2019年理科数学高考分类汇编580

合集下载

2019年高考数学(理)试题分项版解析:专题05-平面向量(分类汇编)Word版含解析

2019年高考数学(理)试题分项版解析:专题05-平面向量(分类汇编)Word版含解析

1. 【2019高考福建卷第8题】在下列向量组中,能够把向量()2,3=a 表示出来的是( ) A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e e C.)10,6(),5,3(21==e e D.)3,2(),3,2(21-=-=e e2. 【2019高考广东卷理第5题】已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A.()1,1,0- B. ()1,1,0- C.()0,1,1- D.()1,0,1-3. 【2019高考湖南卷第16题】在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足CD =1,则OA OB OD ++的最大值是_________.【答案】17+【解析】因为C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程4. 【2019高考江苏卷第12题】如图在平行四边形ABCD 中,已知8,5AB AD ==,3,2CP PD AP BP =⋅=,则AB AD ⋅的值是 .5. 【2019陕西高考理第13题】设20πθ<<,向量()()1cos cos 2sin ,,,θθθb a=,若b a //,则=θtan _______.6. 【2019高考安徽卷理第10题】在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==⋅=点Q 满足2()OQ a b =+.曲线{cos sin ,02}C P OP a b θθθπ==+≤≤,区域{0,}P r PQ R r R Ω=<≤≤<.若CΩ为两段分离的曲线,则( )A. 13r R <<<B.13r R <<≤C.13r R ≤<<D.13r R <<<考点:1.平面向量的应用;2.线性规划.7. 【2019高考北京版理第10题】已知向量a 、b 满足1||=a ,)1,2(=b ,且0b a =+λ(R λ∈),则||λ= .8. 【2019高考湖北卷理第11题】设向量(3,3)a =,(1,1)b =-,若()()a b a b λλ+⊥-,则实数λ= .【答案】3±10. 【2019江西高考理第15题】已知单位向量1e 与2e 的夹角为α,且1cos 3α=,向量1232a e e =-与123b e e =-的夹角为β,则cos β= .11. 【2019辽宁高考理第5题】设,,a b c 是非零向量,已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( ) A .p q ∨ B .p q ∧ C .()()p q ⌝∧⌝ D .()p q ∨⌝12. 【2019全国1高考理第15题】已知C B A ,,为圆O 上的三点,若()AC AB AO +=21,则AB 与AC 的夹角为_______.【考点定位】1、平面向量基本定理;2、圆的性质.13. 【2019全国2高考理第3题】设向量a,b 满足|a+b |=10,|a-b |=6,则a ⋅b = ( ) A. 1 B. 2 C. 3 D. 514. 【2019高考安徽卷理第15题】已知两个不相等的非零向量,,b a 两组向量54321,,,,x x x x x 和54321,,,,y y y y y 均由2个a 和3个b 排列而成.记5544332211y x y x y x y x y x S ⋅+⋅+⋅+⋅+⋅=,min S 表示S 所有可能取值中的最小值.则下列命题的是_________(写出所有准确命题的编号). ①S 有5个不同的值. ②若,b a ⊥则min S 与a 无关. ③若,b a ∥则min S 与b 无关. ④若a b 4>,则0min >S .⑤若2min||2||,8||b a Sa ==,则a 与b 的夹角为4π2222min 34()8||cos 4||8||S S a b b a a a θ==⋅+=+=,∴2cos 1θ=,∴3πθ=,故⑤错误.所以准确的编号为②④.考点:1.平面向量的运算;2.平面向量的数量积.15. 【2019四川高考理第7题】平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =( ) A .2- B .1- C .1 D .216. 【2019浙江高考理第8题】记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x y x y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+17. 【2019重庆高考理第4题】已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥,则实数k =( )9.2A -.0B .C 3 D.15218. 【2019天津高考理第8题】已知菱形ABCD 的边长为2,120BAD?,点,E F 分别在边,BC DC 上,BE BC l =,DF DC m =.若1AE AF?,23CE CF ?-,则l m += ( ) (A )12 (B )23 (C )56 (D )71219. 【2019大纲高考理第4题】若向量,a b 满足:()()1,,2,a a b a a b b =+⊥+⊥则b = ( )A .2B .2C .1D .22。

2019年全国高考数学·分类汇编 专题07 充分条件与必要条件(解析版)

2019年全国高考数学·分类汇编 专题07 充分条件与必要条件(解析版)

专题07 充分条件与必要条件【母题来源】【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【命题意图】 高考对本部分内容的考查以能力为主,重点考查命题真假的判断、集合的包含关系、充要条件的判断等【命题规律】充要条件的判定,常与函数、不等式、三角函数、向量、立体几何、解析几何等知识点进行结合命题,一般以选择题的形式呈现,难度不大.【答题模板】判断一个条件是另一个条件的什么条件,应该先化简两个条件,再利用充分条件与必要条件、充要条件的定义进行判断.【方法总结】一、充分、必要条件的判断方法(1)命题判断法设“若p ,则q ”为原命题,那么:①若原命题为真,逆命题为假时,则p 是q 的充分不必要条件;②若原命题为假,逆命题为真时,则p 是q 的必要不充分条件;③若原命题与逆命题都为真时,则p 是q 的充要条件;④若原命题与逆命题都为假时,则p 是q 的既不充分也不必要条件.(2)集合判断法从集合的观点看,建立命题p ,q 相应的集合:p :A ={x |p (x )成立},q :B ={x |q (x )成立},那么: ①若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;②若A B ⊇,则p 是q 的必要不充分条件,或q 是p 的充分不必要条件;③若A =B ,则p 是q 的充要条件;④若A B ,且A ⊉B ,则p 是q 的既不充分也不必要条件.(3)等价转化法利用p ⇒q 与q p ⌝⇒⌝,q ⇒p 与p q ⌝⇒⌝,p ⇔q 与q p ⌝⇔⌝的等价关系.二、根据条件求解参数范围的方法(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)或(方程组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.1.【陕西省西安市西北工业大学附属中学2019届第一次适应性训练数学试题】设01a <<,则“log 1a b >”是“b a <”的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 【答案】B2.【陕西省宝鸡中学2019届高三第二次模拟考试数学试题】已知,αβ∈R ,则“αβ>”是“sin sin αβαβ->-”的A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 【答案】A3.【辽宁省沈阳市东北育才学校2019届高三第八次模拟数学试题】已知向量()2,1x =m ,(),2x =n ,命题1:2p x =,命题:q 0,λ∃>使得λ=m n 成立,则命题p 是命题q 的A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件 【答案】A4.【辽宁省沈阳市2019届高三教学质量监测(三)数学试题】“k =是“直线:(2)l y k x =+与圆221x y +=相切”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A5.【辽宁省大连市2019届高三下学期第一次(3月)双基测试数学试题】已知直线l 和平面,αβ,且l α⊂,则“l β⊥”是“αβ⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A6.【吉林省长春市长春外国语学校2019届高三上学期期末考试数学试题】“1x >”是“21x >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A7.【吉林省吉林市普通中学2019届高三第三次调研测试数学试题】“,,,a b c d 成等差数列”是“a d b c +=+”的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A8.【黑龙江省大庆市2019届高三第三次教学质量检测数学试题】设m ,n 是两条不同的直线,α,β两个不同的平面.若m α⊥,n β⊥,则“m n ⊥”是“αβ⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C9.【陕西省西安市第一中学2019届高三上学期第一次月考数学试题】已知p :12x +> ,q :x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是A .1a ≤B .3a ≤-C .1a ≥-D .1a ≥ 【答案】D10.【宁夏银川市2019年高三下学期质量检测数学试题】已知平面α⊥平面β,l αβ=I ,a α⊂,b β⊂,则“a l ⊥”是“a b ⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A11.【宁夏平罗中学2019届高三上学期期中考试数学试题】向量(),1m =a ,()1,m =b ,则“1m =”是“∥a b ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A12.【甘肃省天水市第一中学2019届高三下学期第三次模拟考试数学试题】“不等式220x x m -+≥在R 上恒成立”的一个充分不必要条件是A .1m ≥B .1m ≤C .0m ≥D .2m ≥ 【答案】D13.【甘肃省静宁县第一中学2019届高三上学期第三次模拟考试数学试题】下列命题正确的是 A .2000,230x x x ∃∈++=RB .1x >是21x >的充分不必要条件C .32,x x x ∀∈>ND .若a b >,则22a b > 【答案】B。

2019年全国高考理科数学试题分类汇编4:数列

2019年全国高考理科数学试题分类汇编4:数列

2019 年全国高考理科数学试题分类汇编4:数列一、选择题1 .( 2019 年高考上海卷(理) )在数列 { a n } 中 , a n2n 1, 若一个 7 行 12 列的矩阵的第 i 行第 j列的元素ai ,ja i a j a i a j ,( i 1,2,L,7; j1,2,L ,12 ) 则该矩阵元素能取到的不一样数值的个数为( )(A)18(B)28(C)48(D)63【答案】 A.2 .( 2019 年一般高等学校招生一致考试纲领版数学(理) WORD 版含答案(已校 对))已知数列a n 知足3a n 1an0,a 24 , 则 a n 的前 10 项和等于3 1 1(A)61 310 (B)3 10 (C) 3 1 3 10(D)3 1+3 109【答案】 C3 (. 2019 年高考新课标 1(理))设A nB nC n 的三边长分别为 a n , b n ,c n , A n B n C n 的面积为 S n , n 1,2,3, L ,若 b 1c 1 ,b 1 c 1 2a 1 ,a n 1a n,bn 1c n an, cn 1 b na n, 则 ()22A.{ S } 为递减数列B.{S } 为递加数列nnC.{ S 2n-1 } 为递加数列 ,{ S 2n } 为递减数列D.{ S 2n-1 } 为递减数列 ,{ S 2n } 为递加数列【答案】 B4 .( 2019 年一般高等学校招生一致考试安徽数学(理)试题(纯WORD 版)) 函数 y= f (x) 的图像以下图 ,在区间 a,b 上可找到 n(n 2) 个不一样的数x 1 ,x 2 ...,x n ,使得f (x 1) f (x 2 )f (x n )==, 则 n 的取值范围是x 1x 2x n(A) 3,4 (B) 2,3,4 (C) 3,4,5(D) 2,3【答案】 B5 .( 2019 年一般高等学校招生一致考试福建数学(理)试题(纯WORD版))已知等比数列{ a n}的公比为q,记 b n am( n 1) 1am( n 1) 2... am (n 1) m,c n am(n 1) 1? am(n 1) 2 ?...? a m( n 1) m (m, nN * ), 则以下结论必定正确的选项是( )A. 数列 {b n} 为等差数列 , 公差为q m B. 数列 { b n } 为等比数列,公比为 q2mC. 数列{c n}为等比数列 , 公比为q m2D. 数列 { c n } 为等比数列,公比为 q m m【答案】 C6 .( 2019 年一般高等学校招生一致考试新课标Ⅱ卷数学(理)(纯 WORD版含答案))等比数列a n的前 n 项和为 S n,已知 S3 a2 10a1, a5 9 ,则 a11(B) 1 1 1(A)3 (C) (D)3 9 9【答案】 C7 .( 2019 年高考新课标1(理))设等差数列a n的前n项和为S n, S m 12, S m0, S m 1 3 ,则 m ( )【答案】 C8 .( 2019 年一般高等学校招生一致考试辽宁数学(理)试题(WORD版))下边是对于公差 d 0 的等差数列a n的四个命题 :p1 : 数列 a n 是递加数列;p2 : 数列 na n 是递加数列;p3 : 数列an是递加数列;p4 : 数列 a n 3nd 是递加数列;n此中的真命题为(A) p1, p2(B)p3 , p4(C)p2 , p3(D)p1, p4【答案】 D9 .( 2019 年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于【答案】 A二、填空题10.( 2019 年高考四川卷(理))在等差数列{ a n}中,a2 a1 8 ,且 a4为 a2和 a3的等比中项,求数列 { a n} 的首项、公差及前 n 项和.【答案】解 : 设该数列公差为 d ,前n项和为s n.由已知, 可得2a1 2d 8, a12a1 d a1 8d . 3d所以 a1 d 4,d d 3a1 0 ,解得 a1 4, d 0 ,或 a1 1,d 3,即数列a n的首相为4,公差为0,或首相为1,公差为 3.所以数列的前 n 项和 s n 4n 或 s n 3n2 n211.( 2019 年一般高等学校招生一致考试新课标Ⅱ卷数学(理)(纯 WORD版含答案))等差数列a n 的前 n 项和为S n,已知 S10 0, S15 25 ,则 nS n的最小值为________.【答案】4912.( 2019 年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各样多边形数. 如三角形数 1,3,6,10,,第 n 个三角形数为n n 1 1 n2 1n .记第 n 个 k 边形数为 N n,k k 3 ,以以下出了部分k 边形2 2 2数中第 n 个数的表达式:三角形数N n,3 1 n2 1 n2 2正方形数N n,4 n2五边形数N n,5 3 n2 1 n2 2六边形数N n,6 2n2 n能够推断 N n, k 的表达式,由此计算 N 10,24___________.选考题【答案】 100013.( 2019 年一般高等学校招生全国一致招生考试江苏卷(数学)(已校正纯WORD版含附带题))在正项等比数列 { a n} 中,a5 1a6 a7 3 ,则满足 a1 a2 a n a1a2 a n的最大正整数 n, 的值为2_____________. 【答案】 1214.( 2019 年高考湖南卷(理))设S n为数列a n 的前 n 项和 , S n ( 1)n a n 1n , n N , 则2(1) a3 _____; (2) S1 S2 S100 ___________.【答案】1 1(11) 16; 1003 215.( 2019 年一般高等学校招生一致考试福建数学(理)试题(纯WORD版))当x R, x 1时 , 有以下表达式 : 1 x x2 ... x n ... 1 .1 x1 1 1 1 11两边同时积分得 : 2 1dx 2 xdx 2 x2dx ... 2 x n dx ... 2 dx.0 0 0 0 01 x进而获得以低等式 : 1 1 1 ( 1)2 1 (1)3 (1)1 ( 1)n 1 ... ln 2.2 2 23 2 n 2请依据以下资料所包含的数学思想方法,计算:0 1 1 1 1 2 1 2 1 3 1 n 1 n 1C n 2 2C n ( 2 ) 3 C n ( 2) ... n 1C n ( 2 ) _____【答案】 1 [( 3 )n 1 1]n 1 216.( 2019 年一般高等学校招生一致考试重庆数学(理)试题(含答案))已知 a n 是等差数列 , a1 1,公差d 0 , S n为其前n项和 , 若a1, a2, a5成等比数列 , 则S8 _____【答案】6417.( 2019 年上海市春天高考数学试卷( 含答案 ) )若等差数列的前6项和为 23,前 9 项和为 57, 则数列的前n 项和 S n = __________.【答案】5n2 7 n 6 618(. 2019 年一般高等学校招生一致考试广东省数学(理)卷(纯WORD版))在等差数列a n中, 已知a3 a8 10,则 3a5 a7 _____ 【答案】2019.( 2019 年高考陕西卷(理) )察看以下等式 :12 12231212 22 32 6 2222123410照此规律 , 第 n 个等式可为 ___ 1 2- 2 22n -1 2( -1) n 13 -( -1) nn(n 1) ____.22 - 2 23 2- n -1n 2 ( - 1) n 1n(n 1)【答案】 1( -1)220 .( 2019 年 高考新课标2 1 1(理)) 若数列 { a n } 的前 n 项和为 S n = a n, 则数列 { a n } 的通项公式是33a n =______.【答案】 a n = ( 2)n 1 .21.( 2019年一般高等学校招生一致考试安徽数学 (理)试题(纯 WORD 版))如图 , 互不 - 同样的点 A 1 , A 2 K , X n ,K和 B 1 , B 2 K , B n ,K 分别在角 O 的两条边上 , 全部 A n B n 互相平行 , 且全部梯形 A n B n B n 1 A n 1 的面积均相等 . 设OA n a n . 若 a 1 1,a 2 2, 则数列 a n 的通项公式是 _________.【答案】a n3n 2, nN *22(. 2019 年高考北京卷 (理))若等比数列 n 2 4 35{ a } 知足 a +a =20, a +a =40,则公比 q =_______; 前 n 项和n =___________.S【答案】 2,2n 12 23.( 2019 年一般 高等学校招生一致考试辽宁数学(理)试题(WORD 版)) 已知等比数列 a n 是递加数列,S n 是 a n 的 前 n 项 和 , 若 a 1, a 3 是 方 程 x 2 5x 4 0的两个根,则S6____________. 【答案】 63三、解答题24.( 2019 年一般高等学校招生一致考试安徽数学(理)试题(纯WORD版))设函数f n (x)1 x x2 x2 x n(x R, n N n ),证明: 22 2Kn23( Ⅰ) 对每个( Ⅱ) 对随意n N n,存在独一的x [2,1] ,知足f n(x n) 0 ;n 31 p N n,由(Ⅰ)中 x n组成的数列x n知足 0 x n x n p .n【答案】解: ( Ⅰ) 当 x 0时, y x nf n (x) 1 xx 2x3 x 4 x n n 2是单一递加的2 23 24 2 n 2 是x 的单一递加函数 , 也是 n 的单调递加函数 . 且f n( 0) 1 0, f n (1) 1 1 0 .存在独一 x n (0,1], 知足 f n ( x n ) 0,且 1 x1 x2 x3 x n 0当 x (0,1).时, f n ( x) 1 x x2 x3 22 220 f n ( x n ) 1 x n x n 2 14 1 x n综上 , 对每个n N n,存在独一的x n [ 23(Ⅱ) 由题知1 x n xn p 0, f n ( x n )x 4 x n1x2 1 x n 1 x 2 122 22x11 x1 x4 x 4(x n 2)(3x n 2) 0 x n2,1][3,1] ,知足f n( x n) 0 ;( 证毕 )1x n2 x n3 x n4 x n nx n32 4222 n22 3 4 xn pn n 1 n pf n p (x n p ) 1 x n p xn pxn pxn pxn pxn p 0 上式相22 32 42 n 2 (n 1) 2 (n p) 2减:x n2 x n3 x n4 x n n 2 xn p3 x n p4 nxn pn 1 n pxn p xn pxn pxn px n2 32 42 n2 22 32 42 n2 (n 1) 2 ( n p) 222 2 334 4 n n n 1 n px n- x n p( x n p - x n x n p - x n x n p - x n x n p - x n )( x n p x n p )2 2 32 4 2 n 2 ( n 1) 2 (n p) 21 1 1 x n - x n p 1 .n n p n n法二 :25.( 2019 年高考上海卷(理))(3 分 +6 分+9 分 ) 给定常数c 0 ,定义函数f (x) 2 | x c 4 | | x c |, 数列 a1 , a2 , a3 ,L 知足 a n 1 f ( a n ), n N *.(1) 若a1 c 2 ,求 a2及 a3 ;(2) 求证 : 对随意n N*, a n 1 a n c ,;(3)能否存在 a1,使得 a1, a2 ,L a n ,L 成等差数列若存在,求出全部这样的 a1,若不存在,说明原因. 【答案】 :(1) 因为c 0 ,a1(c 2) ,故 a2 f (a1 ) 2 | a1 c 4 | | a1 c | 2 ,a3 f (a1 ) 2 | a2 c 4 | | a2 c | c 10(2) 要证明原命题 , 只要证明f ( x) x c 对随意x R都建立,f ( x) x c 2 | x c 4 | | x c | x c即只要证明 2 | x c 4 | | x c | + x c若 x c 0 , 明显有 2 | x c 4 | | x c | + x c=0 建立 ; 若 xc 0 , 则 2 | x c 4 | | x c | +x cx c 4 x c 明显建立综上 , f ( x)x c 恒建立 , 即对随意的 nN * , a n 1a n c(3) 由 (2) 知 , 若 { a n } 为等差数列 , 则公差 d c 0 , 故 n 无穷增大时 , 总有 a n 0此时,a n 1f (a n ) 2(a n c 4) ( a n c) a n c8即 d c 8故 a 2 f ( a 1 ) 2 | a 1 c 4 | | a 1 c | a 1 c 8 ,即 2 | a 1 c 4 | | a 1 c | a 1c 8 ,当 a 1 c 0 时, 等式建立 , 且 n 2 时 , a n 0 , 此时 { a n } 为等差数列 , 知足题意 ;若 a 1 c 0 , 则 | a 1 c 4 | 4 a 1c 8 ,此时 , a 20, a 3 c 8,L , a n (n 2)(c 8) 也知足题意 ;综上 , 知足题意的 a 1 的取值范围是 [ c, ){ c 8} .26.( 2019 年一般高等学校招生全国一致招生考试江苏卷(数学) (已校正纯 WORD 版含附带题) ) 本小题满分10 分 .k 个6444744481, 2, 2,3,3,3, 4, 4, 4,k-1k-1设数列4,,(),,( ),即 当a n : ------ L-1 k L-1 k( k)()k11 kk k1k N 时 , a na 2 L a nn N , 对于 l N ,定义2n( - 1) k , 记 S n a 12会合 P ln S n 是a n 的整数倍,nN ,且1 n l(1) 求会合 P 11 中元素的个数 ; (2) 求会合 P 2000 中元素的个数 .【答案】 此题主要观察会合 . 数列的观点与运算 . 计数原理等基础知识 , 观察研究能力及运用数学概括法剖析解决问题能力及推理论证能力.(1) 解 :由数列a n 的 定 义得 : a 11, a 2 2 , a 3 2 , a 4 3 , a 5 3 , a 6 3 , a 7 4 , a 84 , a 94 , a 10 4 , a 11 5∴S1 1,S21,S33,S4 0,S5 3,S6 6,S7 2,S82,S9 6, S1010, S11 5∴ S11? a1, S40 ? a4, S51? a5, S6 2 ? a6, S111? a11∴会合 P11中元素的个数为 5(2) 证明 : 用数学概括法先证S i ( 2i 1)i (2i1)事实上 ,①当 i 1时,S i ( 2i 1)S31? (2 1) 3 故原式建立②假定当 i m 时,等式建立,即S m( 2 m 1) m ? (2m 1) 故原式建立则 : i m 1, 时 ,S( m 1)[ 2 (m1) 1} S( m 1)( 2 m3}Sm (2m1)(2m 1) 2 ( 2m 2) 2 m(2m 1) ( 2m 1) 2 (2m 2) 2(2m 2 5m 3) ( m 1)(2m 3)综合①②得:Si (2 i 1) i (2 1) 于是iS( i 1)[2 i1} Si ( 2i1} (2i 1)2 i (2i 1) (2i 1) 2 (2i 1)(i 1)由上可知 : S i (2i 1} 是 ( 2i 1) 的倍数而a( i 1)( 2 i1} j 2i 1( j 1,2, ,2i 1) ,所以 S i (2i 1) j Si (2 i 1) j (2i 1) 是a( i 1)( 2i 1} j ( j 1,2, ,2i 1) 的倍数又S( i 1)[ 2 i 1} (i1)( 2 1) 不是2i 2的倍数 , i而a( i 1 )(2 i 1} j ( 2 2)(j1,2, ,2i2) i所以S(i 1)( 2i 1)j S(i 1)( 2 i 1) j ( 2i 2) ( 2 i 1)(i 1) j (2i 2) 不是 a( i 1)( 2i 1} j( j1,2, ,2i 2) 的倍数故当 l i (2i 1) 时, 会合 P l中元素的个数为 1 3 (2i -1) i 2于是当l i ( 2i 1) j(1 j 2i时, 会合P l中元素的个数为i2j 1)又 2000 31 (2 31 1) 47故会合 P2000中元素的个数为31247 100827.( 2019 年一般高等学校招生一致考试浙江数学(理)试题(纯WORD 版)) 在公差为 d 的等差数列 { a n }中 ,已知 a 1 10 , 且 a 1 ,2a 2 2,5a 3 成等比数列 .(1) 求 d , a n ; (2)若 d0 , 求 | a 1 | | a 2 | | a 3 || a n | .【答案】 解:( Ⅰ) 由已知获得 :(2a2)25a a4(ad 1)250(a2d )(11 d )225(5 d)21 311121 22d d2125 25dd23d 4 0d 4d1a n或;4n6a n 11 n( Ⅱ) 由 (1) 知 , 当 d0 时 , a11 n ,n①当 1n 11时 ,an 0 | a 1 | | a 2 | | a 3 | ggg | a n | a1a 2a 3 ggg an n(10 11 n)n(21 n)22②当 12n 时 ,a n 0 | a 1 | | a 2 | | a 3 | ggg | a n | a 1 a 2a 3 ggg a 11 (a 12a13ggg a n )2(a 1a 2 a 3 ggg a 11) (a 1 a 2a 3 ggg a n ) 2 11(21 11) n(21 n)n 221n 2202 22n(21 n),(1 n 11)所以 , 综上所述 :| a 1 || a 2 | | a 3 | ggg | a n |2 ;n 2 21n 22012)2,( n28.( 2019 年高考湖北卷(理) ) 已知等比数列a n 知足 : a 2 a 310 , a 1a 2a 3 125 . (I)求数列 a n 的通项公式 ;(II) 能否存在正整数 m , 使得11 L 1 1 若存在 , 求 m 的最小值 ; 若不存在 , 说明原因 .a 1a 2 a m【答案】 解 :(I) 由已知条件得 :a 2 5 , 又 a 2 q 1 10 ,q 1或3 ,所以数列 a n 的通项或 a n 53n 2(II) 若q, 11 L 111a 1a 2 a m 或 0, 不存在这样的正整数 m ;53 ,1m若 q1L1 9 1 1 9 , 不存在这样的正整数 m .a 1a 2a m 10 3 1029.( 2019 年一般高等学校招生一致考试山东数学(理)试题(含答案))设等差数列a的前 n 项和为Snn ,且 S 4 4S 2 , a 2n 2a n 1.( Ⅰ) 求数列 a n 的通项公式 ;( Ⅱ) 设数列b n 前 n 项和为 T n , 且 T na n 1 ( 为常数 ). 令 c nb 2n ( nN *). 求数列c n 的前 n2n项和 R n .【答案】 解:( Ⅰ) 设等差数列a n 的首项为a 1, 公差为 d ,由S 44S2, a 2n2a n1得4a 1 6d 8a 1 4da 1 (2n 1) 2a 12(n 1)d 1,解得 ,a11, d 2所以 a n2n 1 (n N * )T nn2n1( Ⅱ) 由题意知 :b n T n T n1n n 1所以n 2时, 2n 12n 22n 21 n 1故 , c nb2 n22n 1(n 1)( 4 )(nN * )R0 (1)1 (1)12 (1)23 (1)3(n 1) ( 1) n 1n44444,所以1R n0 (1)1 1 (1)22 (1)3(n 2) ( 1)n 1( n 1) ( 1)n则 4444443R n(1 )1 (1)2(1 )3( 1 )n 1(n 1) (1) n两式相减得 4 444441 (1 )n1 44( nn1 1)( )144R n1 3n 1 (4 4 n 1 ) 整理得9cn 的前 n项和R n13n 1所以数列数列9 (44n 1 )30.( 2019 年一般高等学校招生全国一致招生考试江苏卷(数学)(已校正纯 WORD 版含附带题) ) 本小题满分16 分 . 设 { a n } 是首项为 a , 公差为 d 的等差数列 (d0) , S n 是其前 n 项和 . 记 b nnS n , nN * , 此中 cn 2 c为实数 .(1) 若 c 0 , 且 b 1, b 2, b 4 成等比数列 , 证明 :Snkn 2 S k ( k ,n N * ) (2) 若 {b n } 是等差数列 , 证明 : c 0 .【答案】 证明 : ∵ { a n } 是首项为 a , 公差为 d 的等差数列 (d 0) , S n 是其前 n 项和∴ S nna n(n 1) d2(1) ∵ c0 ∴ b n S na n 1 dn2 ∵ b 1, b 2, b 4 成等比数列∴ b 22b 1b 4 ∴ (a 1 d ) 2 a( a3 d)22∴ 1ad1 d2 0 ∴ 1 d( a 1d ) 0 ∵ d 0∴ a1 d ∴ d 2a24 222∴ S nna n(n 1) d na n(n1)2a n 2 a22∴左侧 = S nk (nk ) 2 a n 2 k 2a右侧 = n 2S k n 2 k 2 a∴左侧 =右侧∴原式建立(2) ∵ { b n } 是等差数列∴设公差为 d 1 , ∴ b n b 1 ( n 1)d 1 带入 b nnS n得 :n 2cb 1 (n 1)d 1nS n∴ (d 11 d )n 3 (b 1 d 11 ) n2 cd 1 n (b 1 ) 对 n N 恒建立n 2c2adc d 12d 1 1 d 02∴ b 1d 1 a 1 dcd 1 02c(d 1 b 1 ) 0由①式得 :d 11 d ∵ d 0 ∴ d 12 由③式得 :c法二 : 证:(1) 若 c0 , 则 a n a ( n 1)d , S nn[( n 1)d2a] , b n(n 1)d 2a .22当 b 1, b 2,b 4 成等比数列 , b 22b 1b 4 ,d 23d即 : aa a , 得 : d22ad , 又 d 0 , 故 d 2a .22由此 : S n n 2a ,Snk( nk) 2 a n 2k 2 a , n 2 S k n 2 k 2 a .故 : S nkn 2 S k ( k , n N * ).nS nn 2 ( n 1) d 2a(2) b n2 ,n 2cn 2cn 2 ( n 1)d 2ac (n1)d 2a c ( n 1) d 2a2n 2 2 2c(n 1)d 2a(n 1) d 2a c 2 . ( ※)n 22c若 { b n }是等差数列 , 则 b nAn Bn 型 .察看 ( ※) 式后一项 , 分子幂低于分母幂 ,( n 1)d 2a故有 : c 20, 即 c (n 1)d2a 0 , 而(n1)d 2a ≠0,n2c22故 c 0 .经查验 , 当 c0 时 { b n } 是等差数列 .31.( 2019 年一般高等学校招生一致考试纲领版数学(理)WORD 版含答案(已校正) ) 等差数 列 a n 的前 n 项和为 S n , 已知 S 3 =a 22 , 且 S 1 , S 2 , S 4 成等比数列 , 求 a n的通项式 .【答案】32.( 2019 年一般高等学校招生一致考试天津数学(理)试题(含答案))已知首项为3的等比数列 { a n } 不是2递减数列 , 其前 n 项和为S n (n N*) 3 3 5 5 4 4成等差数列 ., 且S+ a , S + a , S + a( Ⅰ) 求数列 { a n } 的通项公式 ;( Ⅱ) 设 T n S n 1(n N * ) , 求数列 { Tn } 的最大项的值与最小项的值 . S n【答案】33.( 2019 年高考江西卷(理) )正项数列 {a n } 的前项和 {a n } 知足 : s n 2 ( n 2n1)s n (n 2 n)(1) 求数列 {a n } 的通项公式 a n ;(2) 令 b nn 1 , 数列 {b n } 的前 n 项和为 T n . 证明 : 对于随意的 n N * , 都有 T n5(n 2) 2 a 264【答案】 (1) 解 : 由 S n2(n 2 n 1) S n (n 2 n)0 , 得 S n (n 2 n) (S n 1) 0 .因为 a n 是正项数列 , 所以 S n0, S nn 2 n .于是 a 1 S 1 2, n 2时 , a n S nSn 1n 2 n (n 1)2(n 1) 2n .综上 , 数列 a n 的通项 a n 2n .(2) 证明 : 因为 a n2n, b nn 1.( n2) 2 a n 2则 bn11 11 .n4n 2 ( n 2) 216 n 2( n 2)2T n1 11 11 11 1 1 1 16 122 42 3252(n 1)2 (n 1)2 n 2( n 2)2321 11111 1516 2(n22 (1 2 2).2 1) (n 2)1664是等比数列 .。

2019年高考数学真题分类汇编 专题05 平面向量 理科及答案

2019年高考数学真题分类汇编 专题05 平面向量 理科及答案
专题五平面向量
1.【2015高考新课标1,理7】设 为 所在平面内一点 ,则()
(A) (B)
(C) (D)
【答案】A
【解析】由题知 = ,故选A.
【考点定位】平面向量的线性运算
【名师点睛】本题以三角形为载体考查了平面向量的加法、减法及实数与向量的积的法则与运算性质,是基础题,解答本题的关键是结合图形会利用向量加法将向量 表示为 ,再用已知条件和向量减法将 用 表示出来.
4.【2015高考四川,理7】设四边形ABCD为平行四边形, , .若点M,N满足 , ,则 ()
(A)20(B)15(C)9(D)6
【答案】C
【解析】
,所以
,选C.
【考点定位】平面向量.
【名师点睛】涉及图形的向量运算问题,一般应选两个向量作为基底,选基底的原则是这两个向量有尽量多的已知元素.本题中,由于 , 故可选 作为基底.
【答案】
【解析】因为 , ,
, ,
当且仅当 即 时 的最小值为 .
【考点定位】向量的几何运算、向量的数量积与基本不等式.
【名师点睛】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求 ,体现了数形结合的基本思想,再运用向量数量积的定义计算 ,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现.
8.【2015高考北京,理13】在 中,点 , 满足 , .若 ,
则 ; .
【答案】
【考点定位】本题考点为平面向量有关知识与计算,利用向量相等解题.
【名师点睛】本题考查平面向量的有关知识及及向量运算,利用向量相等条件求值,本题属于基础题.利用坐标运算要建立适当的之间坐标系,准确写出相关点的坐标、向量的坐标,利用向量相等,列方程组,解出未知数的值.

2019年全国高考理科数学试题分类汇编10:排列、组合及二项式定理

2019年全国高考理科数学试题分类汇编10:排列、组合及二项式定理

2019年全国高考理科数学试题分类汇编10:排列、组合及二项式定理一、选择题1 .(2019年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯W ORD 版含答案))已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a ( )A .4-B .3-C .2-D .1-【答案】D2 .(2019年普通高等学校招生统一考试山东数学(理)试题(含答案))用0,1,,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .279【答案】B3 .(2019年高考新课标1(理))设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5B .6C .7D .8【答案】B4 .(2019年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))()()8411+x y +的展开式中22x y 的系数是 A .56B .84C .112D .168【答案】D5 .(2019年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈-,且关于x的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )A .14B .13C .12D .10【答案】B6 .(2019年上海市春季高考数学试卷(含答案))10(1)x +的二项展开式中的一项是( )A .45xB .290xC .3120xD .4252x【答案】C7 .(2019年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得()3nx n N n+⎛+∈ ⎝的展开式中含有常数项的最小的为( )A .4B .5C .6D .7【答案】B8 .(2019年高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是( )A .9B .10C .18D .20【答案】C9 .(2019年高考陕西卷(理))设函数61,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为( )A .-20B .20C .-15D .15【答案】A10.(2019年高考江西卷(理))(x 2-32x )5展开式中的常数项为 ( )A .80B .-80C .40D .-40【答案】C 二、填空题11.(2019年上海市春季高考数学试卷(含答案))36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为222222(133)(22323)(++++⨯+⨯++⨯+(参照上述方法,可求得2000的所有正约数之和为________________________【答案】483612.(2019年高考四川卷(理))二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答)【答案】1013.(2019年上海市春季高考数学试卷(含答案))从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).【答案】4514.(2019年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答)【答案】48015.(2019年普通高等学校招生统一考试重庆数学(理)试题(含答案))从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答) 【答案】59016.(2019年普通高等学校招生统一考试天津数学(理)试题(含答案))6x ⎛⎝的二项展开式中的常数项为______.【答案】1517.(2019年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设二项式53)1(xx -的展开式中常数项为A ,则=A ________【答案】10。

2019年全国高考数学·分类汇编 专题03 平面向量(解析版)

2019年全国高考数学·分类汇编 专题03 平面向量(解析版)

专题03 平面向量【母题来源一】【2019年高考全国II 卷理数】已知AB u u u r =(2,3),AC u u u r =(3,t ),BC uuu r =1,则AB BC ⋅u u u r u u u r =A .−3B .−2C .2D .3【答案】C【母题来源二】【2018年高考全国II 卷理数】已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .0【答案】B【母题来源三】【2017年高考全国II 卷理数】已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r 的最小值是A .2-B .32-C .43-D .1-【答案】B【命题意图】高考对本部分内容的考查以运算求解和数形结合为主,重点考查平面向量数量积定义和坐标运算以及相关的参数取值问题.【命题规律】主要以选择或者填空的形式,考查平面向量数量积的定义、转化法、坐标运算等内容.【答题模板】解答本类题目,以2017年高考真题为例,一般考虑如下三步:第一步:根据已知条件建立平面直角坐标系第二步:用坐标表示向量;第三步:利用坐标表示平面数量积进而求范围.【方法总结】(一)平面向量的概念及线性运算1. 解决向量的概念问题应关注六点:(1)正确理解向量的相关概念及其含义是解题的关键.(2)相等向量具有传递性,非零向量的平行也具有传递性.(3)共线向量即平行向量,它们均与起点无关.相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量则未必是相等向量.(4)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(5)非零向量a 与||a a 的关系:||a a 是a 方向上的单位向量. (6)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小.2. 平面向量线性运算问题的求解策略.(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.3. 共线向量定理的应用(1)证明向量共线:对于向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线.(2)证明三点共线:若存在实数λ,使AB u u u r =λAC u u u r ,则A ,B ,C 三点共线.(3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值.(4)对于三点共线有以下结论:对于平面上的任一点O ,OA u u u r 、OB uuu r 不共线,满足OP uuu r =x OA u u u r +y OB uuu r (x ,y ∈R ),则P 、A 、B 共线⇔x +y =1.(二)平面向量基本定理及坐标表示1. 对平面向量基本定理的理解(1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量的坐标表示的基础.(2)平面向量一组基底是两个不共线向量,平面向量基底可以有无穷多组.(3)用平面向量基本定理可将任一向量分解成形如a =λ1e 1+λ2e 2的形式,是向量线性运算知识的延伸.2. 平面向量共线的坐标表示(1)两向量平行的充要条件若a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b 的充要条件是a =λb ,这与x 1y 2-x 2y 1=0在本质上是没有差异的,只是形式上不同.(2)三点共线的判断方法判断三点是否共线,先求由三点组成的任两个向量,然后再按两向量共线进行判定.(三)平面向量的数量积1. 计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用.2. 求向量模的常用方法:利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.3. 利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.4. 在解题时,注意数形结合、方程思想及转化与化归数学思想的运用.(四)平面向量的应用1. 向量的坐标运算将向量与代数有机结合起来,这就为向量与函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题.2. 以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.3. 向量的两个作用:(1)载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;(2)工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.4. 向量中有关最值问题的求解思路:一是“形化”,利用向量的几何意义将问题转化为平面几何中的最值或范围问题;二是“数化”,利用平面向量的坐标运算,把问题转化为代数中的函数最值、不等式的解集、方程有解等问题.1.【陕西省2019年高三第三次教学质量检测数学试题】若向量(1,1)=a ,(1,3)=-b ,(2,)x =c 满足(3)10+⋅=a b c ,则x =A .1B .2C .3D .4 【答案】A2.【重庆南开中学2019届高三第四次教学检测考试数学试题】已知O 为V ABC 内一点且满足OA OB OC ++=0u u u r u u u r u u u r ,若AOC △2AB BC ⋅=-u u u r u u u r ,则ABC ∠= A .3π B .4π C .6π D .12π 【答案】A3.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)数学试题】向量(2,1), (1,1), (, 2)k ==-=a b c ,若()-⊥a b c ,则k 的值是A .4B .-4C .2D .-2 【答案】B4.【四川省宜宾市2019届高三第二次诊断性考试数学试题】等比数列{}n a 的各项均为正数,已知向量()45,a a =a ,()76,a a =b ,且4⋅=a b ,则2122210log log log a a a ++⋯+=A .12B .10C .5D .22log 5+ 【答案】C5.【东北师大附中、重庆一中、吉大附中、长春十一中等2019届高三联合模拟考试数学试题】已知平面向量a ,b 的夹角为3π,且2=a ,1=b ,则2-=a b A .4B .2C .1D .166.【辽宁省朝阳市重点高中2019届高三第四次模拟考试数学试题】已知P 为等边三角形ABC 所在平面内的一个动点,满足()BP BC R λλ=∈u u u r u u u r ,若2AB =u u u r ,则()AP AB AC u u u v u u u v u u u v ⋅+=A .B .3C .6D .与λ有关的数值【答案】C7.【甘、青、宁2019届高三5月联考数学试题】在ABC △中,D 为BC 上一点,E 是AD 的中点,若BD DC λ=u u u r u u u r ,13CE AB AC μ=+u u u r u u u r u u u r ,则λμ+= A .13 B .13- C .76 D .76- 【答案】B8.【黑龙江省大庆市实验中学2019届高三下学期数学二模考试数学试题】在矩形ABCD 中,AB =,2BC =,点E 为BC 的中点,点F 在CD ,若AB AF ⋅=u u u r u u u r AE BF ⋅u u u r u u u r 的值为AB .2C .0D .1【答案】A 9.【宁夏六盘山高级中学2019届高三下学期第二次模拟考试数学试题】已知向量()1,1=a ,()2,x =b ,若()-∥a a b ,则实数x 的值为A .2-B .0C .1D .2【答案】D10.【甘肃省兰州市第一中学2019届高三6月最后高考冲刺模拟数学试题】已知非零向量a ,b 的夹角为60o ,且满足22-=a b ,则⋅a b 的最大值为A .12B .1C .2D .3【答案】B11.【新疆维吾尔自治区2019年普通高考第二次适应性检测数学】O 是ABC △的外接圆圆心,且OA AB AC ++=0u u u r u u u r u u u r ,1OA AB ==u u u r u u u r ,则CA u u u r 在BC uuu r 方向上的投影为A .12-B .C .12D 【答案】B12.【内蒙古呼伦贝尔市2019届高三模拟统一考试(一)数学试题】已知菱形ABCD 的边长为2,60ABC ∠=︒,则BD CD ⋅=u u u r u u u rA .4B .6C .D .【答案】B13.【内蒙古2019届高三高考一模试卷数学试题】已知单位向量a ,b 的夹角为3π4,若向量2=m a ,4λ=-n a b ,且⊥m n ,则=nA .2-B .2C .4D .6 【答案】C。

专题07 平面向量-2019年高考真题和模拟题分项汇编数学(理) Word版含解析

专题07 平面向量-2019年高考真题和模拟题分项汇编数学(理) Word版含解析

专题07 平面向量1.【2019年高考全国I 卷理数】已知非零向量a ,b 满足,且b ,则a 与b 的夹角为||2||=a b ()-a b ⊥A .B .π6π3C . D .2π35π6【答案】B【解析】因为b ,所以=0,所以,所以=()-a b ⊥2()-⋅=⋅-a b b a b b 2⋅=a b b cos θ22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为,故选B .π3【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.[0,]π2.【2019年高考全国II 卷理数】已知=(2,3),=(3,t ),=1,则=ABAC BC AB BC ⋅A .−3B .−2C .2D .3【答案】C【解析】由,,得,则,(1,3)BC AC AB t =-=- 1BC == 3t =(1,0)BC = .故选C .(2,3)(1,0)21302AB BC ==⨯+⨯=【名师点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.3.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“与的夹角为锐角”是“”AB AC||||AB AC BC +> 的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】与的夹角为锐角,所以,即ABAC2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅,因为,所以|+|>||;22||||AB AC AC AB +>- AC AB BC -= AB AC BC当|+|>||成立时,|+|2>|-|2•>0,又因为点A ,B ,C 不共线,所以AB AC BC AB AC AB AC AB ⇒ AC与的夹角为锐角.故“与的夹角为锐角”是“|+|>||”的充分必要条件,故选C .AB AC AB AC AB AC BC【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归数学思想.4.【2019年高考全国III 卷理数】已知a ,b 为单位向量,且a ·b =0,若,则___________.2=c a cos ,=a c 【答案】23【解析】因为,,2=-c a 0⋅=a b所以,22⋅=⋅a c a b 2=,所以,222||4||5||9=-⋅+=c a b b ||3=c 所以 .cos ,=a c 22133⋅==⨯⋅a c a c 【名师点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.5.【2019年高考天津卷理数】在四边形中,,点ABCD ,5,30AD BC AB AD A ==∠=︒∥E 在线段的延长线上,且,则_____________.CB AE BE =BD AE ⋅=【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,则,.5,AB AD ==B 5)2D 因为∥,,所以,AD BC 30BAD ∠=︒30ABE ∠=︒因为,所以,AE BE =30BAE ∠=︒所以直线,其方程为,BEy x =-直线的斜率为.AE y x =由得,yx y x ⎧=-⎪⎪⎨⎪=⎪⎩x =1y =-所以.1)E -所以.5)1)12BD AE =-=- 【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.6.【2019年高考江苏卷】如图,在中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于ABC △点.若,则的值是_____.O 6AB AC AO EC⋅=⋅ABAC【解析】如图,过点D 作DF //CE ,交AB 于点F,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .,()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭,22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭得即2213,22AB AC = AB = ABAC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.7.【2019年高考浙江卷】已知正方形的边长为1,当每个取遍时,ABCD (1,2,3,4,5,6)i i λ=±1的最小值是________;最大值是_______.123456||AB BC CD DA AC BD λλλλλλ+++++【答案】0;所以当时,有最大值1256341,1λλλλλλ======-max y ===故答案为0;【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.8.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在矩形中,,ABCD 4AB =u u u r 2AD =.若点,分别是,的中点,则M N CD BC AM MN ⋅=A .4B .3C .2D .1【答案】C【解析】由题意作出图形,如图所示:由图及题意,可得:,12AM AD DM AD AB =+=+ .1122MN CN CM CB CD =-=- 11112222BC DC AD AB =-+=-+ ∴.111222AM MN AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+ ⎪ ⎪⎝⎭⎝⎭221111||||41622424AD AB =-⋅+⋅=-⋅+⋅= 故选:C .【名师点睛】本题主要考查基底向量的设立,以及向量数量积的运算,属基础题.9.【福建省漳州市2019届高三下学期第二次教学质量监测数学试题】已知向量,满足,a b ||1=a ||=b 且与的夹角为,则a b 6π()(2)+⋅-=a b a b A .B .1232-C .D .12-32【答案】A【解析】.()()221222312+-=-+⋅=-+=a b a b a b a b 故选A.【名师点睛】本题考查了平面向量数量积的性质及其运算,属基础题.10.【安徽省江淮十校2019届高三年级5月考前最后一卷数学试题】已知向量,,(1,2)=a (2,3)=-b ,若,则实数(4,5)=c ()λ+⊥a b c λ=A .B .12-12C .D .2-2【答案】C【解析】因为,,(1,2)=a (2,3)=-b 所以,()12,23λλλ-+a +b =又,所以,()λ+⊥a b c ()0λ+⋅=a b c 即,解得.()()4125230+=λλ-+2λ-= 故选C.【名师点睛】本题主要考查向量数量积的坐标运算,熟记运算法则即可,属于常考题型.11.【2019届北京市通州区三模数学试题】设,均为单位向量,则“与夹角为”是“”a b a b 2π3||+=a b 的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【解析】因为,均为单位向量,a b 若与夹角为,a b 2π3则,||1+===a b因此,由“与夹角为”不能推出“”;a b 2π3||+=a b若,则||+=a b ||+===a b 解得,即与夹角为,1cos ,2=a b a b π3所以,由“”不能推出“与夹角为”||+a b a b 2π3因此,“与夹角为”是“”的既不充分也不必要条件.a b 2π3||+=a b 故选D【名师点睛】本题主要考查充分条件与必要条件的判断,以及向量的数量积运算,熟记充分条件与必要条件的概念,以及向量的数量积运算法则即可,属于常考题型.12.【辽宁省丹东市2019届高三总复习质量测试数学(二)】在中,,ABC △2AB AC AD += AE DE +=0,若,则EB xAB y AC =+A .B .3y x=3x y=C .D .3y x =-3x y=-【答案】D【解析】因为,所以点是的中点,又因为,所以点是的2AB AC AD += D BC AE DE +=0E AD 中点,所以有:,因此11131()22244BE BA AE AB AD AB AB AC AB AC =+=-+=-+⨯+=-+,故题选D.31,344x y x y =-=⇒=-【名师点睛】本题考查了向量加法的几何意义、平面向量基本定理.解题的关键是对向量式的理解、对向量加法的几何意义的理解.13.【2019年辽宁省大连市高三5月双基考试数学试题】已知直线y =x +m 和圆x 2+y 2=1交于A 、B 两点,O为坐标原点,若,则实数m =32AO AB ⋅=A .B .1±C .D .12±【答案】C【解析】联立 ,得2x 2+2mx +m 2−1=0,221y x mx y =+⎧⎨+=⎩∵直线y =x +m 和圆x 2+y 2=1交于A 、B 两点,O 为坐标原点,∴=-2m 2+8>0,解得,∆x <<设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=−m ,,21221-=m x x y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2,=(-x 1,-y 1),=(x 2-x 1,y 2-y 1),AOAB∵+y 12-y 1y 2=1+m 2-m 2=2-m 2=,21123,2AO AB AO AB x x x ⋅=∴⋅=- 221122m m ----23解得m =.±故选:C .【名师点睛】本题考查根的判别式、根与系数的关系、向量的数量积的应用,考查了运算能力,是中档题.14.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查数学试题】已知菱形的边长ABCD 为2,,点,分别在边,上,,,若,120BAD ∠=︒E F BC DC 3BC BE =DC DF λ=1AE AF ⋅=则的值为λA .3B .2C .D .2352【答案】B【解析】由题意可得:()()113AE AF AB BE AD DF AB BC BC AB λ⎛⎫⎛⎫⋅=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭,22111133AB BC AB BC λλ⎛⎫=+++⋅ ⎪⎝⎭且:,224,22cos1202AB BC AB BC ==⋅=⨯⨯=-故,解得:.()44112133λλ⎛⎫+++⨯-= ⎪⎝⎭2λ=故选:B.【名师点睛】本题主要考查平面向量数量积的定义与运算法则,平面向量基本定理及其应用等知识,意在考查学生的转化能力和计算求解能力.15.【江西省新八校2019届高三第二次联考数学试题】在矩形中,与相ABCD 3,4,AB AD AC ==BD 交于点,过点作,垂足为,则O A AE BD ⊥E AE EC ⋅=A .B .57214425C .D .1252512【答案】B【解析】如图:由,得:,3AB =4=AD 5BD ==125AB AD AE BD ⋅==又()AE EC AE EO OC AE EO AE OC AE EO AE AO ⋅=⋅+=⋅+⋅=⋅+⋅ ,,AE BD ⊥ 0AE EO ∴⋅= 又2144cos 25AE AE AO AE AO EAO AE AO AE AO⋅=∠=⋅== .14425AE EC ∴⋅= 故选B.【名师点睛】本题考查向量数量积的求解问题,关键是能够通过线性运算将问题转化为模长和夹角已知的向量之间的数量积问题.16.【湖师范大学附属中学2019届高三数学试题】如图所示,在正方形ABCD 中,E 为AB 的中点,F 为CE的中点,则AF =A .B .3144AB AD + 1344AB AD + C .D . 12AB AD + 3142AB AD + 【答案】D 【解析】根据题意得:,又,,所以1()2AF AC AE =+ AC AB AD =+ 12AE AB = .故选D.1131()2242AF AB AD AB AB AD =++=+ 【名师点睛】本题主要考查了平面向量的基本定理的简单应用,属于基础试题.17.【2019年北京市高考数学试卷】已知向量=(-4,3),=(6,m ),且,则m =__________.a b ⊥a b 【答案】8.【解析】向量4,36,m =-=⊥(),(),,a b a b 则.046308m m ⋅=-⨯+==,,a b 【名师点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.18.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】已知圆的弦的22450x y x ++-=AB 中点为,直线交轴于点,则的值为__________.(1,1)-AB x P PA PB ⋅ 【答案】8.【答案】5-【解析】设,圆心,(1,1)M -(2,0)C -∵,10112MC k -==-+根据圆的性质可知,,1AB k =-∴所在直线方程为,即,AB 1(1)y x -=-+0x y +=联立方程可得,,224500x y x x y ⎧++-=⎨+=⎩22450x x +-=设,,则,11(,)A x y 22(,)B x y 1252x x =-令可得,0y =(0,0)P ,12121225PA PB x x y y x x ⋅=+==- 故答案为:5.-【名师点睛】本题主要考查了向量的数量积的坐标表示及直线与圆相交性质的简单应用,属于常考题型.。

2019年高考真题理科数学解析汇编:平面向量word资料6页

2019年高考真题理科数学解析汇编:平面向量word资料6页

第 1 页2019年高考真题理科数学解析汇编:平面向量一、选择题1 .(2019年高考(天津理))已知△ABC 为等边三角形,=2AB ,设点P,Q 满足=A P A Bλ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ ( )A .12B.12CD.32-± 2 .(2019年高考(浙江理))设a ,b 是两个非零向量.( )A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |3 .(2019年高考(重庆理))设,x y ∈R,向量()()()4,2,,1,1,-===c y b x a ,且c b c a //,⊥,则_______=( )ABC.D .104 .(2019年高考(四川理))设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A .a b =-B .//a bC .2a b =D .//a b 且||||a b =5 .(2019年高考(辽宁理))已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( )A .a ∥bB .a ⊥bC .{0,1,3}D .a +b =a -b6 .(2019年高考(湖南理))在△ABC 中,AB=2,AC=3,AB BC = 1则___BC =.( )ABC. D 7 .(2019年高考(广东理))对任意两个非零的平面向量α和β,定义⋅⋅=⋅αβαβββ,若平面向量a 、b 满足0≥>a b ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则=a b( )A .12B .1C .32D .528 .(2019年高考(广东理))(向量)若向量()2,3BA =,()4,7CA =,则BC =( )第 2 页A .()2,4--B .()2,4C .()6,10D .()6,10--9 .(2019年高考(大纲理))ABC ∆中,AB 边上的高为CD ,若,,0,||1,||2CB a CA b a b a b ==⋅===,则AD =( )A .1133a b -B .2233a b - C .3355a b - D .4455a b - 10.(2019年高考(安徽理))在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 按逆时针旋转34π后,得向量OQ则点Q 的坐标是( )A.(- B.(-C.(2)--D.(2)-二、填空题11.(2019年高考(新课标理))已知向量,a b 夹角为45︒,且1,210a a b =-=;则_____b =[来源:shulihuashulihua]12.(2019年高考(浙江理))在∆ABC 中,M 是BC 的中点,AM =3,BC =10,则AB AC ⋅=______________. 13.(2019年高考(上海理))在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||CD CN BC BM =,则AN AM ⋅的取值范围是_________ .[来源:shulihua]14.(2019年高考(江苏))如图,在矩形ABCD 中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是____.15.(2019年高考(北京理))已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为________; DE DC ⋅的最大值为________.16.(2019年高考(安徽理))若平面向量,a b 满足:23a b -≤;则a b 的最小值是_____第 3 页2019年高考真题理科数学解析汇编:平面向量参考答案一、选择题 1. 【答案】A【命题意图】本试题以等边三角形为载体,主要考查了向量加减法的几何意义,平面向量基本定理,共线向量定理及其数量积的综合运用.【解析】∵=BQ AQ AB -=(1)AC AB λ--,=CP AP AC -=AB AC λ-, [来源:数理化网] 又∵3=2BQ CP ⋅-,且||=||=2AB AC ,0<,>=60AB AC ,0=||||cos 60=2AB AC AB AC ⋅⋅,∴3[(1)]()=2AC AB AB AC λλ----,2223||+(1)+(1)||=2AB AB AC AC λλλλ--⋅-,所以234+2(1)+4(1)=2λλλλ---,解得1=2λ. 2. 【答案】C【解析】利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a ,b 共线,即存在实数λ,使得a =λb .如选项A:|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B:若a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D:若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立. 3. 【答案】B【解析】由0240a c a c x x ⊥⇒⋅=⇒-=⇒=,由//422b c y y ⇒-=⇒=-,故||(21)a b +=+=【考点定位】本题主要考查两个向量垂直和平行的坐标表示,模长公式.解决问题的关键在于根据a c ⊥、//b c ,得到,x y 的值,只要记住两个向量垂直,平行和向量的模的坐标形式的充要条件,就不会出错,注意数字的运算.4. [答案]D[解析]若使||||a ba b =成立,则方向相同,与选项中只有D 能保证,故选D. [点评]本题考查的是向量相等条件⇔模相等且方向相同.学习向量知识时需注意易考易错零向量,其模为0且方向任意. 5. 【答案】B【解析一】由|a +b |=|a -b |,平方可得a ⋅b =0, 所以a ⊥b ,故选B【解析二】根据向量加法、减法的几何意义可知|a +b |与|a -b |分别为以向量a ,b 为邻边的平行四边形的两条对角线的长,因为|a +b |=|a -b |,所以该平行四边形为矩形,所以a ⊥b ,故选B【点评】本题主要考查平面向量的运算、几何意义以及向量的位置关系,属于容易题.解析一是利用向量的运算来解,解析二是利用了向量运算的几何意义来解. [来源:shulihua]C第 4 页6. 【答案】A【解析】由下图知AB BC = cos()2(cos )1AB BC B BC B π-=⨯⨯-=.1cos 2B BC ∴=-.又由余弦定理知222cos 2AB BC AC B AB BC +-=⋅,解得BC =.【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.需要注意,AB BC 的夹角为B ∠的外角.7. 【解析】C;因为||cos cos 1||b a b ba a a a θθ⋅==≤<⋅,且a b 和b a 都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,所以12b a =,||12cos ||b a θ=,所以2||cos 2cos 2||a ab b θθ==<,且22cos 1a b θ=>,所以12a b <<,故有32a b =,选 C. 【另解】C;1||cos 2||k a a b b θ==,2||cos 2||k b b a a θ==,两式相乘得212cos 4k k θ=,因为0,4πθ⎛⎫∈ ⎪⎝⎭,12,k k 均为正整数,于是cos 12θ<=<,所以1224k k <<,所以123k k =,而0a b ≥>,所以123,1k k ==,于是32a b =,选C. [来源:数理化网] 8. 解析:A.()2,4BC BA CA =-=--. 9. 答案D【命题意图】本试题主要考查了向量的加减法几何意义的运用,结合运用特殊直角三角形求解点D 的位置的运用. [来源:shulihua]【解析】由0ab ⋅=可得90ACB ∠=︒,故AB =用等面积法求得CD =,所以AD =,故4444()5555AD AB CB CA a b ==-=-,故选答案D 10. 【解析】选A【方法一】设34(10cos ,10sin)cos ,sin 55OP θθθθ=⇒== [来源:数理化网]则33(10cos(),10sin())(44OQ ππθθ=++=- C第 5 页【方法二】将向量(6,8)OP =按逆时针旋转32π后得(8,6)OM =-则)(OQ OP OM =+=- 二、填空题[来源:shulihuashulihua] 11. 【解析】b=12. 【答案】16-【解析】此题最适合的方法是特例法.假设∆ABC 是以AB =AC 的等腰三角形,如图,AM =3,BC =10,AB =ACcos∠BAC =3434100823417+-=-⨯.AB AC ⋅=cos 16AB AC BAC ⋅∠=-13. [解析] 如图建系,则A (0,0),B (2,0),D (21,23),C (25,23).t CD BC ==||||∈[0,1],则t BM =||,t CN 2||=, 所以M (2+2t ,23t ),N (25-2t ,23),故AN AM ⋅=(2+2t)(25-2t )+23t ⋅23=)(6)1(5222t f t t t =++-=+--,因为t ∈[0,1],所以f (t )递减,(AN AM ⋅)max = f (0)=5,(AN AM ⋅)min = f (1)=2.[评注] 当然从抢分的战略上,可冒用两个特殊点:M 在B (N 在C )和M 在C (N 在D ),而本案恰是在这两点处取得最值,蒙对了,又省了时间!出题大虾太给蒙派一族面子了!14. .【考点】向量的计算,矩形的性质,三角形外角性质,和的余弦公式,锐角三角函数定义. 【解析】由2AB AF=,得cos ABAF FAB ∠=由矩形的性质,得cos =AF FAB DF ∠.记AE BF 和之间的夹角为,AEB FBC θαβ∠=∠=,,则θαβ=+. 又∵2BC =,点E 为BC 的中点,∴1BE =.本题也可建立以, AB AD 为坐标轴的直角坐标系,求出各点坐标后求解.15. 【答案】1;1 [来源:shulihuashulihua]【解析】根据平面向量的点乘公式||||cos DE CB DE DA DE DA θ⋅=⋅=⋅,可知||cos ||DE DA θ=,因此2||1DE CB DA ⋅==;||||cos ||cos DE DC DE DC DE αα⋅=⋅=⋅,而||cos DE α就是向量DE 在DC 边上的射影,要想让DE DC ⋅最大,即让射影最大,此时E 点与B 点重合,射影为||DC ,所以长度为1【考点定位】本题是平面向量问题,考查学生对于平面向量点乘知识的理解,其中包含动点问题,考查学生最值的求法. [来源:shulihuashulihua]16. 【解析】a b的最小值是98第 6 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年理科数学高考分类汇编 单选题(共5道) 1、函数f(x)=的零点所在的一个区间是 A(-2,-1) B(-1,0) C(0,1) D(1,2)

2、的图象与直线相切,则等于() A B C D

3、已知,,那么的值为() A B C D

4、已知平面向量若则实数的值为() A2 B C D

5、若全集,集合,则下图中阴影部分表示的集合是()

A B C D

简答题(共5道) 6、把函数的图像向右平移a()个单位,得到的函数的图像关于直线对称.(1)求a的最小值; (2)当a取最小值,求函数在区间上的值域 7、对任意,都有,当时, (1)求证:是奇函数; (2)试问:在时,是否有最大值?如果有,求出最大值,如果没有,说明理由.

(3)解关于x的不等式

8、已知等比数列的公比,且. 9、的两条对角线相交于点M(2,0),边所在直线的方程为,点T(-1,1)在边所在直线上. (1)求边所在直线的方程; (2)求矩形外接圆的方程; (3)若动圆过点N(-2,0),且与矩形的外接圆外切,求动圆的圆心的轨迹方程.

10、设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数 y=x+的值域,集合C为不等式(ax-)(x+4)≤0的解集, (1)求A∩B;(2)若,求a的取值范围。

书面表达(共5道) 11、阅读下面的材料,根据要求写一篇不少于800字的文章。 一家人晚饭后边看电视边聊节目。 爷爷说:“还是京剧好啊。一招一式、一颦一蹙都是真功夫,都是美呀!祖宗留下的东西就是好哇!” 孙子听了,抢着说:“爷爷,流行音乐也挺好的,不管是中国的还是外国的。您不知道演唱会让年轻人有多疯狂。” 妈妈摇摇头说:“还是我们自己的好。外国的毕竟不适合我们。有时候对我们自己的文化还会有影响,甚至冲突和破坏。” 爸爸静静地听着,最后微笑着说:“美国的星巴克咖啡店可以开在故宫,咱们的广场舞也可以跳到巴黎。李玉刚反串的新版《贵妃醉酒》惊艳世界,维也纳的金色大厅不是也不拒绝《茉莉花》吗?” 大家都陷入了思考…… 这一家人的观点中,你更能接受哪一个?请综合材料内容及含意作文,体现你的思考、权衡和选择。要求选好角度,明确立意,明确文体,自拟标题;不要套作,不得抄袭。

12、车身总重量大于40公斤等指标)上了牌照,算是给予它们临时合法的出行身份,但是牌照有效期到今年2月底止,这也就是说,从今年3月1日起,该市城区4万多辆超标电动车已被禁行,违者将受到严厉的处罚。 一方面是诸多管理的必要,一方面是便捷出行的需求;事实上要彻底禁行这几万辆超标电动车,管理者和骑行者都会感到很不容易。 假定你也是在该市市区生活的市民,请以管理部门代言人或超标电动车骑行者身份就禁行超标电动车这事表达你的看法。 要求选定你的写作身份,选好角度,确定立意,明确文体,自拟标题;不要脱离材料内容及含意的范围作文,不要套作,不得抄袭。 13、车身总重量大于40公斤等指标)上了牌照,算是给予它们临时合法的出行身份,但是牌照有效期到今年2月底止,这也就是说,从今年3月1日起,该市城区4万多辆超标电动车已被禁行,违者将受到严厉的处罚。 一方面是诸多管理的必要,一方面是便捷出行的需求;事实上要彻底禁行这几万辆超标电动车,管理者和骑行者都会感到很不容易。 假定你也是在该市市区生活的市民,请以管理部门代言人或超标电动车骑行者身份就禁行超标电动车这事表达你的看法。 要求选定你的写作身份,选好角度,确定立意,明确文体,自拟标题;不要脱离材料内容及含意的范围作文,不要套作,不得抄袭。

14、车身总重量大于40公斤等指标)上了牌照,算是给予它们临时合法的出行身份,但是牌照有效期到今年2月底止,这也就是说,从今年3月1日起,该市城区4万多辆超标电动车已被禁行,违者将受到严厉的处罚。 一方面是诸多管理的必要,一方面是便捷出行的需求;事实上要彻底禁行这几万辆超标电动车,管理者和骑行者都会感到很不容易。 假定你也是在该市市区生活的市民,请以管理部门代言人或超标电动车骑行者身份就禁行超标电动车这事表达你的看法。 要求选定你的写作身份,选好角度,确定立意,明确文体,自拟标题;不要脱离材料内容及含意的范围作文,不要套作,不得抄袭。 15、车身总重量大于40公斤等指标)上了牌照,算是给予它们临时合法的出行身份,但是牌照有效期到今年2月底止,这也就是说,从今年3月1日起,该市城区4万多辆超标电动车已被禁行,违者将受到严厉的处罚。 一方面是诸多管理的必要,一方面是便捷出行的需求;事实上要彻底禁行这几万辆超标电动车,管理者和骑行者都会感到很不容易。 假定你也是在该市市区生活的市民,请以管理部门代言人或超标电动车骑行者身份就禁行超标电动车这事表达你的看法。 要求选定你的写作身份,选好角度,确定立意,明确文体,自拟标题;不要脱离材料内容及含意的范围作文,不要套作,不得抄袭。

填空题(共5道) 16、如图,正六边形的边长为,则______。

17、不等式对一切成立,则实数的取值范围为___________. 18、当圆的圆心到直线的距离最大时,()。 19、x是双曲线=1(a>0,b>0)的一条渐近线方程,则此双曲线的离心率为()

20、已知集合,,则____________。 ------------------------------------- 1-答案:B 本题主要考查函数零点的概念与零点定理的应用,属于容易题。由及零点定理知f(x)的零点在区间(-1,0)上。【温馨提示】函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解。

2-答案:A 解析已在路上飞奔,马上就到!

3-答案:B 解析已在路上飞奔,马上就到!

4-答案:B 由,再由得:

;故应选择B选项。 5-答案:B 解析已在路上飞奔,马上就到! -------------------------------------

1-答案:(1)∴,它关于直线对称,∴ ∴ ∵ (2)由(1)知即的值域为

解析已在路上飞奔,马上就到!

2-答案: 解析已在路上飞奔,马上就到! 3-答案:未获取到答案 未获取到解析

4-答案:(1)因为边所在直线的方程为,且与垂直,所以直线的斜率为.又因为点在直线上,所以边所在直线的方程为.即.

(2)由解得点的坐标为,因为矩形两条对角线的交点为.所以为矩形外接圆的圆心.又.从而矩形外接圆的方程为. (3)因为动圆过点,所以是该圆的半径,又因为动圆与圆外切,所以,即.故点的轨迹是以为焦点,实轴长为的双曲线的左支.因为实半轴长,半焦距.所以虚半轴长.从而动圆的圆心的轨迹方程为. 解析已在路上飞奔,马上就到!

5-答案:见解析 未获取到解析 -------------------------------------

1-答案:略 这则材料围绕着如何看待新旧文化和中外文化的传承和碰撞,四个人的看法各自代表了一种观点和认识,所以,材料的立意应该以“文化的继承、创新、包容、拒绝和新生”为主,审题难度不大,四个人的观点中选择哪一个都可以,但必须是有所选择,方向明确,主题鲜明。

2-答案:略 这则材料需要考生首先明确写作身份,是要以骑行者的身份来谈对禁行超标电动车这件事的看法,还是要以管理部门代言人的身份来谈对这件事的看法,不能两种角度都谈。但无论你选择哪一方,都因首先说明你支持或不支持的原因,然后分析其利弊,需要注意的是在分析利弊的时候不能只站在个人的角度,而应从整体出发,从对整个市区影响的角度去看待问题。论证时要有理有据,论据要真实,不能只是空发牢骚。所以可以这样构思:确定身份,明确看法,说出原因,分析利弊,提出解决问题的办法。只要能自圆其说即可。

3-答案:略 这则材料需要考生首先明确写作身份,是要以骑行者的身份来谈对禁行超标电动车这件事的看法,还是要以管理部门代言人的身份来谈对这件事的看法,不能两种角度都谈。但无论你选择哪一方,都因首先说明你支持或不支持的原因,然后分析其利弊,需要注意的是在分析利弊的时候不能只站在个人的角度,而应从整体出发,从对整个市区影响的角度去看待问题。论证时要有理有据,论据要真实,不能只是空发牢骚。所以可以这样构思:确定身份,明确看法,说出原因,分析利弊,提出解决问题的办法。只要能自圆其说即可。

4-答案:略 这则材料需要考生首先明确写作身份,是要以骑行者的身份来谈对禁行超标电动车这件事的看法,还是要以管理部门代言人的身份来谈对这件事的看法,不能两种角度都谈。但无论你选择哪一方,都因首先说明你支持或不支持的原因,然后分析其利弊,需要注意的是在分析利弊的时候不能只站在个人的角度,而应从整体出发,从对整个市区影响的角度去看待问题。论证时要有理有据,论据要真实,不能只是空发牢骚。所以可以这样构思:确定身份,明确看法,说出原因,分析利弊,提出解决问题的办法。只要能自圆其说即可。

5-答案:略 这则材料需要考生首先明确写作身份,是要以骑行者的身份来谈对禁行超标电动车这件事的看法,还是要以管理部门代言人的身份来谈对这件事的看法,不能两种角度都谈。但无论你选择哪一方,都因首先说明你支持或不支持的原因,然后分析其利弊,需要注意的是在分析利弊的时候不能只站在个人的角度,而应从整体出发,从对整个市区影响的角度去看待问题。论证时要有理有据,论据要真实,不能只是空发牢骚。所以可以这样构思:确定身份,明确看法,说出原因,分析利弊,提出解决问题的办法。只要能自圆其说即可。 -------------------------------------

1-答案: 略

2-答案:或. 解析已在路上飞奔,马上就到!

3-答案:0 略

4-答案:2 由题意,∴.

5-答案: 略

相关文档
最新文档