时,说明方程无实数解,即该两飞机不会碰撞。当?≥0时,说明方程有实数解,且可以求出对应的t值,看t是否在规定区域范围内(0≤t≤0.283h)。若t不在范围内,说明两飞机在规定区域不会发生碰撞,而在区域范围外会发生碰撞(不在我们考虑范围内)若t在所规定范围,说明两飞机会在区域范围内发生碰撞,此时应调整各架飞机的方向角。方向角的调整虽然在30o内有足够空间(相应的可行解就很多),但又要求所调整的幅度尽可能小(就要求我们求出相应的最优解),故当调整一架飞机方向角后,应该对应判断该飞机与其余各飞机是否会发生碰撞。 最后,我们对模型的优缺点和改进方向作了分析。 关键词向量平移最短临界距离方向角调整幅度

一、问题重述(略) 二、模型假设: (1)不碰撞的标准为任意两架飞机的距离大于8km (2)飞机飞行方向角调整的幅度不应超过30o (3)所有飞机飞行速度均为每小时800km (4)进入该区域的飞机在到达该区域边缘时,与区域内的距离应在60km以上 (5)最多需要考虑6架飞机 (6)不必考虑飞机离开此区域后的状况 (7)飞机调整方向角后,不受偏转弧度的影响 (8)每架飞机在调整角度后都沿调整后的方向角飞出区域外 (9)新进入的飞机在进入区域的瞬间,不考虑计算机记录时的时间间隔飞机所飞行的距离(即该时间间隔忽略不计) (10)每架飞机都视为质点 三、符号说明: i,=1,2,3,4,5,6) j i,表示飞机编号(j x表示第i架飞机所处位置的横坐标 i y表示第j架飞机所处位置的纵坐标 i θ表示第i架飞机的初始方向角 i θ?表示第i架飞机所调整的方向角 i t表示各架飞机飞行过程达到最短临界距离所用时间 S表示t时刻后第i架飞机与第j架飞机的距离(i≠j) ij A表示第i架飞机初始记录的点的坐标 i B表示第i架飞机经t时刻后的点的坐标 i a 表示第Ai点经过t时刻后所平移的向量 i 四、模型建立与求解 由假设(1),我们简单分析两架飞机的情形,最终直接运用于多架飞机的情形,题目要求飞机间两两不碰撞。首先我们在不调整各架飞机方向角时,按各飞机初始位点来判断各飞机的碰撞情况,从图(一)中可以大致估算两两飞机在区域范围内的飞行情况,

一个飞行管理问题数模竞赛

一个飞行管理问题 摘要 在某一空域里对飞机的飞行合理管理事关重大,比如乘客及机上工作人员生命财产安全和航空公司的运作效益等。本文通过对飞机飞行管理问题的研究,得到了调整飞机架数较少同时调整幅度均最小(平方和最小)的飞行管理最优安排的非线性模型,这样既使得乘客所受影响达到最少,也便于飞机调整,还有利于飞机回到原来的航线,同时还在决策时间上对模型进行了优化和调整。 本文不仅一般性地将不相撞的问题转化为欧式距离控制,而且很巧妙的将不碰撞条件转化成简单的二次函数标准形式进行含参讨论,建立一个只含有转向角变量的模型。并且再次很妙的具体化区域内受控时间形成矩阵,大大得简化运算,节约了大量运算的时间,便于管理人员控制操作,从而确保飞机的安全。更重要的是最后结合实际缩短了搜索区间,并优化算法,使得决策更加高效。最后的延时检验也充分体现了模型的可靠性。 关键字:欧氏距离约束转化缩短搜索区间时间矩阵延时检验

一、问题重述 在约10000米的高空某边长为160公里的正方形区域内,经常有若干架飞机作水平飞行。区域内每架飞机的位置和速度向量均由计算机记录其数据,以便进行飞行管理。当一驾欲进入该区域的飞机到达区域边缘时,记录其数据后,要立即计算并判断是否会与区域内的飞机发生碰撞。如果会碰撞,则应计算如何调整各架(包括新进入的)飞机飞行的方向角,以避免碰撞。现假定条件如下: 1)不碰撞的标准为任意两架飞机的距离大于8公里; 2)飞机飞行方向角调整的幅度不应超过30度; 3)所有飞机飞行速度均为每小时800公里; 4)进入该区域的飞机在到达区域边缘时,与区域内飞机的距离应在60公里以上; 5)最多需考虑6架飞机; 6)不必考虑飞机离开此区域后的状况。 请你对这个避免碰撞的飞机管理问题建立数学模型,列出计算步骤,对以下数据进行计算(方向角误差不超过0.01度),要求飞机飞行方向角调整的幅度尽量小。 设该区域内4个顶点的坐标为(0,0),(160,0),(160,160),(0,160)。 记录数据为: 飞机编号横坐标x纵坐标y方向角(度) 115040243 28585236 3150155220.5 414550159 5130150230 新进入0052 注:方向角指飞行方向与x轴方向的夹角。 试根据实际应用背景对你的模型进行评价与推广。 二、问题分析 1初步分析

数学建模 飞机管理优化模型

飞行管理优化模型 摘 要 本文建立了关于飞行管理问题的简洁数学模型。首先我们对新进入的飞机作出判断,通过模型Ⅰ给出了计算机模拟求解,看其是否会与其他六架飞机相碰,若会,则再次通过建型Ⅱ求出使各飞机安全通过区域应调整的方向角,对模型Ⅱ给出了非线性优化的具体算法。在模型改进中,我们对风速、人的反应时间及飞机的实际速度等对方向角的调整的影响做了简单的分析与评价,使得模型更易在实际应用中推广。 模型Ⅰ:针对问题一,建立了碰撞检测模型。首先,对已给数据进行分析,并利用VC 编程,模拟在6驾飞机都不改变飞行方向的条件下的飞行情况,结果是会相撞的。 模型Ⅱ:针对问题二,建立了多元非线性动态优化模型。在确保互不相撞的前提下,要使得飞机调整的角度尽可能小,满足Min i f i β2 6 1∑ ==,及最优解。运 用MATLAB 软件编程给出了具体算法。第i 架飞机(i=1,2,……6)需调整角度分别为:0.0000 0.0000 2.0683 -0.4896 -0.0055 1.5611 关键词:飞机碰撞 方向角调整 非线性优化 模拟仿真 一、问题重述 在约10000米的高空某边长为160公里的正方形区域内,经常有若干架飞机作水平飞行。区域内每架飞机的位置和速度向量均由计算机记录其数据,以便进行飞行管理。当一驾欲进入该区域的飞机到达区域边缘时,记录其数据后,要立即计算并判断是否会与区域内的飞机发生碰撞。如果会碰撞,则应计算如何调整各架(包括新进入的)飞机飞行的方向角,以避免碰撞。现假定条件如下: 1)不碰撞的标准为任意两架飞机的距离大于8公里; 2)飞机飞行方向角调整的幅度不应超过30度; 3)所有飞机飞行速度均为每小时800公里; 4)进入该区域的飞机在到达区域边缘时,与区域内飞机的距离应在60公里以上; 5)最多需考虑6架飞机; 6)不必考虑飞机离开此区域后的状况。

优化模型,飞行管理,森林救火

第五讲 优化模型 在实际生活中,特别是在工程技术、经济管理和科学研究领域中存在着很多优化模型,如投资的成本最小、利润最大问题,邮递员的投递路线最短问题,货物的运输调度问题,风险证券投资中的收益最大,风险最小问题。 优化模型大致的可以分成两大类:无约束优化模型和约束优化模型。无约束优化模型即求一个函数在定义域内的最大值或最小值,这类问题往往可以使用微分的方法得到最终的结论,如一元及多元函数的最值归结为求函数的驻点;约束优化模型即求函数在一些条件约束下的最优解,对于等式约束的问题,可以使用Lagrange 乘数法求解,但是在数学建模中得到的优化模型往往不是等式约束问题,而是诸如不等式约束甚至更复杂的数学规划问题,这些问题需要使用Matlab 等科技计算软件才能解决。数学规划问题包括线性规划、整数规划、非线性规划、目标规划、多目标规划以及动态规划等类型的问题。 不管是什么类型的优化问题,在建模过程中需要解决的问题,也是建模的基本步骤为: (1) 确定目标函数(按照模型所需要解决的问题,用数学函数来描述目标) (2) 确定决策变量(目标的实现与那些变量有关,这里有主要变量和次要变量,在建模 的初期可以进考虑主要变量对目标的影响,随后可以逐步增加变量的个数) (3) 确定约束条件(这是优化模型建模过程中最重要,也是最难的,在很多情况下,是 否能够得到最优解,最优解是否合理,都是取决于约束条件的建立) (4) 模型求解(使用数学工具或数学软件求解) (5) 结果分析(分析结果的合理性、稳定性、敏感程度等) 第一部分 简单的优化模型 模型一 森林救火模型 问题重述:森林失火后,要确定派出消防队员的数量。队员多,森林损失小,救援费用大;队员少,森林损失大,救援费用小。综合考虑损失费和救援费,确定队员数量。 问题分析:总的目标是确定队员数量使得损失费与救援费的总和最小。决策变量应当是消防队员的数量。 (1)损失费:损失费由大火熄灭时,被烧毁的森林面积B 决定,若假设单位面积损失为,则损失费为。其中最关键的是决定1c B c 1B 与决策变量,即队员数量之间的关系。建设火烧过的森林区域是圆。考虑队员数量对被烧毁森林面积的影响。将起火的时间定为0,开始灭火的时间设为,灭火结束的时间为,因此烧毁的森林面积为。队员人数对的影响在于队员的人数多少决定了火势蔓延的速度快慢,在中,由于没有人员参与灭 1t 2t )(2t B )(2t B ],0[1t

a题飞行管理问题

1995年A题飞行管理问题 A题一个飞行管理问题 在约10,000米高空的某边长160公里的正方形区域内,经常有若干架飞机作水平飞行.区域内每架飞机的位置和速度向量均由计算机记录其数据,以便进行飞行管理.当一架欲进入该区域的飞机到达区域边缘时,记录其数据后,要立即计算并判断是否会与区域内的飞机发生碰撞.如果会碰撞,则应计算如何调整各架(包括新进入的)飞机飞行的方向角.以避免碰撞.现假定条件如下: 1)不碰撞的标准为任意两架飞机的距离大于8公里 2)飞机飞行方向角调整的幅度不应超过30度 3)所有飞机飞行速度均为每小时800公里 4)进入该区域的飞机在到达区域边缘时,与区域内飞机的距离应在60公里以上 5)最多需考虑6架飞机 6)不必考虑飞机离开此区域后的状况. 请你对这个避免碰撞的飞行管理问题建立数学模型.列出计算步骤,对以下数据进行计算(方向角误差不超过0.01度).要求飞机飞行方向角调整的幅度尽量小. 设该区域4个顶点的座标为(0,0),(160,0),(160,160),(0,160) 记录数据为: 飞机编号横座标X 纵座标Y 方向角(度) 1 150 140 243 2 85 85 236 3 150 155 220.5 4 14 5 50 159 5 130 150 230 新进入0 0 52 注:方向角指飞行方向与X轴正向的夹角. 试根据实际应用背景对你的模型进行评价与推广. 参考解答 1.问题分析 根据题目的条件,可将飞机飞行的空域视为二维平面xoy中的一个正方形区域,顶点(0,0),(160,0),(160,160),(0,160).各架飞机的飞行方向角为飞行方向与x轴正向夹角①(转角).根据两飞机不碰撞的标准为二者距离大于8km,可将每架飞机视为一个以飞机坐标点为圆心、以4km为半径的圆状物体(每架飞机在空域中的状态由圆心的位置矢量和飞行速度矢量确定).这样两架飞机是否碰撞就化为两圆在运行过程中是否相交的问题.两圆是否相交只要讨论它们的相对运动即可. 2.模型假设 (1)飞机进入区域边缘时,立即作出计算,每架飞机按照计算后的指示立即作方向角改变; (2)每架飞机在整个过程中至多改变一次方向; (3)忽略飞机转向的影响(转弯半径和转弯时间的影响); (4)新飞机进入空域时,已在空域内部飞行的飞机的飞行方向已调合适,不会碰撞; (5)对每架飞机方向角的相同调整量的满意程度是一样的. 3.模型的建立 (1)圆状模型.

数学建模论文-航班调度

不正常航班及其调度 【摘要】 本文将不正常航班恢复抽象为动态规划中的动态网络模型,采用整数0-1规划表述。我们以航空公司恢复不正常航班的成本最小为目标函数,采用动态网络技术建模。跟据下文论证推论(1)在恢复不正常航班采用路径调整策略总路径延误时间具有不变性,建立不正常航班恢复模型。本文中三个问题可以用同一个模型阶段,只是在不同问题的情况下有不同的初始延误数据与不同的飞机的调度。最后利用Lingo软件根据不同问题的实际情况赋予不同初始数据解得三个问题的最优解并给出解决不正常航班调度的最佳方案。 第一问,在数据处理阶段为使时间容易处理将每个航班的起始时间与终点时间以每天按1440分钟算(某航班起始时间12:00,记为720),在赋予初始延误数据时同一航班可能会有几个延误时间我们可取平均值。在动态网络模型中通过给飞行弧(见下文解释)添加平行的飞行弧表示不同时间的延误选择,在恢复航班的调整方案一15分钟间隔添加延误选择弧。在考虑机场ZLXY在13:00-15:00以及ZGKL在17:00-19:00被迫关闭两个小时的情况下,可以先分析该机场影响的所有航班及其导致它们的延误时间,再利用模型及算法求得最优解。 第二问,考虑2153飞机14:35在机场ZSPD过站检查时发现机务故障,飞机当天不可使用,5145飞机14:00在机场ZGHA过站检查时发现机务故障,16:00可以使用。在利用建立的模型求解可以把2153号飞机影响的后续航班视为取消航班,再利用模型及算法求得最优解。 第三问,综合考虑上述两种情况时不正常航班的恢复,可以将机场与飞机不正常情况的时刻重叠,再利用Lingo软件求得最优解。 最后本文还对实际的不正常航班恢复的具体方案给出了建议,对建立的模型在实际中的应用价值进行讨论,并提出了改进方案。 关键字:不正常航班动态网络模型航班延误航班恢复匈牙利方法

数学建模竞赛论文写作范例5-飞行管理问题

例10.4(飞行管理问题)在约10,000米高空的某长160公里的正方形区域内,经常有若干架飞机作水平飞行。区域内每架飞机的位置、方向角和速度由计算机记录数据,以便进行飞行管理。当一架欲进入该区域的飞机到达区域边缘时,记录其数据后,要立即计算并判断是否会与区域内的飞机发生碰撞。如果会碰撞,则应计算如何调整各架(包括新进入的)飞机飞行的方向角,以避免碰撞。现假定条件如下: 1)不碰撞的标准为任意两架飞机的距离大于8公里; 2)飞机飞行方向角调整的幅度不应超过30度; 3)所有飞机飞行速度均为每小时800公里; 4)进入该区域的飞机在到达区域边缘时,与区域内飞机的距离应在60公里以上; 5)最多需考虑6架飞机; 6)不必考虑飞机离开此区域的状况。 请你对避免碰撞的飞行管理问题建立数学模型,列出计算步骤,对以下数据进行计算(方向角误差不超过0.01度)。要求飞机飞行方向角调整的幅度尽量小。 设该区域4个顶点的座标为 (0,0)、(160,0)、(160,160)、(0,160)。 记录数据为: 此问题很容易想到以各飞机调整的飞行角度平方和作为目标函数,而以每两架飞机之间的最小距离不超过8公里,各飞机飞行角度调整的值不超过30o,为约束条件。如此得出的是一个非线性模型,在计算上可能会复杂些。

以t 表示时间;i x 与i y 分别表示第i 架飞机的横纵坐标(问题中已经给出); i θ表示第i 架飞机的飞行方向角(问题中已经给出);)(t d ij 表示t 时刻第i 架飞机与第j 架飞机间的距离;v 表示飞机的飞行速度(v = 800)。 则目标函数为:∑=?=6 1 2 i i f θ。 22 2 ((cos()cos()))((sin()sin())) ij i j i i j j i j i i j j d x x vt y y vt θθθθθθθθ=-++?-+?+-++?-+?, 则约束条件为:=?ij D j i j i t d ij t ≠=>≥,6,,1,,64)(min 20 Λ。 ?=02 dt dd ij =t -a b ,其中 a x x y y i j i i j j i j i i j j =-+-++-+-+()(cos()cos())()(sin()sin()) θθθθθθθθ????, b v i i j j i i j j =+-+++-+[(cos()cos())(sin()sin())] θθθθθθθθ????2 2。 将t 代入即可求出ij D 。于是本问题的一个数学模型为: 引入记号: )',,(61θθθ??=?Λ,)',,(151g g g Λ=(g 是由64-ij D 按j i j i ≠=,6,,1,Λ构成 的向量,在下面的程序中计算),则模型为: min '..0f s t g vlb vub θθθ=????

相关文档
最新文档