液压缓冲器的选型

液压缓冲器的选型
液压缓冲器的选型

液压缓冲器的选型㈠应用数据

F终值为

㈡撞击模式

①单纯的水平撞击

②气缸推力下的水平撞击

③自由落体撞击

④气缸推力下向下的撞击

①单纯的水平撞击(无推力)

步骤1:计算动能E1

计算 数值 E1单位

结果 4.0J(N.m)

步骤2:计算做工能量E2

计算 数值 E2

单位结果

0.0

J(N.m)

步骤3:计算每次做工能量E

计算 数值 E 单位结果

4.0

J(N.m)

步骤4:计算每小时吸收能量E T

计算 数值 E T 单位结果

400.0

J(N.m)

步骤5:有效重量W E

计算 数值 W E 单位结果

0.0

K g

4.0J 400.0J 0.0

kg

步骤6:选型 表如下:

的缓冲器

小时吸收能量大于

有效重量

根据计算结果应选单次吸收能量大于

②气缸推力下的水平撞击

步骤1:计算动能E1

计算 数值 E1单位

结果 4.0J(N.m)

步骤2:计算做工能量E2

计算 数值 E2单位

L的暂定值0.01m

结果0.5J(N.m)步骤3:计算每次做工能量E

计算 数值 E单位

结果 4.5J(N.m)步骤4:计算每小时吸收能量E T

计算 数值 E T单位

结果447.1J(N.m)步骤5:有效重量W E

计算 数值 W E单位

结果 2.2K g

次吸收能量大于 4.0J的缓冲器根据计算结果应选

小时吸收能量大于447.1J

有效重量 2.2kg

③自由落体撞击

步骤1:计算动能E1

计算 数值 E1单位

结果9.8J(N.m)

步骤2:计算做工能量E2

计算 数值 E2单位

结果0.2J(N.m)

步骤3:计算每次做工能量E

计算 数值 E单位

结果10.0J(N.m)

步骤4:计算每小时吸收能量E T

计算 数值 E T

单位

结果

999.6

J(N.m)

步骤5:根据能量守恒定律求速度V

计算 数值 V 单位结果

3.1

m /s

步骤6:有效重量W E

计算 数值 W E 单位结果

2.0K g

10.0J 999.6J 2.0

kg

④气缸推力下向下的撞击

步骤1:计算动能E1

根据计算结果应选单次吸收能量大于

的缓冲器

小时吸收能量大于

有效重量

计算 数值 E1单位

结果 4.0J(N.m)步骤2:计算做工能量E2

计算 数值 E2单位

结果0.7J(N.m)步骤3:计算每次做工能量E

计算 数值 E单位

结果 4.7J(N.m)步骤4:计算每小时吸收能量E T

计算 数值 E T单位

结果466.7J(N.m)步骤5:有效重量W E

计算 数值 W E 单位

结果

2.3K g

4.7J 466.7J 2.3

kg

单次吸收能量大于

小时吸收能量大于

有效重量

根据计算结果应选的缓冲器

真空泵的选型及常用计算公式

真空泵选型 真空泵的作用就是从真空室中抽除气体分子,降低真空室内的气体压力,使之达到要求的真空度。概括地讲从大气到极高真空有一个很大的范围,至今为止还没有一种真空系统能覆盖这个范围。因此,为达到不同产品的工艺指标、工作效率和设备工作寿命要求、不同的真空区段需要选择不同的真空系统配置。为达到最佳配置,选择真空系统时,应考虑下述各点: 确定工作真空范围: ----首先必须检查确定每一种工艺要求的真空度。因为每一种工艺都有其适应的真空度范围,必须认真研究确定之。 确定极限真空度 ----在确定了工艺要求的真空度的基础上检查真空泵系统的极限真空度,因为系统的极限真空度决定了系统的最佳工作真空度。一般来讲,系统的极限真空度比系统的工作真空度低20%,比前级泵的极限真空度低50%。 被抽气体种类与抽气量 检查确定工艺要求的抽气种类与抽气量。因为如果被抽气体种类与泵内液体发生反应,泵系统将被污染。同时必须考虑确定合适的排气时间与抽气过程中产生的气体量。 真空容积 检查确定达到要求的真空度所需要的时间、真空管道的流阻与泄漏。 考虑达到要求真空度后在一定工艺要求条件下维持真空需要的抽气速率。 主真空泵的选择计算 S=2.303V/tLog(P1/P2) 其中: S为真空泵抽气速率(L/s) V为真空室容积(L) t为达到要求真空度所需时间(s)

P1为初始真空度(Torr) P2为要求真空度(Torr) 例如: V=500L t=30s P1=760Torr P2=50Torr 则: S=2.303V/t Log(P1/P2) =2.303x500/30xLog(760/50) =35.4L/s 当然上式只是理论计算结果,还有若干变量因素未考虑进去,如管道流阻、泄漏、过滤器的流阻、被抽气体温度等。实际上还应当将安全系数考虑在内。目前工业中应用最多的是水环式真空泵和旋片式真空泵等 一般的要求是: 1、真空度、真空容积、主要介质、温度、主要容积类设备。 2、真空流入介质及流量、压力、温度、规律。 3、抽气量、抽出气体介质、温度。 4、真空设备的占地面积、自动化程度、真空管道规格 选用真空泵时需要注意事项: 1、真空泵的工作压强应该满足真空设备的极限真空及工作压强要求。如:真空镀膜要求1×10-5mmHg的真空度,选用的真空泵的真空度至少要5×10-6mmHg。通常选择泵的真空度要高于真空设备真空度半个到一个数量级。 2、正确地选择真空泵的工作点。每种泵都有一定的工作压强范围,如:扩散泵为10-3~10-7mmHg,在这样宽压强范围内,泵的抽速随压强而变化,其稳定的工作压强范围为5×10-4~5×10-6mmHg。因而,泵的工作点应该选在这个范围之内,而不能让它在10-8mmHg下长期工作。又如钛升华泵可以在10-2mmHg下工作,但其工作压强应小于1×10-5mmHg为好。

MT∕T 556-1996 液压支架设计规范

中华人民共和国煤炭行业标准 MT/T 5 5 6— 1 996 液压支架设计规范 1主题内容与适用范围 本标准规定了液压支架设计中应遵守的总则,确定主要参数的依据,应具备的安全性和适应性以及对计算的要求。 本标准适用于矿用液压支架(以下简称支架)的设计,不适用于支撑式支架。 2引用标准 GB 3452, 1液压气动用()形橡胶密封圈尺寸系列及公差 GB 3452.3液压气动用0形橡胶密封圈沟槽尺寸和设计计算准则 GH/T 13306 标牌 MT/T 94液压支架立柱、千斤顶内径及活塞杆外径系列 MT 97液压支架千斤顶技术条件 MT 98矿用液压支架胶管总成及中间接头组件型式试验规范 MT/T 154.5液压支架产品型号编制和管理方法 MT/T 169液压支架型式及参数 MT 312液压支架通用技术条件 MT 313液压支架立柱技术条件 MT 419矿用液压支架用阀 MT 554缓倾斜煤层回采工作面顶板分类 3总则 3.1型号编制 支架型号编制应符合MT/T 154. 5的规定。 3.2主要参数 支架的主要参数应符合MT/T 169的规定。 3’3图样标2 图样必须填明阶段标记。 3,4重心位置 总图样上应标明最小高度时的重心位置. 3- 5设计的技术文件 设计技术文件必需有设计说明书、产品使用维护说明书。 3.6总图样技术特征表中的内容 总图样技术特征表中必须标明下列内容:架型、高度、使用高度、中心距、宽度,额定工作阻力、初撑力、支护强度、对底板比压、通风断面(最大高度和最小高度的)、控制原理、操作位置、重量、泵站的流量和压丿J、立柱特征(型式、缸径、活塞杆径、额定工作阻力、初撑力)、千斤顶特征(型式、

为高速ADC选择最佳的缓冲放大器

为高速ADC选择最佳的缓冲放大器 现代通信系统创新设计主要表现在直接变频和高中频架构,全数字接收机的设计目标要求模数转换器(ADC)以更高的采样率提供更高的分辨率(扩大系统的动态范围)。在新兴的3G 和4G数字无线通信系统中,无杂散动态范围(SFDR)和线性度都需要高性能的ADC来保证。幸运的是,在接收信号链路中,ADC的前级增益电路—缓冲放大器的性能在最近几年得到了极大提高,有助于ADC确保满足现代无线通信系统的带宽和失真要求。但是,缓冲放大器和ADC之间的匹配要求非常严格,深刻理解缓冲放大器对ADC性能指标的影响非常重要。 长期以来,得到无线通信系统设计工程师认可的理想数字接收机的信号链路是:天线、滤波器、低噪声放大器(LNA)、ADC、数字解调和信号处理电路。虽然实现这个理想的数字接收机架构还要若干年的时间,但用于射频前端的ADC的性能越来越高,通信接收机正逐渐消除频率变换电路。从发展趋势看,接收机的一些中间处理级会被逐步消除掉,但ADC前端的缓冲放大级却是接收机中相当重要的环节,它是保证ADC达到预期指标的关键。信号链路的缓冲放大器是包括混频器、滤波器及其它放大器的功能模块的一部分,它必须作为一个独 立器件考察其噪声系数、增益和截点指标。给一个既定的ADC选择合适的缓冲放大器,可以在不牺牲总的无杂散动态范围的前提下改善接收机的灵敏度。 定义动态范围 接收灵敏度是系统动态范围的一部分,它定义为能够使接收机成功恢复发射信息的最小接收信号电平,动态范围的上限是系统可以处理的最大信号,通常由三阶截点(IP3)决定,对应于接收机前端出现过载或饱和而进入限幅状态的工作点。当然,动态范围也需要折衷考虑,较高的灵敏度要求低噪声系数和高增益。然而,具有30dB或者更高增益、噪声系数低于2dB 的LNA其三阶截点会受到限制,常常只有+10到+15dBm。由此可见,高灵敏度的放大器有可能在接收前端信号处理链路中成为阻塞强信号的瓶颈。在接收机的前端加入ADC后,对动态范围的折衷处理变得更加复杂。引入具有数字控制的新型线性放大器作为缓冲器,能够在扩展动态范围的同时提高接收机的整体性能。 为了理解缓冲放大器在高速ADC中的作用,我们需要了解一下每个部件的基本参数及其对接收机性能的影响。传统的接收机前端一般采用多级变频,将来自天线的高频信号解调到中频,然后再作进一步处理。通常,信号链路会将射频输入转换到第一中频的70MHz或140MHz,然后再转换到第二中频的10MHz,甚至进一步转换至第三中频的455kHz。这种多级变频的超外差接收机架构的应用仍然很广泛,但考虑到现代通信系统所面临的降低成本、缩小尺寸的压力,设计工程师不得不尽一切可能去除中间变频电路。长期以来,军品设计工程师也一直都在探索实现全数字化接收机的解决方案,用ADC直接数字化来自天线和滤波器组的射频信号。 近几年,ADC的性能指标得到了飞速提高,但还没有达到可以支持全数字化军用接收机的水平。尽管如此,商用接收机的设计已经从三级或更多级的变频架构简化到一次变频架构。减少频率变换级意味着ADC输入将是较高中频的信号,需要ADC和缓冲放大器具有更宽的频带。对ADC分辨率的要求取决于具体的接收机,对于一些军用设备,例如有源接收机,10位分辨率即可满足要求。对于当前和正在兴起的商用通信接收机,比如3G、4G蜂窝系统,为了降低经过复杂的相位和幅度调制的波形的量化误差,需要ADC具有更高的分辨率。对于多载波接收机,通常需要14位甚至更高的分辨率,同时也要足够的带宽来处理整个中频频带的信号。 如果一个接收机架构已具备高速、高分辨率ADC,那么关系到灵敏度和动态范围的其它关键参数是什么呢?ADC常用SFDR作为其关键指标,SFDR定义为输入信号的基波幅度与指定

冷却塔、冷却水泵及冷冻水泵选型计算方法

冷却塔及冷却水泵选型计算方法: 1冷却塔冷却水量 方法一: 冷却水量=860×Q(kW)×T/5000=559 m3/h T------系数,离心式冷水机组取1.3,吸收式制冷机组取2.5 5000-----每吨水带走的热量 方法二: 冷却水量: G= 3.6 Q/C (tw1-tw2)=559 m3/h Q—冷却塔冷却热量,kW,对电制冷机取制冷负荷1.35倍左右,吸收式取2.5倍左右。C—水的比热(4.19kJ/kg.k) tw1-tw2—冷却塔进出口温差,一般取5℃;压缩式制冷机,取4~5℃;吸收式制冷机,取6~9℃ 冷却塔吨位=559×1.1=614 m3/h 2冷却水泵扬程 冷却水泵所需扬程 H p=(h f+h d)+h m+h s+h o 式中h f,h d——冷却水管路系统总的沿程阻力和局部阻力,mH2O; h m——冷凝器阻力,mH2O;

h s——冷却塔中水的提升高度(从冷却盛水池到喷嘴的高差),mH2O;(开式系统有,闭式系统没哟此项) h o——冷却塔喷嘴喷雾压力,mH2O,约等于5 mH2O。 H p=(h f+h d)+h m+h s+h o=0.02×50+5.8+19.8+5=31.6mH2O 冷却水泵所需扬程=31.6×1.1=34.8 mH2O 冷却水泵流量=262×2×1.1=576 m3/h 3冷冻水泵扬程 冷冻水泵所需扬程 H p=(h f+h d)+h m+h s+h o 式中h f,h d——冷冻水管路系统总的沿程阻力和局部阻力,mH2O ; h m——蒸发器阻力,mH2O ; h s——空调器末端阻力,mH2O ; h o——二通调节阀阻力,mH2O 。 H p=(h f+h d)+h m+h s+h o=0.02×150+5+2.78+4=14.78mH2O 冷却水泵所需扬程=14.78×1.1=16.3 mH2O

采煤工作面液压支架的选型

液压支架的选型 一、确定架型 按顶板分类方案对液压支架的架型进行初选。 根据煤炭部(81)煤科字第429号文件关于《缓倾斜煤层工作面顶板分类》方案,按稳定性不同直接顶分为四类,按来压强度不同将老顶分为四级,并分别提出相应的架型、支护强度和顶板管理方法。 1、顶板分类(级) 直接顶分为四类,见〔Ⅰ〕。 老顶分为四级,见〔Ⅰ〕。 2、架型与支护强度初选 正确选择支架的架型,对于提高综采工作面的产量和效率,充分发挥综采设计的效能,实现高产高效,是一个很重要的因素。在具体选择架型时,首先要考虑煤层的顶板条件,〔Ⅰ〕表9-1就是根据国内外液压支架的使用经验,提出了各种顶板条件下适用的架型。它是选择支架架型的主要依据。 对于不同类(级)顶板,其架型、支护强度的选择见〔Ⅰ〕。 液压支架架型的选择除了取决于顶板条件之外,还应考虑以下因素,并结合各类支架的不同性能和特点,最终选择一种较为合理的架型。 ⑴厚度 煤层厚度不但直接影响到支架的高度和工作阻力,而且还影响到支架的稳定性。当煤层厚度大于2.5~2.8m(软煤取下限,硬煤取上限)时,选用抗水平推力强且带护帮装置的掩护式或支撑掩护式支架。当煤层厚度变化较大时,应选用调高范围大的支架。 ⑵煤层倾角 煤层倾角主要影响支架的稳定性,倾角大时易发生倾倒、下滑等现象。当煤层倾角大于 00 18时,应同时具有防滑防倒装置。 10~15时,应设防滑和调架装置,当倾角超过0 ⑶底板性质 底板承受支架的全部载荷,对支架的底座影响较大,底板的软硬和平整性,基本上决定 了支架底座的结构和支承面积。选型时,要验算底座对底板的接触比压,其值要小于底板的允许比压(对于砂岩底板,允许比压为1.96~2.16Mpa,软底板为0.98Mpa左右)。 ⑷瓦斯涌出量 对于瓦斯出量大的工作面,支架的通风断面应满足通风的要求,选型时要进行验算。 ⑸地质构造 地质构造十分复杂,煤层厚度变化又较大,顶板允许暴露面积和时间分别在5~82 m和20m in以下时,暂不宜采用液压支架。 二、主要参数计算和支架型号的确定 1、支护强度(工作阻力) 支架的结构尺寸确定之后,与支架重量和成本关系最大的参数是支架的支护强度。从理论上分析,合理的支护强度应正好与顶板压力相平衡。支护强度过大,不仅增加支架重量和设备投资,而且给搬运、安装带来困难;过小则会造成顶板过早下沉、离层、冒落,使顶板破碎,造成顶板维护困难。因此支护强度的大小应取决于工作面采场矿压的大小。但由于目前对采场矿压的大小还不能进行准确的定量计算,这样目前主要以经验法或实测数据,来确

液压支架选型设计

辽宁工程技术大学 《采掘机械》综合训练题目:液压支架选型设计 班级:矿电11- 姓名: 指导教师:师建国 完成日期:2014/12/29

综合训练任务书 一、设计任务及要求 (1) 根据所给原始数据进行液压支架选型的详细计算; (2) .编写综采工作面液压支架选型设计说明书; (3) 采煤设备与工作面综采设备配套关系图 设计原始数据及条件: (1) 设计图纸(综采工作面设备配套关系图) (2) 设计说明书 三、进度安排(参考) (1) 熟悉设计任务,收集相关资料 (2) 拟定设计方案 (3) 绘制图纸 (4) 编写说明书 (5) 整理及答辩 四、成绩评定 成绩: 教师 日期

目录 1液压支架选型的基本原则...................... - 1 - 2确定液压支架架型............................ - 1 - 2.1顶板分类(级)........................... - 1 - 2.2架型与支护强度初选....................... - 2 - 3主要参数计算和支架型号的确定 ................ - 2 - 3.1支架高度................................. - 2 - 3.2 支架主要结构确定 . (3) 3.2.1顶梁长度 (3) 3.2.2底座的宽度............................ - 5 - 3.2.3支架中心距确定........................ - 5 - 3.2.4支架移驾步距确定...................... - 5 - 3.3支护强度和工作阻力....................... - 5 - 3.4初撑力 (7) 3.5移架阻力及推溜力 (7) 3.6确定支架类型 (7) 4性能验算.................................... - 8 - 4.1顶板支护形式 (8) 4.2底板比压 (8) 4.3工作阻力(支护强度)和初撑力的验算 (9) 4.4顶板覆盖率 (9)

缓冲区分析

1、空间缓冲区分析。 (1)为点状、线状、面状要素建立缓冲区。 1)打开菜单“自定义”下的“自定义模式”,在对话框中选择“命令”,在“类别” 中选择“工具”,在右边的框中选择“缓冲向导”(如图 1 所示),拖动其放置 到工具栏上的空处。 图1提出“缓冲向导” 2)利用选择工具选择要进行分析的点状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息,如图2及图3所示。 图2 线状缓冲区信息设置1

图3线状缓冲区信息设置2 3)利用选择工具选择要进行分析的线状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息。 4)利用选择工具选择要进行分析的面状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息,如图4所示。 图4 面状缓冲区信息设置 2、学校选址。 要求: (1) 新学校选址需注意如下几点: 1)新学校应位于地势较平坦处; 2)新学校的建立应结合现有土地利用类型综合考虑,选择成本不高的区域; 3)新学校应该与现有娱乐设施相配套,学校距离这些设施愈近愈好; 4)新学校应避开现有学校,合理分布。 (2) 各数据层权重比为:距离娱乐设施占0.5,距离学校占0.25,土地利用类型和地势 位置因素各占0.125。 (3) 实现过程运用ArcGIS的扩展模块(Extension)中的空间分析(Spatial Analyst)部 分功能,具体包括:坡度计算、直线距离制图功能、重分类及栅格计算器等功能完 成。 (4) 最后必须给出适合新建学校的适宜地区图,并对其简要进行分析。

具体操作: (1)打开加载地图文档对话框,选择E:\Chp8\Ex1\school.mxd。 (2)从DEM 数据提取坡度数据集: 打开工具箱→“Spatial Analyst 工具”→“表面分析”→“坡度”工具;在打开对话框中设置,如图5所示;生成坡度图,如图6所示。 图5 “坡度”对话框设置 图6 坡度图 (3)从娱乐场所数据“Rec_sites”提取娱乐场所欧氏距离数据集: 打开工具箱→“Spatial Analyst 工具”→“距离分析”→“欧氏距离”工具;在打开对话框中设置,如图7所示;生成欧氏距离数据集,如图8所示。

缓冲器疑难解答

缓冲器疑难解答 一、机械行业中的缓冲器指什么? 答:机械行业中的缓冲器是指 二、缓冲器最普遍的名称是什么? 减振器、缓冲垫、阻尼器、缓冲器和隔振器 三、缓冲器的主要类型? 1、实体式缓冲器:这类缓冲器主要有木块式、橡胶和聚氨脂塑料缓冲器。 2、弹簧缓冲器 3、液压缓冲器 4、阻尼缓冲器 四、缓冲器的应用领域? 缓冲器主要应用于冶金、起重、铁路、港口、电梯、汽车等行业 五、缓冲器选择标准 实际应用中主要根据缓冲容量、缓冲力和缓冲行程三个要素来具体选择机械适用的缓冲器类别 六、缓冲器产品业内排名以及生厂商优势 目前国内主要的缓冲设备生产厂家有沈阳祺盛机械有限公司,该公司是生产各类缓冲器的综合性的股份有限公司,其生产工艺先进,检测设备齐全,产品质量可靠,售后服务完善,深受好评。北京金自天和以及捷瑞特是生产弹性胶泥的主要厂家,另有辽宁清原缓冲器有限公司。 七、聚氨酯缓冲器的优势 1. 机器的长寿命化–使用缓冲器能够大大减少对机器所造成的冲击和震动,避免机械损坏,减少因机器故障导致的停工时间、维修费,延长机器的使用寿命。 2. 运转速度高速化–由于缓冲器可以控制各种各样的运动,使运动的物体平稳停下来。因此,机器可以在高速情况下作业,这样就可望提高生产率。 3. 生产线质量提高–由于缓冲器可以清除对机器造成负面影响的因素,例如噪音、振动、破坏性的冲击,产品的质量也自然能够得到提高,同时还有助于正确的定位。 4. 机械运转的更安全化–缓冲器在保护机械设备的同时,可以实现操纵者可预见的、可靠的减速。另外,如果有必要可以将缓冲器设计成符合国际安全标准的设备。 5. 提高产品竞争能力的附加价值–通过使用缓冲器,机器设备将会变得对用户有更大的价值,因为生产力提高,设备使用寿命延长,维修费用降低,并且运转安全可靠。 八、液压压缓冲器与其他类型缓冲器区别? 油压缓冲器和其他缓冲器装置如弹簧、PU胶、阻尼器等相较,在停止同一运动工作件所需要的作用力方面会因缓冲装置的不同,而有所不同。 弹簧、PU胶或其他橡胶类的材料只消耗一小部份的动能,而将大部份的能量以弹性位能的形式储存,因此在行程的末端,无可避免地会产生非常大的抗力及反弹力。而阻尼器如果缺乏精心设计的油孔系统,也可能会在缓冲行程的开始时产生很大的冲击力。而液压缓冲器就

支撑掩护式液压支架设计毕业论文

支撑掩护式液压支架设计毕业论文 前言 综合机械化采煤是煤矿技术进步的标志,是煤矿增加产量、提高劳动效率、增加经济效益的重要手段。实践证明大力发展综合机械化采煤,研制和使用液压支架是十分关键的。我国液压支架经过30多年的发展,取得显著的成果,至今已能成批制造两柱掩护式和四柱支撑掩护式液压支架,这些系列化液压支架一般用于缓倾斜中厚煤层及厚煤层分层开采。 我国煤矿中使用的支架类型很多,按照支架采煤工作面安装位置来划分有端头液压支架和中间液压支架。端头液压支架简称端头支架,专门安装在每个采煤工作面的两端。中间液压支架是安装在处工作面断头以外的采煤工作面上所有的位置的液压支架。 目前使用的液压支架分为三类。即:支撑式液压支架、掩护式液压支架、支撑掩护式液压支架。从架型的结构特点来看,由于直接类别和老顶级别的不同,所以为了在使用中合理地选择架型,要对支架的支撑力承载力的关系进行分析使支架能适应顶板载荷的要求。 此次设计是对大学所学的知识的综合应用,通过设计使所学知识融会贯通,形成较为清晰的知识构架,强化设计过程的规性以及对计算机的使用的熟练性。通过此次设计,能够更好的梳理所学的知识,基本掌握机械设计制造及其自动化专业在机械设计方面的工作方法,同时提高独立为完成工作的能力,为以后的工作打下坚实的基础。

第 2页共 2页

第1章液压支架的概述 1.1液压支架的组成和用途 1.1.1液压支架的组成 液压支架由顶梁、底座、掩护梁、立柱、推移装置、操作控制系统等主要部分组成。 1.1.2液压支架的用途 在采煤工作面的煤炭生产过程中,为了防止顶板冒落,维持一定的工作空间,保证工人安全和各项工作正常进行,必须对顶板进行支护,而液压支架是以高压液体作为动力由液压元件与金属构件组成的至呼和控制顶板的设备,它能实现支撑、切顶、移架和推移输送机等一整套工序。实践表明液压支架具有支护性能好、强度高、移架速度快、安全可靠等优点。液压支架可与弯曲输送机和采煤机组合机械化采煤设备,它的应用对增加采煤工作面产量、提高劳动生产率、降低成本、减轻工人劳动和保证安全生产是不可缺少的有效措施,因此液压支架是技术上先进、经济上合理、安全上可靠、是实现采煤综合机械化和自动化不可缺少的主要设备。 1.2液压支架的工作原理 液压支架在工作过程,必须具备升、降、推、移四个基本动作,这些动作是利用泵站提供的高压乳化液通过工作性质不同的几个液压缸来完成的,如图1-1所示。 升柱:当需要液压支架上升支护顶板时,高压乳化液进入立柱的下活塞腔,另一腔回液,推动活塞上升,是与活塞杆相连的顶梁紧紧接触顶板。

两柱掩护式液压支架平衡千斤顶的选择原则及计算过程

两柱掩护式液压支架平衡千斤顶的选择原则及计算过程 李雪伟 (平顶山煤矿机械有限责任公司,平顶山 467001) 摘要:平衡千斤顶是两柱掩护式液压支架的重要组成部分,它的作用是调节支架顶梁合力、合力作用点的位置及顶梁的载荷分布,其缸径和上、下腔安全阀卸载压力的选择至关重要,一方面要保证顶梁前端能承受足够大的载荷而又要保证不会出现支架失稳,另一方面要保证顶梁后端和掩护梁能承受一定厚度的岩石重量,针对这两个方面的要求,本文提供了其具体的推导过程、计算方法和选择原则。 关键词:液压支架;平衡千斤顶;推导过程;计算方法;选择原则 Selection Principle and Calculation Method of Stabilizing Cylinder for Two-leg Hydraulic Shield Li Xuewei (Pingdingshan Coal Mine Machinery Co.,Ltd., Pingdingshan 467001 China) Abstract:Stabilizing cylinder is a main part of two-leg hydraulic shield. It is used to adjust the point of the resultant force that the floor applies to the canopy and the loading point on the canopy. It is very important to choose the right diameter of the cylinder and right pressure of the yield valve in both the upper and the lower cylinder chambers to make sure not only that the front part of the canopy can stand large loading and the roof support stands firm but also that the hinder part of the canopy and the gob shield can stand the weight of certain rock. Based on those two requirements, this thesis provides the specific derivation process, calculation methods and selection principal. Key words: hydraulic roof support; stabilizing cylinder; derivation process; calculation methods; selection principal 0序言 两柱掩护式液压支架的典型结构如下图1,其中平衡千斤顶起着至关重要的作用,它铰接着顶梁和掩护梁,使支架构成稳定的结构,通过它可以调节顶梁的倾角,使顶梁成水平或者需要的角度。此外,平衡千斤顶还设有双向锁和安全阀,随着顶梁顶板载荷的变化,使平衡千斤顶呈拉力或者压力状态,如果载荷过大,安全阀还可以通过卸载来调整顶梁的角度,从而也调整了载荷分布,避免进一步损坏结构件。 图1 两柱掩护式支架典型结构 1 护帮 2 顶梁 3立柱 4平衡千斤顶5 掩护梁 6前连杆 7后连杆 8 底座 平衡千斤顶缸径与上下腔安全阀压力的选择是否合适,直接关系到顶梁的接顶和切顶能力,甚至关系到支架的稳定性,如果选择的不合适,可能会引起支架倾倒,造成事故。 1、平衡千斤顶推力的计算 当顶梁前端承受一个载荷Fx,并不断加大时,支架可能处于以下三种状态: 1)、平衡千斤顶先卸载,顶梁前端向下旋转; 2)、立柱先卸载,顶梁前端向下旋转; 3)、支架向前倾倒。 前两种状态下,仅仅顶梁发生转动,不会引起较大的问题,第三种状态情况下,支架容易发生倾倒,可能会引发事故,因此,

计量泵的选型参数

计量泵的选型参数 恰当地选择计量泵都需要哪些信息? 1. 被计量液体的流量。 2. 被计量液体的主要特性,例如化学腐蚀性、黏度和比重等。 3. 系统的背压。 4. 合适的吸升高度。 5. 需要的其他选项,如模拟量控制、脉冲量控制、流量监视和定时器。 电磁驱动计量泵有哪些主要优势? 电磁驱动计量泵只有一个运动部件—电枢轴。通常来讲,运动部件越少则计量泵工作越可靠。计量泵非常适合于低流量、低压力工作场合,并且在供电电压波动时有良好的补偿作用。 与固定频率、改变冲程长度的计量泵相比较,固定冲程长度、改变频率的计量泵有哪些优势? 通过校正,每一个冲程的投加量是已知的。因此总的投加量可以通过计算得出(投加量=每冲程投加量*频率)。总投加量与频率成线性关系(50 % 频率 = 50 % 投加量) 。通过外部的脉冲或模拟量控制,投加量可以在一秒钟之内从最小调到最大。另外它比电机驱动的冲程长度调节成本要低的多。 如何使用计量泵的性能曲线图? 1. 找到与所选用的计量泵相应的性能曲线图。 2. 在下面的图表中标示出当前的背压。 3. 确定修正因数,取以bar为单位的背压值,向上延伸至曲线,在交叉点垂直向左读取修正因数值。 4. 用需要的投加量值除以修正因数值,得出以 ml/min.或 L/h为单位的值。 5. 把计算结果放在投加量刻度的中间。 6. 当把这个值放在投加量刻度上时,可以使用一把直尺,查找出冲程长度设定和冲程频率设定。

计量泵的基本工作原理 众所周知,计量泵主要由动力驱动、流体输送和调节控制三部分组成。动力驱动装置经由机械联杆系统带动流体输送隔膜实现往复运动: 隔膜(活塞)于冲程的前半周将被输送流体吸入并于后半周将流体排出泵头;所以,改变冲程的往复运动频率或每一次往复运动的冲程长度即可达至调节流体输送量之目的。精密的加工精度保证了每次泵出量进而实现被输送介质的精密计量。 因其动力驱动和流体输送方式的不同,计量泵可以大致划分成柱塞式和隔膜式两大种类。 1、柱塞式计量泵 主要有普通有阀泵和无阀泵两种。柱塞式计量泵因其结构简单和耐高温高压等优点而被广泛应用于石油化工领域。针对高粘度介质在高压力工况下普通柱塞泵的不足,一种无阀旋转柱塞式计量泵受到愈来愈多的重视,被广泛应用于糖浆、巧克力和石油添加剂等高粘度介质的计量添加。因被计量介质和泵内润滑剂之间无法实现完全隔离这一结构性缺点,柱塞式计量泵在高防污染要求流体计量应用中受到诸多限制。 2、隔膜式计量泵 顾名思义,隔膜式计量泵利用特殊设计加工的柔性隔膜取代活塞,在驱动机构作用下实现往复运动,完成吸入-排出过程。由于隔膜的隔离作用,在结构上真正实现了被计量流体与驱动润滑机构之间的隔离。高科技的结构设计和新型材料的选用已经大大提高了隔膜的使用寿命,加上复合材料优异的耐腐蚀特性,隔膜式计量泵目前已经成为流体计量应用中的主力泵型。在隔膜式计量泵家族成员里,液力驱动式隔膜泵由于采用了油均匀地驱动隔膜,克服了机械直接驱动方式下泵隔膜受力过分集中的缺点,提升了隔膜寿命和工作压力上限。为了克服单隔膜式计量泵可能出现的因隔膜破损而造成的工作故障,有的计量泵配备了隔膜破损,实现隔膜破裂时自动连锁保护;具有双隔膜结构泵头的计量进一步提高了其安全性,适合对安全保护特别敏感的应用场合。 作为隔膜式计量泵的一种,电磁驱动式计量泵以电磁铁产生脉动驱动力,省却了电机和变速机构,使得系统小巧紧凑,是小量程低压计量泵的重要分支。 计量泵配件的基本知识

采煤工作面液压支架的选型

辽宁工程技术大学 《采掘机械》综合训练(二)题目:液压支架选型设计 班级:矿电11-3 姓名:李广达 指导教师:师建国 完成日期:2014.12.24

综合训练任务书 一、设计任务及要求 (1) 根据所给原始数据进行液压支架选型的详细计算; (2) .编写综采工作面液压支架选型设计说明书; (3) 工作面液压支护设备配套关系图 设计原始数据及条件: 二、上交材料 (1) 设计图纸(综采工作面设备配套关系图) (2) 设计说明书 三、进度安排(参考) (1) 熟悉设计任务,收集相关资料 (2) 拟定设计方案 (3) 绘制图纸 (4) 编写说明书 (5) 整理及答辩 四、成绩评定 成绩: 教师 日期

目录 1 确定液压支架的选型.............................. 错误!未定义书签。 1.1确定架型................................... 错误!未定义书签。 1.1.1顶板分类(级) ....................... 错误!未定义书签。 1.1.2架型与支护强度初选 ................... 错误!未定义书签。2主要参数计算和支架型号的确定 .................... 错误!未定义书签。 2.1支架高度................................... 错误!未定义书签。 2.2顶梁长度................................... 错误!未定义书签。 2.3 底座的宽度 ................................ 错误!未定义书签。 2.4支架中心距................................. 错误!未定义书签。 2.5支架移架步距............................... 错误!未定义书签。 2.6支护强度和工作阻力......................... 错误!未定义书签。 2.7初撑力..................................... 错误!未定义书签。 2.8移架阻力及推溜力........................... 错误!未定义书签。 2.9确定支架型号............................... 错误!未定义书签。 3、性能验算....................................... 错误!未定义书签。 3.1底板比压校验............................... 错误!未定义书签。 3.2工作阻力(支护强度)和初撑力的验算......... 错误!未定义书签。 3.3顶板覆盖率 (10) 4、支架布置台数................................... 错误!未定义书签。5乳化液泵站的选型 (11) 5.1乳化液泵 (11) 5.1.1 泵站压力的确定 (11) 5.1.2泵站流量确定 (13) 5.1.3选择乳化液泵 (14) 5.2乳化液泵的电机功率 (15) 5.3乳化液箱容积的验算 (16) 5.4乳化液 (17) 6防护装置 (17) 参考文献 (17)

水泵、管道及喷嘴选型计算公式

一、 喷嘴选型 根据要求查雾的池内样本,选10个除磷喷嘴3/8 TDSS 40027kv-lcv(15°R)。 参数:喷角区分40°,额定压力5MPa ,喷量27.7L/min ,喷嘴右倾15°。 二、水泵选型计算 1、水泵必须的排水能力 Q B =20 16.2242024max ?=Q = 19.44 m 3/h 其中,系统需要最大流量16.2)601027.7(10-3max =???=Q m 3/h 2、水泵扬程估算 H=K (H P +H X )= 1.3 ?(178+2)=234 m 其中:H P :排水高度,160+18=178m ;(16mPa ,扬程取160m ) H X :吸水高度,2m ; K :管路损失系数,竖井K=1.1—1.5,斜井?<20°时K=1.3~1.35,?=20°~30°时6K=1.25~1.3,?>30°时K=1.2~1.25,这里取1.3。 查南方泵业样本,故选轻型立式多级离心泵CDL42-120-2,扬程238m ,流量42 m 3/h ,功率45kW ,转速2900r/min 。 三、管路选择计算 1、管径:泵出水管道86.2290042'900'=?== ππV Q d n mm 泵进水管道121.91 90042'900'=?== ππV Q d n mm 其中: Qn :水泵额定流量; 'V 经济流速m/s ;'Vp =1.5~2.2m/s ;='Vx 0.8~1.5m/s ;'dx ='dp +0.025 m ,这里泵进水管流速为1m/s ,泵出水管流速为1.5m/s 。 查液压手册,选泵出水管道内径89mm ,泵进水管道内径133mm 2、管壁厚计算 泵进水口

液压支架设计

目录 1 引言 (1) 2 立式组合机床液压动力滑台液压系统设计 (2) 2.1 液压系统的设计要求 (2) 2.1.1 液压传动系统的技术要求 (2) 2.1.2 工作环境和工作条件 (2) 2.2 液压系统工况分析,确定主要参数 (2) 2.2.1 分析液压系统工况 (2) 2.2.2 工况分析 (3) 2.2.3 确定液压缸的主要参数 (4) 2.2.4 计算液压缸的输入功率 (5) 2.3 液压传动系统原理图的拟定 (6) 2.3.1 确定液压传动系统的类型 (6) 2.3.2 液压回路的选择 (6) 2.3.3拟定液压传动系统原理图 (7) 2.4 液压元件的选择 (8) 2.4.1 确定液压油泵 (8) 2.4.2 辅件元件的选择 (9) 2.4.3 管件及油箱尺寸 (10) 2.5 液压系统性能验算 (11) 2.5.1 系统压力损失的验算 (11) 2.5.5 系统发热功率Ph (12) 2.5.6 散热面积 (12) 2.6 注意事项 (13) 2.6.1 系统安装前注意事项 (13) 2.6.2 系统安装时注意事项 (13) 3 结论 (14) 致谢 (15) 参考文献 (16)

1 引言 液压传动相对于机械传动来说是一门新技术,液压传动系统由液压泵、阀、执行器及辅助件等液压元件组成。液压传动原理是把液压泵或原动机的机械能转变为液压能,然后通过控制、调节阀和液压执行器,把液压能转变为机械能,以驱动工作机构完成所需求的各种动作。 液压传动技术是机械设备中发展速度最快的技术之一,其发展速度仅次于电子技术,特别是近年来液压与微电子、计算机技术相结合,使液压技术的发展进入了一个新的阶段。从70年代开始,电子学和计算机进入了液压技术领域,并获得了重大的效益。例如在产品设计、制造和测试方面,通过利用计算机辅助设计进行液压系统和元件的设计计算、性能仿真、自动绘图以及数据的采取和处理,可提高液压产品的质量、降低成本并大大提高交货周期。总之,液压技术在与微电子技术紧密结合后,在微计算机或微处理器的控制下,可以进一步拓宽它的应用领域,使得液压传动技术发展成为包括传动、控制、检测在内的一门完整的自动化技术,使它在国民经济的各方面都得到了应用。 本文研究内容是立式组合机床液压动力滑台液压系统设计,该文的设计过程基本上体现了一个典型的液压传动系统的设计思路。液压传动在金属切削机床行业中得到了广泛的应用。如磨床、车床、铣床、钻床以及组合机床等的进给装置多采用液压传动,它可以在较大范围内进行无级调速,有良好的换向性能,并易实现自动工作循环。组合机床是由具有一定功能的通用部件(动力箱、滑台、支承件、运输部件等)和专用部件(夹具、多轴箱)组成的高效率专用机床。 当前,液压技术在实现高压、高速、大功率、高效率、低噪声、经久耐用、高度集成化等各项要求方面都取得了重大进展;在完善比例控制、伺服控制、数字控制等技术上也有许多新成就,采用液压传动的程度现已成为衡量一个国家工业水平的重要标志之一。随着机械制造行业在国民经济中地位的提高,液压技术的应用范围也越来越广泛,对其性能也提出了更高的要求,决定了它在技术方面的革新已迫在眉睫。

排水泵选型计算

一、井下排水 根据矿井开拓方式,本矿设计排水系统为一级排水,投产时在+2375m水平标高井底车场设1 套井底主、副水仓及排水设施,矿井涌水由井底主、副水仓直接排至+2500m地面消防水池。 一)、矿井不同时期井下正常、最大涌水量 根据《陇南市武都区龙沟补充勘查地质报告》预测计算,矿井最大涌水量4.5m3/h,正常值涌水量3mZh。涌水PH< 5,管路敷设斜架倾角约25。,排水垂高129m (地面消防水池+2500m水泵标高+2375m再加上井底车场至水仓最低水位距离4m)。 二)、设计依据 1)矿井正常涌水量:Q B=3m3/h ; 2)矿井最大涌水量:Q max=4.5m3/h;3)排高:129m。 三)、选型计算 1、所需水泵最小流量 Q1 = 24Q B/20 = 24 X 3/20 =3.6 ( m3/h ) 2、所需水泵最大流量 Q2 = 24Q ma)/20 = 24 X 4.5/20 =5.4 (nVh ) 3、排水总高度 h= 排水高度+吸水高度=125+4=129(m) 4、水泵所需扬程的估算。 HB=Hc/n g(取0. 77s0. 74)=129 /0.77s0.74 =i68s 175m 5、管路阻力计算 管路阻力按下式计算: Mt+HA入备嚼(rn)

Hat—排水管路扬程损失m Hst—吸水管路扬程损失m 入一水与管壁摩擦的阻力系数,查表D=108mr钢管0.038 : L i—管路计算长度,等于实际长度加上底阀、异形管、逆止阀、闸阀及其它部分补充损失的等值长度m计算长度取值500m D—管道公称直径m;取0.1m; V d—水流速度,按经济流速取2.0m。 将各参数代入公式,经计算H忒十H苫t=38m管路淤积后增加的阻力系数取 1.7,增加的阻力为65m 6、水泵扬程 淤积前:H=129+38=167m; 淤积后:H=129+65=194m; (四八排水泵选择 选择MD12-5(X 5型矿用多级离心泵,其流量为12nVh,扬程为250m配用 防爆电机功率30kW 进出口50mm效率46.5%。 (五八排水泵的工作、备用、检修台数 选择MD12-5(X 5型矿用多级离心泵3台,其中1台工作、1台备用、1台检修。(六八排水能力、电机功率和吸上真空高度校验 按管路淤积后工况参数校验排水能力,按管路淤积前工况参数校验电机功

冷冻水泵选型方法详解

冷冻水泵选型方法详解(附计算步骤) 冷冻水泵选型最重要的步骤是对其扬程和流量的确定,一般来说,冷冻水泵选型大多是清水离心泵。下面,世界泵阀网为大家列举冷冻水泵选型时所要参考的参数及具体的计算方法。 冷冻水泵选型过程中最具参考意义的参数是扬程,冷冻水泵扬程实用估算方法常见的由闭式空调冷水系统的阻力组成,因为这种系统是最常用的系统。 1、冷水机组阻力:由机组制造厂提供,一般为60~100kPa。 2、管路阻力:包括磨擦阻力、局部阻力,目前设计中冷水管路的比摩组宜控制在150~200Pa/m范围内,管径较大时,取值可小些。 3、空调未端装置阻力:根据设计提出的空气进、出空调盘管的参数、冷量、水温差等由制造厂经过盘管配置计算后提供的,许多额定工况值在产品样本上能查到。此项阻力一般在20~50kPa范围内。 4、调节阀的阻力:空调房间总是要求控制室温的,通过在空调末端装置的水路上设置电动二通调节阀是实现室温控制的一种手段。二通阀的规格由阀门全开时的流通能力与允许压力降来选择的。如果此允许压力降取值大,则阀门的控制性能好;若取值小,则控制性能差。阀门全开时的压力降占该支路总压力降的百分数被称为阀权度。水系统设计时要求阀权度S>0.3,于是,二通调节阀的允许压力降一般不小于40kPa。 根据以上所述,可以粗略估计出一幢约100m高的高层建筑空调水系统的压力损失,也即循环水泵所需的扬程: 冷水机组阻力:取80kPa(8m水柱); 管路阻力:取冷冻机房内的除污器、集水器、分水器及管路等的阻力为50kPa;取输配侧管路长度300m与比摩阻200Pa/m,则磨擦阻力为300*200=60000Pa=60kPa;如考虑输配侧的局部阻力为磨擦阻力的50%,则局部阻力为60kPa*0.5=30kPa;系统管路的总阻力为50kPa+60kPa+30kPa=140kPa(14m水柱);

液压缓冲器的选型

液压缓冲器的选型㈠应用数据 F终值为

㈡撞击模式 ①单纯的水平撞击 ②气缸推力下的水平撞击 ③自由落体撞击 ④气缸推力下向下的撞击 ①单纯的水平撞击(无推力) 步骤1:计算动能E1 计算 数值 E1单位 结果 4.0J(N.m) 步骤2:计算做工能量E2

计算 数值 E2 单位结果 0.0 J(N.m) 步骤3:计算每次做工能量E 计算 数值 E 单位结果 4.0 J(N.m) 步骤4:计算每小时吸收能量E T 计算 数值 E T 单位结果 400.0 J(N.m) 步骤5:有效重量W E 计算 数值 W E 单位结果 0.0 K g 4.0J 400.0J 0.0 kg 步骤6:选型 表如下: 的缓冲器 小时吸收能量大于 有效重量 根据计算结果应选单次吸收能量大于

②气缸推力下的水平撞击 步骤1:计算动能E1 计算 数值 E1单位 结果 4.0J(N.m)

步骤2:计算做工能量E2 计算 数值 E2单位 L的暂定值0.01m 结果0.5J(N.m)步骤3:计算每次做工能量E 计算 数值 E单位 结果 4.5J(N.m)步骤4:计算每小时吸收能量E T 计算 数值 E T单位 结果447.1J(N.m)步骤5:有效重量W E

计算 数值 W E单位 结果 2.2K g 次吸收能量大于 4.0J的缓冲器根据计算结果应选 小时吸收能量大于447.1J 有效重量 2.2kg ③自由落体撞击 步骤1:计算动能E1 计算 数值 E1单位 结果9.8J(N.m) 步骤2:计算做工能量E2 计算 数值 E2单位 结果0.2J(N.m) 步骤3:计算每次做工能量E 计算 数值 E单位 结果10.0J(N.m)

相关文档
最新文档