N次幂级数和函数通向公式推导及编程实现

N次幂级数和函数通向公式推导及编程实现
N次幂级数和函数通向公式推导及编程实现

幂级数求和

求幂级数的和函数()S x 1.1 (1) (1) n n n x n n ∞ =-+∑ 解:易知收敛域为[]1,1-。当()()1,00,1x ∈-?时,1 1 1 (1) ()(1) n n n S x x x n n ∞ +=-= +∑。 令1 11 (1) ()(1) n n n S x x n n ∞ +=-= +∑,则 11 (1)()n n n S x x n ∞ =-'= ∑ ,() 1 1 11 11()(1)1n n n n n S x x x x ∞∞ --==''= -=--=- +∑ ∑。 两边取积分,则 111()()(0)S x S x S '''=-=10 ()ln(1)1x x dt S t dt x t ''=-=-++? ? 。 再取一次积分,则 11110 ()()(0)()ln(1)(1)ln(1)x x S x S x S S t dt t dt x x x '=-= =-+=-++? ?, 从而当()()1,00,1x ∈-?时有 1()1l n (1)x S x x x +=- +。 (*) 当1x =-时,()1 11 1 111(1) 1n n S n n n n ∞ ∞ ==??-= = -= ?++? ?∑∑。 当0x =时,(0)0S =。 当1x =时, ()() ()()() () 1 1 1 1 1 11111112ln 2(1) 11 n n n n n n n n n S n n n n n n +∞ ∞ ∞ ∞ ====?? -----== -=+ =-??+++??? ? ∑ ∑ ∑ ∑ 。 注意:上面第三个等式成立是因为等式右边的两个级数都收敛; 最后一个等式利用了下列麦克劳林展开式: () 1 1 ln(1)1n n n x x n ∞ -=+=-∑ (11x -<≤)。 将1x =代入,即得 () () () 1 1 1 1 1 111ln 211 n n n n n n n n n -+∞ ∞ ∞ ===---= =-=-+∑ ∑ ∑ 。也可以利用幂 级数和函数的分析运算性质(1)(见P262)直接得出(1)S 也满足(*)的结论。

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3)n u x n =L 是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++∈L L 为定义在E 上的函数项级数,简记为1()n n u x ∞ =∑ 。 2、具有下列形式的函数项级数 200102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-++-+∑L L

幂级数求和函数方法概括与总结

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

考研数学之幂级数展开与求和

考研数学之幂级数展开与求和 来源:文都图书 级数在考研数学中属于数一和数三要考查的内容,其核心内容为幂级数展开与求和,今天我们就来详细学习一下幂级数的展开与求和步骤。 幂级数展开与求和在考试中常以解答题形式出现。要学好展开与求和,首先,我们需要两大工具:1、常见泰勒级数及收敛域;2、逐项展开与逐项求导。其次,要掌握常用方法。 展开常用方法,一是直接展开,这种考法较少,二是间接展开,以这种考法居多。间接展开解题的要点如下: (1)转化,将函数f(x)在某非零点处展开,转化到在x=0处展开。 (2)拆项,将函数拆成两项之和或差,然后利用常见函数的幂级数展开将两个展开式求和或者求差便可。 (3)因式分解,将函数分解成两项之积,一般其中一个因式为低次(至多为二次)多项式,另一个用常见幂级数展开式展开。 (4)求导法,先对函数求导,再用常见幂级数展开式展开,最后逐项积分。 (5)积分法,先对函数积分,再用常见幂级数展开式展开,最后逐项求导。 幂级数求和是展开的逆问题,比展开要难,考研中常用到的方法如下。 (1)直接套用已知的基本展开式,后者拆后套用。 (2)系数的分母中含有n的阶乘的,考虑用指数函数,或者正弦函数与余弦函数的某种组合。 (3)系数的分母中含有n、n+1、n+2的可以先逐项求导。系数的分子中含有n、n+1、n+2的可以先逐项积分。 除此之外,展开与求和部分还会考一些综合性题目,如跟微分方程结合在一起考查。总之主要方法还是如上综述的方法。望考生们多

联系,以体会上述方法。此外建议考生找一些类似的题目,强化练习。学会利用其方法和技巧,考研数学会涉及很多题目考察很多知识点,对待这些题目,我们要从运用的基本知识,及其解题方法,从理论到实践系统性的掌握,建议参考一下汤家凤的2017《考研数学复习大全》认真备考吧,预祝考试顺利。 When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you, And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fled And paced upon the mountains overhead And hid his face amid a crowd of stars. The furthest distance in the world Is not between life and death But when I stand in front of you

幂级数求和函数方法概括与汇总

幂级数求和函数方法概括与汇总

————————————————————————————————作者:————————————————————————————————日期:

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

【精品完整版】解析函数展开成幂级数的方法分析

解析函数展开成幂级数的方法分析 姓名:媛媛 学号:201100171431 专业:物理教育 指导教师:莉莉

解析函数展开成幂级数的方法分析 姓名 某某大学物理与电气信息工程学院 摘要:将解析函数展开成幂级数的方法不一,且比较复杂。本论文着重介绍了将解析函数展开成幂级数的几种方法以及分析。 关键词:解析函数,幂级数,展开,奇点等。 一前言 解析函数的应用及现状:解析函数边值问题和广义解析函数边值问题在奇异积分方程方面有广泛的应用,它们在弹性力学、流体力学方面也有重要的应用。这些方面的理论及其应用,主要是由苏联学者建立和发展起来的。自20世纪60年代以来,中国的数学工作者在这些方面也做了不少工作。 关于解析函数的不同定义在20世纪初被证明是等价的。基于魏尔斯特拉斯的定义,区域上的解析函数可以看作是其内任一小圆邻域上幂级数的解析开拓,关于解析开拓的一般定义是,f(z)与g(z)分别是D与D*上的解析函数,若DÉD*,且在D*上f(z)=g(z)。则称f(z)是g(z)由D*到D的解析开拓。解析开拓的概念可以推广到这样的情形:f(z)与g(z)分别是两个圆盘D1与D2上的幂级数,在D1∩D2上f(z)=g(z)则也称f与g互为解析开拓,把可以互为解析开拓的(f(z),Δ)的解析圆盘Δ全连起来,作成一个链。它们的并记作Ω,得到了Ω上的一个解析函数,称它为魏尔斯特拉斯的完全解析函数,这里可能出现这样的情形,在连成一个链的圆盘中,有一些圆盘重叠在一起,但在这些重叠圆盘的每一个上的解析函数都是不一样的,它们的每一个都称为完全解析函数的分支。这样的完全解析函数实际是一个多值函数。黎曼提出将多值解析函数中的那些重叠的圆盘看作是不同的“叶”,不使他们在求并的过程中只留下一个代表,于是形成了一种称为黎曼面的几何模型。将多值函数看作是定义于其黎曼曲面上的解析函数,这样多值解析函数变成了单值解析函数。解析函数的基本性质:解析函数的导函数仍然是解析函数;单连通域内解析

论文_幂级数求和的方法

长沙学院信息与计算科学系本科生科研训练 幂级数求和的方法 系(部):信息与计算科学系 专业:数学与应用数学 学号: 2009031110 学生姓名:范庆勇 成绩: 2012年 6月

幂级数求和的方法 范庆勇 长沙学院 信息与计算科学系 湖南长沙 410022 摘要:幂级数是无穷级数中的一种.本文主要总结了幂级数的多种求和方法.主要有逐项微分与逐项积分法,代数方程法,公式法等.同时通过举例说明了不同方法在解题中的应用. 关键词:幂级数,和函数,微分,积分 1 引言 幂级数是微积分中十分重要的内容之一,而求幂级数的和函数是一类难度较高、技巧性较强的问题,因此是有必要对这类问题进行研究和探讨.求解幂级数的和函数时,我们通常用幂级数的有关运算,综合运用求导,求积分,拼凑,分解等技巧来解决.也可以利用幂级数的有关公式求解. 本文通过具体例子介绍了幂级数求和的几种方法.文献[1]主要介绍了利用逐项积分与逐项微分的思想,计算部分和的极限以及转化为微分方程求幂级数的和.文献[2]主要是讲述了裂项组合法,逐项积分与逐项微分法,有限递推法,代数方程法,微分方程法求幂级数的和,同时还介绍了化归思想在幂级数求和中的应用.文献[3]主要是介绍通过逐项微分推导出几种公式,利用公式求和函数. 本文主要介绍逐项积分与逐项微分法,代数方程法,公式法求幂级数的和. 2 幂级数求和的几种方法 2.1 逐项微分[1] 幂级数在其收敛区间内其和函数是可导的,且有逐项求导公式 )x ('s =(n n n x a ∑∞ =)'= x a n n n )(∑ ∞ ==1 -n 1 n n x na ∑∞ =, 通过对幂级数的逐项求导将其转化为能求出和函数的幂级数,再积分即可.

幂级数求和函数方法概括与总结-幂级数总结

幂级数求和函数方法概括与总结-幂级数总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

幂级数求和法的归纳总结与推广

幂级数求和法的归纳总结与推广 摘要:本文研究的是如何对幂级数进行求和,主要从数学专业中的三个学科(常微分方程、初等数学、高等代数),分别通过微分方程法、初等数学中的杨辉三角法以及矩阵法对幂级数进行求和。对那些能用这三种方法进行求和的幂级数进行了一定的归纳和总结,并展开了一定的推广。通过对这三类方法的典型例题的求解,加深对方法的了解和运用,完善级数求和的知识体系。 关键词:级数求和,微分方程,矩阵,杨辉三角 引言 级数是高等数学的一个重要组成部分, 其理论是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期杰出的数学家刘徽于公元263 年创立了“割圆术”, 其要旨是用圆内接正多边形去逐步逼近圆, 从而求得圆的面积。这种“割圆术”就已建立了级数的思想方法, 即无限多个数的累加问题。而今, 级数的理论已发展的相当丰富和完整, 在工程实践中有着广泛的应用, 可用来表示函数、研究函数的性质, 也是其进行数值计算的一种工具。 同时级数也是研究函数的一个重要工具,在理论上和实际应用中都处于重要地位,这是因为:一方面能借助级数表示许多常用的非初等函数,微分方程的解就常用级数表示;另一方面又可将函数表为级数,从而借助级数去研究函数。在各种有力的解析工具中按其简单.灵活.明确以及使用的方便而言,毫无疑问第一位应属于函数级数。这个最重要的解析工具的思想很简单:我们想要研究的函数可以表示为其它的更为简单的。容易研究的函数的系列(即表示此函数为级数的部分和的极限。如果这个部分和在整个所研究的区间上完全趋近于所研究的函数,则我们就有理由从整个近似的部分和的性质来估计所研究函数的一些性质——尽管只是近似的研究。特别地,会对自变量的某个值近似计算这些部分和的值,我们同时也有办法近似计算所研究函数的相应的值。 用什么样的函数作为我们的展开式的元素最方便.最适合呢?即选什么函数作为表示所研究函数级数的项,最便于帮助我们研究函数?对此问题,当然不指望有唯一的答案适用于所有情形。这几乎完全取决于所研究的函数的性质以及我们对函数所提出的问题的性质,只是必须指出,有一种最重要的函数级数类值得推荐起作用,因为每一步都可以应用它们,这样就自然地要求创立相应的一般理论。这种函数级数就是幂级数(其中展开式的元素是自变量的整数次数幂——首先是非整数次幂)。 在幂级数收敛性的判断,求和问题等性质中,求和问题不免也是一处重要的知识点。幂级数求和的求解是一类难度较大技巧性较高的问题,更好地了解和掌握幂级数求和的方法和技巧对于学习幂级数具有更好的指导意义和学习价值。 幂级数求和,包括求某些数项级数的和,利用技术性质,展开定理、收敛定理等求函数项级数的和函数,函数的幂级数展开式、Fourier级数等,无疑是级数理论学习中的重要内容,在一定意义上对这部分知识掌握的程度,也是衡量学生数学能力、数学素质的一项检验指标。 而作为特殊函数项级数的幂级数,由于具有结构形式简单和近似表达函数的灵活性的优点,而作为一个极为有用的计算工具,数项级数的求和就是一个重要的应用。它的基本理论依据是在一致收敛条件下,函数项级数的和函数连续,可导、可积,即求和运算与极限运算求积运算、求导运算可以换序。而幂级数更具有收敛半径易求,在(-R,R)上内闭一致收敛以及在逐项求导或逐项积分收敛

06-函数展开成泰勒级数的方法--间接展开法PPT

函数展开成幂级数的间接展开法

一、基本初等函数的间接展开法根据唯一性,利用常见展开式,通过变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积分等 方法,求展开式。 ?基本公式:).,( ,)!12()1(sin ). ,( , !).1,1( 1101 200 +∞-∞∈+-=+∞-∞∈=-∈=-∑∑∑∞=+∞=∞ =x n x x x n x e x x x n n n n n x n n ,

二、典型例题例1. )( 的幂级数展开成将x a x f x =由于令注意到解 . ln , ln a x u e a a x x ==).,( ,! 1!2112+∞-∞∈+++++=u u n u u e n u ),(!ln !2ln ln 122+∞-∞∈+++++=x x n a x a a x a n n x 代入上式得 将 ln a x u =

++-+-+-=+)! 12()1(!51!31sin 1253n x x x x x n n , ),( 时解:当+∞-∞∈x 例2、. cos )( 的幂级数展开成将x x x f =对上式逐项求导得 +-+-+-=)! 2()1(!41!211cos 242n x x x x n n

.11)( )1(:x x f +='解例3、. 的幂级数展开成将下列函数x ∑?? ∞ =-=+=+000)1(1)1ln( n x n n x dt t t dt x 则). 1,1( ,1 )1(10-∈+-=+∞=∑x x n n n n ).1,1( ,)1()(1111 0 -∈-=--=+∑∞=x x x x n n n 又.arctan )()2( ; )1ln()( (1)x x f x x f =+=板书

函数的幂级数展开

教案 函 数 的 幂 级 数 展 开 复 旦 大 学 陈纪修 金路 1. 教学内容 函数的幂级数(Taylor 级数)展开是数学分析课程中最重要的内容之一,也是整个分析学中最有力的工具之一。通过讲解将函数展开成幂级数的各种方法,比较它们的优缺点,使学生在充分认识函数的幂级数展开的重要性的基础上,掌握如何针对不同的函数选择最简单快捷的方法来展开幂级数,提高学生的计算与运算能力。 2.指导思想 (1)函数的幂级数(Taylor 级数)展开作为一个强有力的数学工具,在分析学中占有举足轻重的地位。通常的数学分析教科书往往注重于讲解幂级数的理论,而忽视了讲解将函数展开成幂级数的方法,这样容易造成学生虽然掌握了幂级数的基本理论,但在实际计算中,即使对于一个很简单的函数,在求它的幂级数展开时也会感到很困难,这种状况必须加以改变。 (2)求函数的幂级数展开是每个数学工作者时时会碰到的问题,虽然我们有函数的幂级数展,但一般来说,直接利用(*)式来求函数的幂级数展开往往很不因此有必要向学生介绍一些方便而实用的幂级数展开方法,提高学生的实际计算能力, 3. f (x )在 x 0 的某个邻域O (x 0, r )中能级数: (*).,(0r x O (1) x ∈(-∞, +∞)。 (2) =+0 !)12(n n )!12() 1(!5!31253+-+-+-=+n x x x x n n + …, x ∈(-∞, + ∞)。 (3) f (x ) = cos x = ∑∞ =-02! )2()1(n n n x n )! 2()1(!4!21242n x x x n n -+-+-= + …, x ∈(-∞, + ∞)。

幂级数求和问题的几种转化

幂级数求和问题的几种转化 数学与计算机科学学院 数学与应用数学专业 【摘要】本文通过具体例子,介绍了幂级数求和的若干种转化和方法,例如其中的代数方程法, 、微分方程法等.同时对幂级数求和的化归途径进行了分析和实践,探讨了利用化归思想求幂级数和函数的几种方法. 【关键词】幂级数;和函数;微分;化归思想 The power series summation of several transformation Major in Pure and Applied Mathematics College of Mathematics and Computer Science [Abstract] This article through a concrete example, introduces the power series summation of several kinds of transformation and methods, such as one of the algebraic equation method, and differential equation method, etc. Meanwhile to the power series summation of change to approach is analyzed and practiced, this paper has discussed the use of be thought for the power series and the function of several methods. [Key words] power series; And functions; Differential;Change be thought 1.引言 幂级数是微积分中十分重要的内容之一,而求幂级数的和函数是一类难度较高、技巧性较强的问题,因此是有必要对这类问题进行研究和探讨.求解幂级数的和函数时,我们通常用幂级数的有关运算,综合运用求导,求积分,拼凑,分解等技巧来解决.也可以利用幂级数的有关性质求解. 本文把幂级数求和和化归思想联系在一起,介绍了化归思想在幂级数求和中的应用. 2.预备知识 2.1 幂级数 定义[1] 由幂级数列{0()n n a x x -}所产生的函数项级数 20 0102000 () ()()...()...n n n n n a x x a a x x a x x a x x ∞ =-=+-+-++-+∑, (1) 它称为幂级数,是一类最简单的函数项级数,从某种意义上说,它可以看做是多项式函

幂级数求和函数方法概括与总结-幂级数总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++ ++ ∈ ! 为定义在E 上的函数项级数,简记为1 ()n n u x ∞ =∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

级数求和常用方法

级数求和的常用方法 摘要 级数理论及应用无论对数学学科本身还是在其他科学技术及理论的发展中都有极为重要的影响和作用,而级数求和是级数理论及应用的主要内容之一.由于级数求和的方法比较多,技巧性很强,一般很难掌握其规律,是学习的一个难点,因此掌握一些常用的级数求和方法就显得尤为重要.通过例题,分别针对常用的数项级数和函数项级数求和进行分析和讨论,试图通过对例题的分析和解决,展示级数求和的常用方法和思想,进而探索级数求和的规律,理解级数理论即合理应用,打下良好的基础,为学习者起到抛砖引玉的方法. 关键词:数项级数;函数项级数;求和;常用方法

Summation of series method in common use Abstract Progression theory and application still are having the most important effect and function on the development of science and technology and theory disregarding logarithmic discipline per se, but summation of series is one of progression theory and applicative main content. Method of summation of series is comparatively many, the dexterity is very strong, in general very difficult to have its law in hand, be a difficult point studying, have some summation of series in common use method in hand therefore appearing especially important right away. Carry out analysis and discuss that by the fact that the example , difference are aimed at several progression and function item summation of series in common use, try to pass the analysis checking an example and solve, show summation of series method and thought in common use , probe and then the summation of series law , understand that progression theory is that reasonableness applies , lays down fine basis, in order the learner gets the method arriving at a modest spur to induce someone to come forward with his valuable contributions. Key words: Count progression; function series; Sue for peace; Method in common use

常用函数的幂级数展开式

目录 上页 下页 返回 结束 内容小结 1. 函数的幂级数展开法 (1) 直接展开法—利用泰勒公式; (2) 间接展开法—利用幂级数的性质及已知展开 2. 常用函数的幂级数展开式 x e ?1=) ,(∞+-∞∈x )1(ln x +?x =] 1,1(+-∈x x +2!21x +, ! 1 ΛΛ+++n x n 221x -331x +Λ+-441x 11 )1(++-+n n x n Λ+式的函数. 目录 上页 下页 返回 结束 Λ++-++! )12()1(1 2n x n n x sin ?x =!33x -!55x +Λ+-!77x x cos ?1=!22x - !44x +Λ+-!66x Λ+-+! )2()1(2n x n n m x )1(+?1=x m +2 ! 2)1(x m m -+Λ +ΛΛ++--+n x n n m m m ! )1()1(当m = –1 时x +11 ,)1(132ΛΛ+-++-+-=n n x x x x ) ,(∞+-∞∈x ) ,(∞+-∞∈x ) 1,1(-∈x )1,1(-∈x

目录上页下页返回结束 四、物体的转动惯量 设物体占有空间区域Ω, 有连续分布的密度函数.),, (z y x ρ该物体位于(x , y , z ) 处的微元v z y x y x d ),,()(2 2ρ+因此物体对z 轴的转动惯量: ???+=Ω ρz y x z y x y x I z d d d ),,()(2 2=z I d O x y z Ω对z 轴的转动惯量为 因质点系的转动惯量等于各质点的转动惯量之和, 故连续体的转动惯量可用积分计算. 目录上页下页返回结束 类似可得:???=Ω ρz y x z y x I x d d d ),,( ???=Ω ρz y x z y x I y d d d ),,( ???=Ω ρz y x z y x I O d d d ),,( )(22z y +)(22z x +)(222z y x ++对x 轴的转动惯量 对y 轴的转动惯量 对原点的转动惯量

相关文档
最新文档