自硬树脂砂操作工艺

自硬树脂砂操作工艺
自硬树脂砂操作工艺

4 — 1呋喃砂的混制

一、型砂配制程序为了使树脂、固化剂、偶联剂能在最短的时间里均匀复盖在砂粒表面,需利用混砂机混制。根据混制的程序不同,分为单砂双混法和双砂三混法二种,它们的混制程序如图所示。

砂 + 固化剂砂 + 固化剂砂 + 树脂根据混砂机构造不同分为连续式混砂机和间歇式混砂机两种。连续式混砂机一般为搅笼式。固化剂和树脂分别通过定量泵先后加进(单砂双混)或分别加进(双砂三混法)搅笼里的砂中被螺旋叶片混合均匀后连续放出。间歇式混砂机有低速的普通搅拌机和高速旋转的碗形混砂机。需要指出的是,当树脂加入已混和有固化剂的砂中后,应该在数秒钟至半分钟内混好尽快出砂造型,不可在混砂机内混制时间过长

二、树脂与固化剂的加入量

随着树脂加入量增加,呋喃砂的终强度将增加。一般抗拉强度应大于 8—10Kg /cm2或抗压强度大于 25—30Kg /cm2即可。这时还应考虑型(芯)的大小,复杂程度以及铁水压头高低等因素,过高的强度是不必要的,不仅浪费昂贵的粘结剂,而且增加发气性促成气孔类缺陷,同时降低溃散性增加落砂出芯的困难。

4 —2造型制芯操作

1.模样准备可以采用木模、金属模和环氧树脂塑料模,对单件要求不高的铸件还可使用泡沫塑料做的一次性模样。冬季使用金属模或金属型板会影响硬化,尽可能采用木模。模样的拔模斜度适当增大,芯盒尽量做成脱开式或稻桶式,对限制拔模斜度的模样可做成抽芯式。浇注系统和圆角尽量在模样上做出,起模螺栓应装置紧固。造型前应检查模样是否完好齐全,木模表面应平整光滑,不得有裂纹、划痕,并在造型制芯前涂上脱模剂。放砂前要仔细检查活块是否齐全到位。

2.芯骨与吊攀的准备制芯前应准备好必要的芯骨与吊攀。由于树脂砂强度高,芯骨可以大大简化,一般不必作整体铸铁芯骨,可以通过散插铁棒,但也要考虑到起模、搬运、下芯合箱、浇注时的铁水浮力等等对泥芯刚性及强度的要求,放置足够的芯骨,对大泥芯可放入铸铁龙骨,吊攀下钩处注意插横担铁条。

3.造型紧实树脂砂流动性好,自紧实性能好。但造型中仍需十分注意凹处、角部、活块凸台下等不易充填部位的紧实操作。紧实可用木棒捣、用手塞,填砂面可用脚踩或木锤紧实。紧实不好的铸型或局部表面,其表面稳定性差,容易造成机械粘砂(渗铁)、冲砂及砂眼,而且起模后铸型的疏松难以修补。放砂和紧实中要注意模样活块、浇口棒、出气及冒口棒、浇口陶管等的移动和松动。直浇口棒及出气、冒口棒应在造型后几分钟内拔出。入砂中对于连续混砂机的头砂,因树脂量和固化剂量不正常,应接放在提桶时里当背砂使用。否则铸型内表面有局部不硬化或强度不够时往往要整箱敲掉。要重视直浇口处型砂的强度,因直浇口表面稳定性不够引起的冲砂往往是造成铸件砂眼缺陷的重要原因。同样,对于与铁水接触的芯盒添砂面,为增强表面稳定性,应及时用墁刀刮平。大砂箱造型时,放砂时间有可能超过树脂砂的可使用时间,因此要注意放砂的推进路线,对已开始反应的部分尽量不要再去挖动,所以放砂前一定要做好各项准备工作,包括思想上的充分准备,尤其要周密计划好吊攀的放置方向及部位。对填砂面的吊攀应在造型后即使挖出吊攀头部。对于非型板模样多箱造型时,应在分裂面上刷一层分型剂(一般用滑石粉)

4.起模与修型树脂砂起模时间要控制适当,过早易变形,太尺起模困难,因此,一般在造型后约半小时左右,用洋钉( 3“— 4”)向铸型里扎,若扎不进去时,一般说来即可进行起模了。由于树脂砂型起模是在半硬化状态下进行的,所以需利用较大的冲击力,这时要注意起模样的平衡性,不要用铁榔头直接敲击木模,应垫上木块或用橡胶、塑料、木制榔头。拆芯盒时要注意每个活动部分的起模顺序与起出方向,挖出吊攀头部。对于起模或搬运中不慎破损的部分,成块的可涂专用的型芯修补粘合剂后回原处,必要时用钉子加固,其它破损处可用新混制时树脂砂填补,并用墁刀刮平。修过的部分,其强度和表面稳定性较差,所以最主要的是要很仔细小心的做好起模、搬运、翻转等互作,最大限度的减少修行操作。造型与制芯时要特别注意放好出气。

5.上涂料刚起模的型和芯不易立即上涂料,因为这时树脂的硬化反应还处在初级阶段,遇到涂料中的水分(溶剂)影响硬化的正常进行。若使用酒精快干涂料,需立即点火燃烧,又会使未反应完全的树脂过烧,这些都会降低铸型(芯)的表面稳定性。一般应在造型后4— 8小时以后才可进行上涂料作业。为防止溶剂和水分过多地渗进型芯深出,影响涂层的干燥程度,并保证涂层厚度以提高抗金属渗透能力,涂料必须有一定浓度。在涂刷性能(如流平性、易涂性等)可以

的情况下,应保证涂料浓度有30 Be以上为宜。涂前搅拌均匀。刷涂料要自上而下进行,不要使涂料流挂堆积、应涂刷均匀、减少刷痕,还要注意不得漏涂,整个浇注系统都必须涂到,在不便涂刷时防止浇口陶管。为了合箱时不使砂粒掉入型腔,盖箱顶面的浇冒口、出气空上也要刷上涂料。但在芯头部位不要上涂料,以免影响配模精度和阻碍排气,这一点在浸涂时尤应注意。醇基涂料上好后应及时点燃自干。为了提高涂料的燃烧性能,应选用 95%以上酒精作为稀释溶剂。水基涂料上好后应进烘房在 150—180℃下烘干 1— 2小时。涂料的充分干燥对防止气孔至关重要,在燃烧不良的情况下应用喷枪补充干燥,但注意火力不要过猛,引起树脂过烧。

6.下芯盒箱

一般与粘土砂同。树脂砂强度高,配模时容易操作,但需注意以下几点:

o 因烧注中发气量大,要注意在箱上的行腔高点、芯头端部留出气孔,以使行腔内和型芯内的气顺利排出。

o 要采取防止铁水钻芯头的措施,以避免枪火和气孔。

o 吊攀头部要用新混制的砂修平并上涂料和点干。吊攀处修补时应插上合适长度的钉子。

o 为防止抬箱跑火,砂箱卡子应紧固并紧固好,分型面应放封火泥或石棉绳。

o 为保证铁水压头,所有浇口杯、冒口圈和出气口圈等的安放均需粘牢型面或埋住,以防跑火。

o 合好的箱应垫空放置,以利低面也能通畅排气。

o 下芯后合箱前应将芯头上下左右的间隙塞实垫平,以防型芯窜动或漂浮,浮砂必须吹(吸)净。合箱前在对铸型整体用喷枪烘干一次。冷铁、芯撑等应干燥清洁无锈蚀

4 — 3 浇注、开箱及清理

浇注

为了减少浇注过程的发气量,浇注系统一般设计得较粘土砂大。浇注时应贯彻快速、不断流、严格挡渣、及时点火引气等原则。为了不使铁水变成紊流、卷入空气促使树脂燃烧引起气孔和夹渣缺陷,浇注时要使直浇口始终处于充满状态。为了开箱方便、延长砂箱使用寿命,要求浇注后当冒口圈和浇口杯凝

固后,趁热将砂箱顶面溢流出的披缝铁敲掉,并将浇口杯搬掉。

其他浇注应注意事项与粘土砂同。

开箱与落砂除芯树脂砂保温性能好,浇注后铸件冷却较慢,对易裂和易产生白口的铸件应比粘土砂延长开箱时间。而对那些有硬度要求的铸件则可适当提早开箱或将局部提前除去型砂,使该部位裸露在空气中冷却。原则上应先开箱,吊出或翻出铸件后,再将砂箱放在落砂机上落砂,以免铸件被碰坏。由于靠近铸件的型砂层已溃散,所以落砂前开箱和取出铸件并不十分困难。除芯作业因型砂的溃散,一般用互具或风枪进行即可。树脂固化后不溶于水,所以一般不采用水力清砂。其他要求与粘土砂要求相同。

o 树脂砂造型芯互艺参数

o 浇注系统的设计

树脂砂浇注系统的基本原则是:快速(大流量)封闭、防止紊流与气体卷入,保证压头。

浇注速度计算方法可参照粘土烘砂,但浇注速度应尽量快,一般说来, 500Kg 以下铸件浇就时间不超过 20秒为宜; 1T重铸件不超过 40秒;即使2—3T重的铸件也尽量在 1分钟内浇注完毕。快速浇注有利于较快建立压头,使铸型大量发气以前做到冲心充型完毕。这样既有力于防止气孔缺陷,也有利于减少铸件的热粘砂和冷隔。

浇口型式与浇口比对于高度较小的铸件可以将内浇口开在分型面上,但较高铸件应优先采用底注浇口。推荐采用 F直:F横:F内 =1.5:1.25:1.0那样的封闭加压浇注系统。可以较好的避免气体被卷入型腔,同时挡渣效果也好。对于长度较大的铸件,在行车距离允许的情况下,为了加快浇注速度和均匀紧铁水,可设置二道直浇口从两端同时浇注。对于阶梯浇口,应尽量避免上层辅助浇口过早进铁,为此上下内浇口最好有各自的直浇口。

冒口与出气孔树脂砂在铁水表层凝固前的刚性好、强度高,不易发生胀砂和型壁迁移,依靠铁水凝固期间的石墨化膨胀有一定的自补缩能力,冒口比粘土砂的小,可以改用出气冒口或溢流冒口。但应多设顶部出气口,以保证行腔中的气体尽快排出。在外型的各部分芯座上应尽量做出与大气相通的通气孔,以保证型芯中气体顺利逸出。

5 —工艺设计参数

收缩率树脂砂对铸件收缩率的影响较为复杂。一方面,由于芯骨简化、溃散性好、对收缩阻碍小,另一方面,树脂砂热膨胀系数大,树脂粘结剂也有一定的热强度,使收缩率有减小的因素。故在实际生产中发现树脂砂铸件的收缩率可以在 0.8—1.4%范围内变动。总的倾向是纵长方向收缩率较横向的大;外型的收缩(包括形成外型的型芯)较芯型的大;长大铸件的收缩较小铸件来的大。但树脂砂铸件的同一处的尺寸在相同条件下的收缩率其复现性较好,因此对于要求较高的尺寸可通过试制加以修正,能够找出较为标准的收缩系数。一般设计中,可试采用外型(包括外型芯)1.0— 1.2%,型芯 0.8— 1.0%的收缩率。 • 吃砂量可取比粘土砂小的多的吃砂量。主要根据铸件的大小、壁厚不同来选取。一般距砂箱壁的吃砂量可取 20— 50mm即可。上下面的吃砂量可取 50—

100mm,盖箱顶面吃砂量还应考率铁水压头的需要适当增高,否则需通过冒口圈、出气孔圈、浇口杯的高度来补充,这时要注意粘合良好,防止圈底杯底跑火。• 芯头间隙与分裂系数芯头间隙应小,避免漂芯或型芯退让。根据型芯大小不同芯头间隙可取 0— 1.5mm,分型负数原则上可以不放。

拔模斜度树脂砂模样的拔模斜度较粘土砂略大。有些铸件不允许有拔模斜度处可采用抽芯方法制模样或用脱开式芯盒。使用优良的脱模剂可以使拔模斜度稍小一些。

加互余量树脂砂铸件尺寸准确,直线度也好。加互余量可减少 1/3。

树脂砂铸造对模具工艺的要求

树脂砂铸造对模具工艺的要求 树脂砂铸造 2009-07-05 15:46 阅读169 评论0 字号:大中小 树脂砂铸造是指型(芯)砂在室温条件下,通过加入一定量的固化剂,使型、芯在芯盒或砂箱内自行硬化成型的一种造型、制芯的方法。目前在铸造生产中得到应用的有酸固化呋喃树脂砂、酯固化碱性酚醛树脂砂和酚尿烷树脂砂等。这些工艺的共同特点是:型(芯)砂有一定的可使用时间,硬化速度与强度受室温、环境湿度的影响较大,生产效率也不太高。它们比较适合于单件、小批量、多品种的中、大型铸件的生产,例如机床、通用、重型、造船、机车等行业。在上述几种树脂自硬砂中,以酸固化的呋喃树脂砂在我国应用最多,因为它所用的原辅材料及设备能成套供应,技术成熟,积累的经验也最为丰富,据不完全统计,目前全国约有500多家采用呋喃树脂砂工艺进行铸件生产。它与粘土砂相比,铸件尺寸精度可提高2~3级,表面粗糙度明显改善,废品率明显下降。 与传统的粘土砂生产铸件相比,用树脂砂生产的铸件具有表面粗糙度小,尺寸精度高,品质好的特点,已日益受到市场的青睐,得到了迅速发展,已逐步成为铸件市场的主流产品。树脂砂上世纪50年代开始在铸造行业出现和使用,到现在已经有几十年的历史了,其生产工艺和设备已相当成熟和完善。

砂温对树脂砂硬化的影响及控制 呋喃树脂自硬砂的硬化原理是:树脂在固化剂的催化作用下逐渐发生交联反应而自行硬化,固化剂的催化作用受温度的影响较大,温度升高催化作用加速,温度下降,催化作用减慢,因而呋喃树脂自硬砂在硬化过程中,硬化反应的速率与砂温有密切的关系,同时硬化反应速率对硬化后铸型的强度有着重要的影响。所以,要得到满足生产需要的铸型强度,就必须控制砂温。 固化剂的加入量和酸值对铸型的影响及控制 固化剂的加入量是按其占树脂的比例来确定的。在固化剂酸值一定的情况下固化剂加入量愈大,树脂砂的硬化速率就愈快,反之,愈慢。在固化剂加入量一定的情况睛,所用固化剂酸值愈高,树脂砂硬化速率愈快,反之,愈慢。树脂砂铸造的硬化速率过快或过慢,都会降低铸型硬化后的强度,因此必须合理控制树脂砂的硬化速度。 树脂砂铸造生产对模具工艺的要求 与粘土砂相比,树脂砂铸件的外观质量依赖于模具的质量,因而树脂砂对模具的质量要求较高。模具工艺时使其较好的适应树脂砂造型的需要,主要在以下几个方面: 1、拔模斜度:树脂砂在起模时已具有一定的硬化强度,较小的退让性,较大的摩擦力,若采用敲击的方法起模,容易损坏模具,同时树脂砂的可修补性差,起模时,若受到破坏,较难修补。采用树脂砂造型时,应根据生产实际和产品结构加大模具的拔模斜度,能顺利

自硬砂造型工艺研究.

自硬砂造型工艺研究 随着机械行业的发展,对外经济贸易的扩大,以及环境污染、能源紧张、材料涨价等问题的日益严重,对铸造生产和铸件质量提出了更高的要求,要能满足这些要求,特别是造型制芯工艺的选择上更应满足这些要求,先进造型制芯工艺应具备以下基本条件: ①生产的铸件质量好、尺寸精度高、铸造缺陷少; ②劳动条件好、环境污染少; ③生产成本低、生产效率高; ④最大限度地利用自然资源、节省能源。 传统的型砂工艺已经不能满足以上的条件,这就要求选用适合自己的先进型砂工艺。近几年来,主要使用的先进型砂工艺有:新型水玻璃自硬砂工艺、碱性酚醛树脂自硬砂工艺和呋喃树脂自硬砂工艺等自硬砂型砂工艺。下面以我们公司为例对型砂工艺进行简单阐述: 一.型砂工艺的选用 1.现用型砂工艺性能分析 1.1现用造型材料及造型方式 (1)面砂、芯砂——CO 硬化水玻璃砂、“70”砂、铬铁矿砂 2 (2)背砂——粘土砂 (3)手工造型 (4)烘干窑烘干小型砂型及坭芯,移动烘干大型砂型 (5)表面刷醇基涂料 1.2现造型材料的生产特点 (1)人工加砂,劳动强度大,生产效率低,砂型、坭芯的紧实度主要靠人工打风锤,硬化主; 要吹CO 2 (2)水玻璃加入量高(≥9%),造成成本高,型(芯)砂溃散性差,铸件清理难度大,效率低; (3)旧砂直接破碎再生,再生后只能作背砂,不能作面砂,回用率低,新砂耗量高,型砂成本高,废砂大量排放,严重污染环境; (4)铸件尺寸精度低,表面粗糙度差,铸件综合质量不高,后道工序工作量增大,工作效率就低; (5)型(芯)砂冬季硬透性差,CO 耗量大。 2 1.3铸件质量情况 铸件尺寸精度低,表面粗糙,多气孔、砂眼,产生裂纹多,导致后道工序修理大,成本高,效率低。 2、新型水玻璃自硬砂工艺性能分析 2.1原辅材料 (1)原砂:新工艺对原砂要求较高,尽可能选取泥份、微粉含量少,颗粒形貌好的原砂(2)改性水玻璃 (3)有机酯固化剂 2.2工艺优势及特点: (1)水玻璃加入量大大降低(2.5--3.5%); (2)型砂溃散性大大改善,铸件清砂容易; (3)旧砂可干法再生回用,回用率≥80%; (4)系列化水玻璃与固化剂配套使用,型砂综合工艺性能优良,冬季硬透性好,硬化速度可调(10-90 min),可实现大批量机械化生产;

碱酚醛树脂自硬砂

碱性酚醛树脂自硬砂的一些特性英国Borden公司首先开发了有机酯硬化的碱性酚醛树脂自硬砂工艺,并于1981年获得专利,简称a--Set工艺。其主要特点是混砂、造型、浇注时散发的烟气少,有利于改善环境。所用的树脂是甲阶酚醛树脂的一种,但含有KOH、NaOH等碱性材料,故通常称之为碱性酚醛树脂。树脂中的游离的K 、Na。。离子,对于树脂与有机酯发生作用、树脂的交联反应都至关重要。 多种低级酯都可作为硬化剂,应用较广的是碳酸丙烯酯,这也是作用较强的硬化剂。还可用几种有机酯混合配成作用强弱不同的牌号,以适用于不同的生产条件。 一.树脂的硬化机制 在树脂的硬化反应中,首先是树脂中的碱与酯反应,形成碱金属的碳酸盐,释放醇。树脂中的碱形成碳酸盐后,即处于反应状态,可在常温下发生交联反应,将砂粒粘结,使型砂具有必要的强度。 由于作为硬化剂有机酯是参与树脂硬化反应的组分,不同于硬化剂只起催化作用、不参与反应的其他树脂自硬砂,不能通过改变硬化剂的加入量来调整自硬砂的硬化速率和起模时间。有机酯的加入量一般为树脂的20~25 ,因树脂和硬化剂的品种而略不同。树脂加入量不足,则铸型难以硬化;树脂加入量太高,则会感到混成砂和砂型腻滑,而且可能导致铸型一金属界面处发生反应,影响铸件表面质量。自硬砂的硬化速率和起模时间,应由改变硬化剂的牌号予以调整。 有机酯硬化的酚醛树脂砂,在有机酯的作用下,树脂在常温下只发生部分交联反应,起模时型砂仍然保持一定的塑性,浇注初期还有一短暂的、因受热而再次发生交联反应的过程,也就是通常所说的二次硬化。 二.碱性酚醛树脂自硬砂工艺的优点碱性酚醛树脂自硬砂工艺主要有以下优点。

铸造用自硬呋喃树脂简介

简介 自硬呋喃树脂达到国际先进水平,是环保型产品,品种齐全,适用于铸造各种类型的铸钢、铸铁及有色合金件。外观颜色从淡黄色至棕红色液体,具有以下特点: a、粘度低,便于计量,易混砂,型砂流动性好。 b、游离甲醛含量低,气味小,改善了工人工作条件,减少了环境污染。 c、比强度高,可降低树脂加入量,降低成本,同时有利干提高铸件质量。 d、型砂的溃散性好,减少清砂工作量。 e、生产的铸件尺寸精度高,轮廓清晰,表面光洁,减少清砂工时,提高劳动效率。 型号及技术指标 使用指南 a、混砂工艺 树脂加入量一般为0.6-1.5%(占砂重),固化剂加入量般为30-70%(占树脂重),用连续式或间歇式混砂机先将砂子和固化剂混匀,然后再加入树脂混匀,混砂时间一般为5-60秒,混匀后立即出砂使用。 b、树脂加入量的选择 由于各使用厂家所用的原砂粒形、粒度、含泥量等指标差别较大,型、芯的重量及复杂程度不同,树脂的加入量应以满足生产需要为原则,在强度满足生产要求的前提下尽量减少树脂的加入量。 c、脱模时间的控制 控制适当的固化速度,有助于提高型、芯强度。脱模时间可在10-90分钟内调整,一般15-40分钟,脱模达不到预定的脱模时间会产生粘模甚至损坏型、芯或塌箱;脱模超过预定的脱模时间则脱模困难甚至会损坏型、芯或模型。

d、固化速度控制 固化速度过慢,适当增加固化剂的加入量(一般不宜超过70%)或更换固化速度更快的固化剂;固化速度过快,适当减少固化剂的加入量(一般不宜低于30%)或更换固化速度更慢的固化剂。 注意事项 a、树脂与固化剂应分开存放,严禁树脂与固化剂直接混合,以防产生爆炸! b、当树脂与皮肤接触时。可能会对个别人体产生轻微刺激作用,操作者应穿戴防护手套等用品。 c、树脂应密闭储存于阴凉、干燥处,避免受热或日光照射,搬运应小心轻放。 包装 240Kg铁桶或1000Kg塑料罐。

呋喃树脂自硬砂控制技术

呋喃树脂自硬砂控制技术 摘要:本文主要从硅砂的性能要求、造型过程的控制和再生砂的回用等对呋喃树脂自硬砂技术进行了探讨,供广大铸造同行参考。 关键词:呋喃树脂自硬砂硅砂造型再生砂在线检测 随着中国制造业近几年的长足发展,中国的铸造业也迎来了历史上最好的发展机遇。目前,我国铸件的产量已连续多年位居世界之首。呋喃树脂自硬砂工艺由于其生产周期短、铸件表面精度高、铸件质量容易控制、柔性化制造能力高等特点,已经被广泛的应用到机床铸件、耐磨铸件、工程机械铸件等产品中。而铸造企业能否发挥呋喃树脂自硬砂的特点,有效的提高铸件的质量,这与型砂的控制技术有着密切的关系。砂型铸造行业公认型砂控制技术、熔炼控制技术和管理水平三者决定了一个铸造厂在市场上的竞争能力,由此可见型砂的控制技术在铸造业中的重要性。本文就呋喃树脂砂的一些控制技术提出一些个人的观点,希望同行提出批评指正。 1 硅砂的技术要求 1.1 硅砂的粒度组成 硅砂的粒度反映了硅砂的颗粒大小和分布状态。由于自硬砂强度的获得是依靠呋喃树脂“包覆”硅砂表面形成的高分子链,所以硅砂的粒度越细,从理论上说获得同样强度的树脂消耗量就越大,型砂的成本也就越高,所以在保证铸件不发生粘砂缺陷的前提下,尽可能提高硅砂的粒度。图1为自硬砂八字试样测得的抗拉强度(MPa)和砂型粒度组成的关系曲线: 1.2 硅砂的角形系数 硅砂的角形系数S=Sw/St Sw---硅砂的实际比表面积(cm2/g) St----硅砂的理论比表面积(cm2/g) 硅砂的角形系数越小,表面就越园整,同样体积的硅砂表面积越小,硅砂和呋喃树脂的物理和化学结合力就越强,获得同样的抗拉强度需要的树脂消耗量就越低。作为自硬砂用的硅砂角性系数要求≤1.30,《1.5 1.3 硅砂的加工处理 由于天然硅砂有大量直径小于0.02的泥分和一些污染物和一些有碱性的物资,泥分的存在极大的降低了硅砂的粒度组成,提高了树脂的消耗量,同时有碱性的物资在树脂砂硬化过程中消耗了大量的催化剂——对甲苯磺酸等物资,造成砂型硬化很慢甚至不硬化,所以硅砂必须经过擦洗和粒度分选处理。在处理过程中,必须注意对擦洗用水的管理。一些硅砂供应商擦洗用水控制不严,导致含泥量超标或碱度过大,导致擦洗砂质量较差。好的擦洗砂泥分的质

树脂砂铸造过程中应注意的几个问题

树脂砂铸造过程中应注意的几个问题 兖矿集团大陆机械有限公司华铸分公司 史明华 由于自硬树脂砂铸造具有生产出的铸件表面质量好、尺寸精度高、废品率低,适用范围广、对工人技术水平要求低,大大减轻了工人的劳动强度和改善工作环境等优点,因此国内越来越多的公司(或企业)选择自硬树脂砂铸造手段。虽然自硬树脂砂铸造技术已经成熟,但在生产过程中仍然存在许多问题。我公司于2002年新上一条年产3000吨铸铁件的自硬树脂砂生产线,经过四年多来的不断探索,本人认为在自硬树脂砂铸造生产过程中,需要注意以下几个问题。 一、要经常注意设备的运行情况 设备运行情况的好坏,直接影响着铸造生产成本和铸件质量,因此,在铸造生产中,要经常注意设备的运行情况,发现运行异常及时分析解决,着重应注意以下两方面: 1、要注意除尘设备的运行 除尘设备的好坏,直接影响着再生砂的再生成本和铸件质量,在铸造生产中,除尘设备运行出现异常往往不易发现,但如果除尘设备的除尘效果不好,不但影响着工作环境、污染空气,更重要的是影响着再生砂的微粉含量,其直接结果是导致混砂时树脂加入量的增加和由于透气性差造成铸件废品率增多。 2、要注意混砂设备的运行 混砂机是否能够正常运行,直接影响着混砂的质量,其中液料(树脂、固化剂)的加入量最为关键。一般情况下,树脂的加入量是靠控制齿轮泵电机的电压、固化剂的加入量是靠控制隔膜泵电机的电压来实现的,由于季节、天气的变化,造成液料粘度的变化,在相同电压的情况下,液料的加入量会产生波动,且固化剂易产生结晶,造成阀及管道堵塞,因此,应每班对液料管道进行清理,每周对液料的加入量进行检测,以确保液料加入量的准确。 二、要注意制定的生产工艺的正确性及合理性 生产工艺制定的合理与否,直接影响着铸件的成品率、铸件质量和铸造成本,在制定生产工艺时,主要应注意以下几项: 1、确定合适的再生砂的LOI值 LOI值即灼烧减量是衡量再生砂的脱膜率的重要指标,也是与型砂的发气量及铸件产生气孔类缺陷密切相关的指标,铸铁件一般采用呋喃树脂砂生产,实践证明LOI值控制在3%左右完全可以满足生产要求,而过分降低LOI值意义不大。我公司在生产过程中,逐步将LOI 127

铸钢件生产时采用的几种自硬砂的

铸钢件生产时采用的几种自硬砂的 工艺性能的对比分析 一.前言 50多年来造型、制芯材料和工艺,在国内外有了长足的发展,特别是在生产铸铁件时,采用呋喃树脂砂取代粘土砂方面,显示了许多优越性,它已成为铸铁厂家进行技术改造的首选方案。在铸钢件生产中,从20世纪50年代开始采用水玻璃砂,到20世纪70年代,由于采用水玻璃砂生产的铸钢件的尺寸精度和表面质量都差,尤其是型、芯砂的溃散性不好,清砂十分困难,旧砂不能再生回用等问题,没有得到较好的解决,于是,在某些重机厂、水泵厂和机车厂等的一些铸钢件改用了呋喃树脂砂。到20世纪90年代末,又由于呋喃树脂砂生产的铸钢件易产生热裂等缺陷,以及磺酸固化剂热分解时产生的气体,导致铸钢件表面渗碳、渗硫,以及呋喃树脂砂环境污染等问题,使一些铸钢厂又开始采用酯硬化碱性酚醛树脂砂。不过,直到今天,水玻璃砂造型、制芯工艺,还是铸钢件生产中最基本、用量最多的一种造型、制芯方法。由于这三种自硬砂各有其优缺点,目前在我国这三种工艺并存,各厂都是根据本厂铸钢件生产的特点和批量,生产的现状和未来的要求等多方面进行综合考虑,而确定本厂的造型、制芯工艺。例如,二重厂、广重厂等生产中使用了酯硬化碱性酚醛树脂砂,大重厂、沈重厂和一重厂等采用无氮呋喃树脂砂,其余的,包括铁道部下属的20多个机车车辆厂,还是采用水玻璃砂。 总之,人们总是希望能以较高的生产效率、较低的制造成本、较好

的作业环境,生产出优质的铸钢件来,可是,到目前国内外还没有一种造型、制芯工艺能同时满足上述的全部要求,为此,下面将从生产效率、铸件质量、环境污染和制造成本等四个方面,对水玻璃砂、呋喃树脂砂和碱性酚醛树脂砂等三种自硬砂的工艺性能进行对比分析,以供参考。 二.生产效率 目前在铸造生产中得到广泛应用的造型、制芯工艺有三大类:热硬砂(如热芯盒、覆膜砂等)、气硬冷芯盒砂(如三乙胺聚脲烷、CO2水玻璃砂、SO2呋喃树脂砂等)和自硬砂(如酯硬化碱性酚醛树脂砂、酸固化呋喃树脂砂、酯硬化水玻璃砂和胺固化聚脲烷砂等)。而对铸钢件生产来说,特别是生产中、大型铸钢件时,前两种工艺均不适用,目前主要是采用自硬砂为主。所谓自硬砂系指一种粘结剂,通过加入一种液体固化剂,使之在室温下在一定时间内,型、芯砂能在砂箱中,或芯盒内自行硬化成型的一种造型、制芯工艺。这种工艺最大的特点是,生产效率低,所以,自硬砂的造型、制芯效率就成为衡量该自硬砂工艺性能的重要指标。作为衡量自硬砂生产效率大小的量度,一般采用型、芯砂的可使用时间与其起模时间的比值来表示,即其比值的大小表示在型、芯起模时间一定时,型、芯砂可使用时间的长短的一个标志,一般取值范围在0~1之间,接近1的高比值的自硬砂,表示它具有较高的造型、制芯的生产效率,从而,模具、工装的周转率也可加快,表1列出四种自硬砂的比值。从表中的比值对比可知,酯硬化碱性酚醛树脂砂排在第二位,表示它的硬化速度较快,生产效率较高。酸硬化呋喃树脂砂排在第三,而酯

新型水玻璃自硬砂工艺在铸钢生产中的应用

新型水玻璃自硬砂工艺在铸钢生产中的应用 一.前言 目前国内外冷凝自硬砂工艺主要分为二大类:无机类粘结剂以水玻璃砂工艺为主,有机类粘结剂以呋喃和碱性酚醛树脂砂工艺为主。以上二大类自硬砂工艺在二十世纪下半期至今在全世界铸造业应用并不断成熟完善。但此二种工艺在性能上各有特点,也存在问题。特别在铸钢、合金钢件的铸造时有明显工艺上的不足。CO2硬化水玻璃加入量高(一般为7%~8%),砂的残留强度高,溃散性差,旧砂再生回用困难。有机粘结剂树脂砂工艺的出现,在一定程度上解决了CO2水玻璃砂的固有缺陷,但碱性酚醛树脂成本高,呋喃树脂砂易出现铸件裂纹、气孔等缺陷。水玻璃“新三法”(VRH、微波烘硬、有机脂)的问世,使水玻璃的加入量降低了一半,溃散性大有改善,但新“三法”在工艺上存在着一定的缺陷,VRH 法因设备投资大及铸件尺寸受真空室限制;微波烘硬法因铸型吸湿性强及电微波转化率低;回用砂率综合性能差等缺点,严重制约了水玻璃砂的发展。 随着水玻璃基础理论研究的不断进展,水玻璃砂溃散性差和旧砂再生困难等缺点并非水玻璃的固有特性。它来源于对水玻璃化学和胶体化学认识不足和使用不当(1)。目前国内以沈阳汇亚通铸造材料有限责任公司等单位在这方面的研究取得了领先。他对普通水玻璃进行一系列化学和物理改性及电离子架接,研制开发了新型水玻璃和专用酯类固化剂自硬砂工艺,为水玻璃砂的第三次中兴产生了质的飞跃。 二.新型水玻璃酯硬砂工艺的应用 我公司年产阀门承压铸钢件2000余吨,产品以单价小批量为主,壳体主要壁厚10~60mm,且薄件居多。材质牌号有普通碳素钢,耐热耐高温铬钼钢、铬钼钡钢及各种耐酸不锈钢。其中有30%是电站阀门铸件,有20%左右是出口阀门配套铸件。因此,对造型工艺及材料要求相当苛刻。我们于2000年下半年开始对原粘土砂工艺进行技术改造,要求采用新工艺、新材料,以低成本高质量满足当前生产及市场竞争的需要,在选择工艺方案阶段,我们对普通水玻璃自硬砂,呋喃树脂自硬砂及新型水玻璃自硬砂三种砂型工艺,分别在不同材质、不同品种的阀门铸钢件上进行了工艺试验,试验用原砂为福建平潭优质擦洗硅砂,粒度为40/70目,SiO2含量≥96%,含泥量和含水量分别≤0.5%,角形系数≤1.25%,

自硬呋喃树脂检验标准

自硬呋喃树脂检验标准 编号:GY(T)-417-2013-J 1.适用范围 适用于本公司采购铸造用自硬呋喃树脂的检验。 2.质量标准 2.1 外观 铸造用自硬呋喃树脂为淡黄色至棕色透明或半透明均匀液体。 2.2 各种牌号的铸造用呋喃树脂其他有关的性能指标应符合下表的规定。 项 目 SQG-300性能指标 备注 粘度(20℃),mPa ·s ≤25 检验 密度(20℃),g/cm3 1.15~1.19 查看供方质量合格证明 游离甲醛含量,% ≤0.4 含氮量,% ≤2.5 水分 ≤2.0~6.0 工艺试样强度/MPa 抗拉强度不低于 1.2(24h) 保值期 不少于360天 3.检查及试验 3.1 检查批量及单位的构成 同一次反应釜产生的树脂作为一个检查批量,以每桶为一个检查单位。 3.2 取样方法 如果从铁桶取样时,以桶数为单元数,单元数小于151时,取样单元数按下表。取样时,采样管使用玻璃制品,长度应大于桶高的2/3,直径自定。将被采样品用人工摇匀后,每桶采样数量应不少于100g 。 总体物料 单元数 1~10 11~49 50~64 65~81 82~101 102~125 126~151 选取的最 小单元数 全部单元 11 12 13 14 15 16 3.3 检查顺序、检查项目、检查方式、检查方法以及判定标准。如下表 顺序 检查项目 检查方式及条件 检查方法 单位判定基准 1 外观 n=1 Ac=0 Re=1 目测 按2.1项 2 性能 查看合格证明书 按2.2项 注:供方应在每批交货中附质量合格证明书(注明:供方名称、型号、类别、以

及相应的化学成分等),每半年提供国家或第三方公认试验机构的试验报告。且每个外包装上应有清晰、牢固的标志,其内容包括:产品名称、标准号、生产厂名称、地址、注册商标、净含量、生产日期、批号。 4.检查后处理 4.1 合格批次:由质管员填写《进货检验单》并在《进货报检单》上签字确认。 4.2 不合格批次:按《不合格品的控制程序》进行标识,并在《进货报检单》上填写处理意见。 5.相关文件 (1)《不合格品的控制程序》 (2)JB/T 7526—1994《铸造用自硬呋喃树脂》 6.记录 (1)《进货报检单》 (2)《进货检验单》

树脂自硬砂工艺

树脂自硬砂工艺 在中小型铸造车间的选择与应用机械工业部第九设计研究院

树脂自硬砂工艺在中小型铸造车间的应用 机械工业部第九设计研究院吴殿杰 摘要:树脂自硬砂工艺与普通潮模砂工艺相比,不论从环保角度,还是从经济效益,社会效益来看,都已显示出广阔的应用前景。随着人们对产品质量,资源利用和环净保护意识的增强,尤其针对我国目前上万家中小型铸造车间存在的严重能耗及铸件质量问题,更加迫切地要求我们在生产过程及其产品消耗的资源尽可能少,对环境的污染尽可能少。通过全国400多家树脂砂铸造车间经验证明,采用树脂自硬砂工艺对促进铸造产品上质量,上水平,上效益,加强环保及提高企业竞争能力具有独特的优越性和推广价值。 主题词:树脂自硬砂环保效益 1.国树脂砂工艺应用概况 1.1国中小型铸造车间生产状况 目前,我国铸造行业单件小批生产的中小型铸造车间占很大比重,约占厂点 数的85%~90%,约占全国铸件年产量的50%左右。其中绝大部分仍采用较落后的生产工艺和方法,普遍存在着铸件质量差,能耗大,工人劳动强度大,经济效益差的局面。进些年来,许多铸造生产厂家为了适应市场经济的发展,尤其为适应引进产品制造技术的需要,相应地对现有铸造车间进行了技术改造。其中许多厂家采用了树脂自硬砂工艺。如柴油机厂,汽车发动机厂,天津燃机厂以及许多机床厂,阀门厂,水泵,兵器,船舶等行业都相继采用了树脂自硬砂生产工艺。据不完全统计,到目前为止,国大陆约有400余铸造厂家(点)采用树脂自硬砂工艺,其经济效益和社会效益非常显著。 1.2主要采用的树脂自硬砂工艺 通常用于铸造生产的树脂自硬砂工艺有酸固化呋喃树脂自硬砂工艺和碱固化酚醛尿烷树脂自硬砂工艺(PEP SET工艺)。前者多用于机床,泵,阀体行业等中小批量铸件的生产,后者多用于汽车铸造行业等批量较大的铸件生产。 “自硬法”(NO BAKE),就是不需加热的工艺。目前用于铸造生产的树脂自硬砂工艺还有如下: 酸固化酚醛树脂砂工艺(Phenolic/Acid) 酚醛-酯自硬砂工艺(Phenolic/Ester) 油尿烷工艺(Oil/Urethan) 水玻璃酯自硬工艺(Silicate/Ester) 磷酸氧化铝工艺(Alumina/Phosphate) 所有树脂自硬砂工艺所涉及到的都包括树脂组份,催化剂,添加剂以及温度,水份含量,原砂质量,混砂操作等。 1.2.1呋喃树脂自硬砂工艺 这是国目前采用比较普遍且较为成熟的一种工艺,从树脂等原辅材料到造型,制芯,再生设备等,国都已形成一定的生产规模。 呋喃树脂自硬砂工艺能使砂型(芯)达到高的尺寸精度及砂铁(及其它合金)临界面的稳定性,且脱模性好,又有高的抗拉强度和高温热强度,可用于脱箱造型,砂铁比可低于2:1。是许多机床,泵,阀门等铸造行业的主要选择工艺之一。 呋喃树脂的加入量通常是0.9%~2.0%(对砂子),催(固)化剂的加入量通常是20%~60%(对树脂)。为了提高铸型的强度和耐湿性,往往还加些硅烷耦合剂。

树脂砂铸造生产工艺

树脂砂铸造生产工艺 为规树脂砂铸造的生产过程,严格执行操作工艺,减少因违反工艺或操作不当产生的废品和降低的铸件生产成本,特制定本生产操作工艺规程。本工艺规程适用于公司所有树脂砂铸件的生产全过程和与之相关的各类操作人员。下面节选一部分供大家参考阅读。 工艺规程 3.1 主要原材料的技术要求或规格 3.1.1原砂(天然石英砂) 粒度:40/70目(件)或50/100目(一般件); 化学成分:SiO2 >90% 、含泥量<0.2%~0.3% 、含水量 <0.1~0.2%;微粉含量(140目筛以下) ≤0.5~1.0%、耗酸值<5ml 、灼减量<5、粒型:圆形或多角形。 3.1.2再生砂 灼减量<3.0%;耗酸值<2.0ml;PH值<5 ;200目筛底盘<1%;底盘量<0.2%;含水量<0.2%; 粒形:圆形。 3.1.3呋喃树脂 含氮量2.0~5.0%;24h抗拉强度>1.5MPa;游离甲醛<0.3%;粘度<60mPa.s;密度1.15~1.25 g/cm3;游离酚<0.3%。 3.1.4固化剂 采用有机磺酸固化剂,其黏度一般控制在<200mPa.s,水不溶物的含量<0.1%,同时冷冻和随后的溶解之间要有可逆性。为了保证稳定的型砂可使用时间和硬化速度,可选用“a+b”固化剂或根据季节不同选用不同酸度型号的固化剂。

3.1.5涂料 采用醇基涂料。要求涂料的固体含量高,粉料粒度细,粉料及黏结剂的耐火度高,抗爆热能力强等。具体工艺性能要求有:密度 1.25~1.35 g/cm3;黏度6~7s;悬浮性(2h)>97%;涂刷性、流平性、渗透性、抗裂性要好,涂层强度要高。对于表面球化有深度要求的铸件,应采用氧化镁涂料。 3.2操作工艺规程 3.2.1再生砂准备 根据树脂砂再生设备的要求和工艺流程进行操作,获得满足工艺要求的再生砂。特别要注意控制好进入混砂机时的再生砂的温度,最好在25-35℃。 3.2.2砂、树脂、固化剂加入量的调整 (1)混砂机的流量测定 根据混砂机的设定要求,在正常的生产情况下,至少每四天进行一次流量测定。分别对相同时间砂、树脂、固化剂的流量进行称量,掌握时间流量。并先将砂流量按混砂机的公称流量进行调整。 (2)树脂量的调整 根据砂流量调整树脂的加入量,树脂加入量一般控制在型砂重量的0.8~1.2%,厚大件取上限,中小件取下限。 (3)固化剂量的调整 固化剂加入量在正常情况下与砂温和车间环境温度有关,一般控制在树脂加入量的30~50%,高温时取下限,低温时取上限。放砂时间长的大件固化剂加入量取下限,以保证树脂砂有足够的可使用时间。 (4)混砂机的调整与准备

自硬呋喃树脂砂

自硬呋喃树脂砂 第一章/ 概论 1 — 1 自硬呋喃树脂砂的概念 自硬呋喃树脂砂的命名来源于英语的Furan No-Bake process,它表示以呋喃树脂为粘结剂,并加入催化剂混制出型砂,不需烘烤或通硬化气体,即可在常温下使砂型自行固化的造型方法。通常被简称为“冷硬树脂砂”,甚至“树脂砂”。以下介绍两个基本概念。 一、呋喃树脂的概念 由碳原子和其它元素原子(如O、S、N等)共同组成的环叫做杂环、组成杂环的非碳原子叫杂原子。含有杂环的有机化合物叫做杂环化合物。所谓“呋喃”,是含有一个氧原子的五员杂环有机化 合物,它是表示一族化合物的基本结构总称。 在呋喃系中不带取代基的杂环作为母体,叫做“呋喃”,它的衍生物则根据母体来命名。呋喃本身在互业上并无什么用途,但它的衍生物——糠醛和糠醇,却是互业上的重要原料,它们是最重要的呋喃衍生物,糠醛学名叫α——呋喃甲醛,糠醇学名叫呋喃甲醇。它们的分子结构如下: 含有糠醇的树脂称为呋喃树脂。作为铸造粘结剂用的呋喃树脂一般是用糠醇(FA)与尿素、甲醛或苯酚等缩合而成的,如尿醛呋喃树脂(UF/FA)、酚醛呋喃树脂(PF/FA)、酚脲醛呋喃树脂(UPF-FA) 和甲醛——糠醇树脂(F/FA)等。 二、呋喃树脂的硬化机理 根据呋喃树脂的组成不同,分别可以通过加热、通入硬化气体或添加酸催化剂等方法使其固化。酸催化(即“自硬”)的呋喃树脂一般糠醇含量都超过50%。其硬化机构很复杂,现在还未完全弄清楚,但基本的树脂化反应包括了糠醇的第一醇基和呋喃环的第五位氢之间的脱水缩合,此外呋喃环的断裂生成乙酰丙酸,第一醇基间脱水生成醚和醛等等的反应。图1-1为呋喃树脂粘结剂的成分和代表 性的呋喃自硬树脂结构的一例。 初期阶段

四种自硬砂地选择

四种自硬砂的选择 随着我国机械工业产品质量的升级及出口铸件市场的不断扩大,在铸造车间技术改造中,有越来越多的企业首选自硬砂工艺替代原有粘土砂干型铸造工艺。在本企业技改中如何根据自身的产品特点选择合适的自硬砂工艺及相应设备是技改中普遍关心的核心问题。笔者结合近几年的实践就这一问题提出一点个人观点与同仁们共同探讨。 1.自硬砂工艺的选择 自硬砂工艺是指在常温下,型砂能自行硬化并获得浇注要求强度的造型工艺的统称。近几年得以较快发展的自硬砂主要有:呋喃树脂自硬砂、碱酚醛脂硬化自硬砂、脲脘树脂自硬砂(Pep—set自硬砂)、脂硬化改性水玻璃自硬砂。这些自硬砂各有优缺点,应根据各企业不同的生产及产品特点择优选用。1.1呋喃树脂自硬砂:这是应用最多、最广、工艺最成熟的自硬砂,而且相对铸件成本较低、旧砂利用率高、旧砂再生简单,是技术改造的首选自硬砂工艺。呋喃树脂砂在灰铁、球铁、铸钢、有色等铸造中都得到极其广泛地应用。但是由于呋喃树脂砂高温退让性差,树脂中含有较高的N,固化剂中含有S,因此一些壁厚不匀的铸钢件容易造成热裂,厚大铸钢件易造成N气孔,一些高牌号球铁件易造成球化衰退,一些低碳铸钢件还易造成增碳,在选用工艺及选用树脂种类时应引起足够重视。这种工艺一般用于单件小批量生产性质的铸铁生产中。 1.2碱酚醛脂硬化树脂自硬砂:其是为克服呋喃树脂自硬砂的一些缺点发展起来的,国外称α—set 工艺。由于其完全不含N,固化剂不含S,用于铸钢、合金钢铸件不会产生N气孔、针孔缺陷。由于碱酚醛树脂砂常温下只有部分树脂发生交联反应,在浇注金属受热时还有一个再硬化的过程,因此这种树脂砂的高温尺寸稳定性好,铸件尺寸精度高,因此在铸钢特别是合金钢件、大型铸钢件的生产上应用愈来愈广。但碱酚醛树脂砂常温强度较低,树脂加入量较大,铸件成本较高。碱酚醛树脂砂的硬化剂是有机脂,调节硬化时间只能用脂的品种而不能用加入量调节。另外酚醛树脂粘度较大,可存放期短,使用中需要注意。 1.3酚脲烷树脂自硬砂(Pep—set工艺):Pep—set工艺在近两年发展较快,其综合了呋喃树脂与碱酚醛树脂和特点,进一步提高了工艺适应性,其具有优越的硬化特性的同时也具有较好的高温退让性。硬化时间可以在~15分钟内调整,生产效率高,有利用造型线批量生产。通过三种粘结剂组元比例的调整,可以保证足够长的可使用时间,一旦开始固化又能迅速达到浇注强度,具有较好的浇注性能及工作时间/起模时间比特性。由于高温退让性好,可以生产薄壁复杂件而不必担心铸件裂纹,既适应铸件、铸钢,也广泛用于有色合金铸件的生产,克服了呋喃树脂砂的性能缺陷,工艺适应性较强。同时对涂料要求较低,一般铸铁件不刷涂料而通过一些添加剂也能生产出表面光洁的铸件。对再生设备的要求及回收率与前两种工艺基本相同,而混砂设备需要增加一套液料系统且流量控制要求精确度较高。 Pep—set工艺一般用于薄壁复杂铸件(铸铁、铸钢、铸铝)的生产,也适宜于自动化造型线作业。对多材质、小批量生产性质也有一定适应性。 1.4脂硬化改性水玻璃砂工艺:这是为克服CO2水玻璃砂的两大难题(溃散性差、旧砂再生难)而开发的新一代水玻璃自硬砂。其基本原理是通过加入一定量的改性剂以提高水玻璃的粘结强度、降低型砂中水玻璃加入量,采用这种工艺能使水玻璃加入量降低到~%,溃散性接近树脂砂。该自硬砂继承了CO2水玻璃砂高温退让性好的优点,而且环保效果较好,因而在铸钢生产上得到应用。铁路提速而取消水爆清砂后,在铁路系统广泛用于摇枕、侧架铸件(薄壁复杂件)的生产。 该种工艺的粘结剂价格较之碱酚醛及Pep—set相对低一点,但一般机械再生的砂回收率只能达到80%左右,再生成本也相对较高,据一些用户反映其工艺稳定性相对差一点,可使用时间及强度随循环次数变化较大,再生砂做面砂使用时必须加入大量新砂。因此,该种工艺一般用于有特殊要求的铸钢件生产上,规模生产时应慎重选择。 2.关于自硬砂再生设备

浅谈树脂砂铸造中的砂芯涂刷工艺

浅谈树脂砂铸造中的砂芯涂刷工艺 摘要:涂料是影响树脂砂铸件质量的一个重要因素,对树脂砂型芯所用涂料性能和施涂工艺的正确认识,并且以此选用性能优良的涂料和正确的施涂工艺,是获得优质树脂砂铸件必不可缺少的条件。本文阐述了树脂砂铸造中的砂芯涂刷工艺的一些问题和改进措施。 关键词:树脂砂铸造,涂料,涂刷工艺,砂芯 树脂砂是铸造中常用的造型、制芯方法之一,适用于多品种、小批量铸件的生产,具有流动性好,浇出的铸件尺寸精度高,表面光洁度好,浇注后的型砂溃散性好,容易再生等特点,在机床、水利机械、工程机械、矿石机械等领域普遍使用。树脂砂铸件在铸造过程中,涂料与涂刷工艺是影响铸件表面质量的重要因素,需要重点关注。 一、涂料的作用和选择 在铸造过程中,是否使用涂料需要考虑到清沽费用、修整费用和废品率等铸件成本后决定。一般来说,涂料可以起到防止渗漏,防止冲砂,防止粘砂,改善铸件表面质量,降低清沽费用,减少废品率等作用。铸型涂料与一般涂料不同之处在于,铸型涂料受得了高温融化的金属,并且在融化的金属与铸型之间形成一个阻隔层。通常来说,铸型涂料是把高熔点物质或者耐火物质悬浮在液体当中,当然,除了有耐火物质,铸型涂料还含有其他很多成分。 在实际生产中,铸型涂料必须具有以下特质:①具有优良的触变性、流平性、渗透性、涂敷性,涂层无刷、流痕等;②涂料具有优良的悬浮稳定性,水基涂料6小时悬浮性达到99%以上。③涂料具有很好的抗粘砂性能,浇注出的铸件表面光洁度好,轮廓清楚、无粘砂。④涂料的使用方法简单方便,可用于刷涂、喷涂、浸涂、流涂等工艺。⑤涂层烘干后,具有较高的强度和高温抗裂性,1300℃爆热1~2分钟涂层不开裂、不起泡。⑥涂料质量稳定、使用方便,特别是浅(白)色涂料,对改善劳动环境有显著效果。 为了不让涂料过多的渗入到砂型深处,影响涂层的干燥程度,并保证涂层厚度,提高抗金属液渗透的能力,涂料必须有一定的浓度,在涂刷性能良好的情况下,应保证涂料浓度并在涂刷前搅匀。

铸造术语

铸造术语 Foundry terminology GB/T 5611-1998 1 范围 本标准规定了铸造用材料、铸造合金、铸造工艺和铸造设备等方面的基本术语和定义。 本标准适用于铸造标准制定、技术文件编制、教材和书刊编写以及文献翻译等。 2 基本术语 2.11铸造用材料foundry materials 用于铸造生产的原材料和工艺材料。 2.12铸造工艺材料consumable materials 在铸造生产的熔炼、浇注、造型材料制备、造型(芯)等过程中所用的消耗性材料。不包括可转化为铸件的金属材料。 2.19铸造三废foundry effluent 从铸造车间排出的废气、废水和废渣的总称。 3 铸造合金及熔炼、浇注 3.1.15合金遗传性alloy heredity 重熔后金属或合金仍保持重熔前的某些性质。 3.1.16铸态组织as-cast structure 合金在铸造后未经任何加工处理的原始宏观和微观组织。3.1.22附铸试块testlug 连在铸件上,切除以后不损坏铸件本体的试块。加工成试样后用于检验铸件的化学成分、金相组织、力学性能等。 3.1.23本体试样test specimen from casting itself 为检测铸件本体的成分、组织和性能,在铸件本体规定部位切取的试样。

3.3.8高韧性球墨铸铁high ductility nodular graphite iron 具有一定强度及较高伸长率(>10%)和冲击韧度,基体为铁素体的球墨铸铁。分为铸态高韧性球墨铸铁和退火高韧性球墨铸铁。 3.3.18蠕墨铸铁[蠕铁,紧密石墨铸铁]vermicular graphite cast iron, compacted graphite cast iron 金相组织中石墨形态主要为蠕虫状的铸铁。 3.3.58硅碳比silicon-carbon ratio 铸铁中含硅量与含碳量之比。硅碳比对铸铁的凝固和相变特性、金相组织、力学性能和铸造性能都有显著影响。 3.3.73石墨化退火graphitizing annealing 使铸铁中渗碳体全部或部分转变为石墨的热处理工艺。分为低温和高温石墨化退火两类。低温石墨化退火用于降低铸铁硬度,使部分共析渗碳体分解,加热温度一般为720-750℃;高温石墨化退火温度一般为900-980℃,用于获得铁素体球墨铸铁或可锻铸铁第一阶段石墨化退火。 3.3.80球化率percent of spheroidization 在放大100倍的光学显微镜视场中球状石墨个数占石墨总个数的百分率。 3.3.81石墨球数[球墨数]number of nodular graphitesi 在放大100倍的光学显微镜视场中,球墨铸铁显微组织每平方厘米面积内球状石墨的个数。 3.3.86干扰元素interference element 球墨铸铁中干扰石墨球化,使石墨畸变的微量元素。分为三类:(1)消耗型(硫、氧、硒、碲等),与镁及稀土元素反应消耗球化元素;(2)晶界偏析型(锡、锑、砷、铝、硼、矾等),在奥氏体中溶解度很小,增加铁液中碳的活度,使碳在共晶转变后期结晶成畸形的枝晶石墨;(3)综合型(铅、铋等),兼有消耗球化元素和晶界偏析、促进石墨畸变的作用。 3.5.13中间合金[母合金]master alloy 为了便于把合金元素(尤其是易氧化和难熔元素)加入铸造合金而特殊制备的合金。它比直接加入某种元素更能准确地控制铸造合金的成分和简化操作过程。中间合金成分的选择,首先要考虑使合金处于脆性区,以便使用时易于敲碎;其次是使其熔点尽可能低,以简化铸造合金的熔炼操作。

铸造用呋喃树脂砂

第一章铸造用呋喃树脂砂概述 一、自硬呋喃树脂砂的特点 1. 优点: 1)铸件表面光洁、棱角清晰、尺寸精度高; 2)型砂的溃散性好,清理、打磨容易,从而减少了落砂清铲修整工序中对铸 件形状精度的损害; 3)由于在各个工序中都最大限度的排除了影响铸型、铸件变形和损坏的因 素,所以树脂砂铸件的铸件表面质量、铸件几何尺寸精度方面比黏土可以提高1~2级,达到了CT7~9级精度和1~2mm/600mm的平直度,表面粗糙度大有改观; 4)减轻劳动强度大大改善了劳动条件和工作环境,尤其是减轻了噪声、矽 尘等,减少了环境污染; 5)树脂砂型(芯)强度高(含高温强度高)、成型性好发气量较其它有机铸型 低、热稳定性好、透气性好,可以大大减少铸件的粘砂、夹砂、砂眼、气孔、缩孔、裂纹等铸件缺陷,从而降低废品率,可以制造出用黏土砂难以做出的复杂件、关键件; 6)旧砂回收再生容易可以达到90%左右的再生回收率。在节约新砂、减少 运输、防止废弃物公害方面效果显著。 2. 缺点: 1)对原砂要求较高,如粒度、粒形、SiO2含量、微粉含量、碱金属盐及黏土 含量等都有较严格要求; 2)气温和湿度对硬化速度和固化后强度的影响较大; 3)与无机类黏结剂的铸型相比,树脂砂发气量较高,如措施不当,易产生气 孔类缺陷; 4)与黏土砂相比,成本仍较高; 5)对球铁件或低碳不锈钢等铸件,表面因渗硫或渗碳可能造成球化不良或增 碳,薄壁复杂铸钢件上易产生裂纹等缺陷; 6)浇注时有刺激性气味及一些有害气体发生,CO气发生量较大,需要良好 的通风条件。

二、自硬呋喃树脂砂原辅材料 1. 原砂: 原砂品质对树脂用量,树脂砂强度以及铸件质量影响很大,某些工厂由于忽视对原砂质量的严格要求,给生产带来很多麻烦。表1列举了不同大小和材质的铸件采用原砂的技术指标。 表1 树脂自硬砂用原砂的技术指标(质量分数,%) ①微粉:对30/50、40/70筛号的原砂、140筛号以下为微粉;对50/100、70/140筛号的原砂,200筛号以下为微粉;对100/200筛号的原砂,270筛号以下为微粉。 酸自硬树脂砂除个别的、特殊要求之外,一般都采用硅砂,对硅砂的具体要求是: 1)原砂SiO2含量要高,一般铸钢件w(SiO2)≥97%,铸铁件w(SiO2)≥90%, 非铁合金铸件w(SiO2)≥85%; 2)酸耗值应尽可能低,一般小于等于5ml; 3)含泥量越小越好,一般质量分数小于0.2%,颗粒表面应干净、不受污染, 以保证砂粒与树脂膜之间有高的附着强度,因此应尽可能采用经过擦洗 处理的擦洗砂;

呋喃树脂自硬砂控制技术

呋喃树脂自硬砂控制技术 程利军零正技罗勇 广西柳工机械股份有限公司广西柳州545007) 摘要本文主要从硅砂的性能要求、造型过程的控制和再生砂的回用等对呋喃树脂自硬砂技术进行了探讨,供广大铸造同行参考。 关键词呋喃树脂自硬砂硅砂造型再生砂在线检测 随着中国制造业近几年的长足发展,中国的铸造业也迎来了历史上最好的发展机遇。目前,我国铸件的产量已连续多年位居世界之首。呋喃树脂自硬砂工艺由于其生产周期短、铸件表面精度高、铸件质量容易控制、柔性化制造能力高等特点,已经被广泛的应用到机床铸件、耐磨铸件、工程机械铸件等产品中。而铸造企业能否发挥呋喃树脂自硬砂的特点,有效的提高铸件的质量,这与型砂的控制技术有着密切的关系。砂型铸造行业公认型砂控制技术、熔炼控制技术和管理水平三者决定了一个铸造厂在市场上的竞争能力,由此可见型砂的控制技术在铸造业中的重要性。本文就呋喃树脂砂的一些控制技术提出一些个人的观点,希望同行提出批评指正。 1硅砂的技术要求 1.1 硅砂的粒度组成 硅砂的粒度反映了硅砂的颗粒大小和分布状态。由于自硬砂强度的获得是依靠呋喃树脂“包覆”硅砂表面形成的高分子链,所以硅砂的粒度越细,从理论上说获得同样强度的树脂消耗量就越大,型砂的成本也就越高,所以在保证铸件不发生粘砂缺陷的前提下,尽可能提高硅砂的粒度。

1.2硅砂的角形系数 硅砂的角形系数S=Sw/St 图l试样抗拉强度与型砂粒度关系 注:实验型砂组成的余量为0.212目以下 Sw一硅砂的实际比表面积(cm2/g) St一硅砂的理论比表面积(cm2/g) 硅砂的角形系数越小,表面就越园整,同样体积的硅砂表面积越小,硅砂和呋喃树脂的物理和化学结合力就越强,获得同样的抗拉强度需要的树脂消耗量就越低。作为自硬砂用的硅砂角性系数要求≤1.30,最好≤1.15。 1.3硅砂的加工处理 由于天然硅砂有大量直径小于0.02的泥分和一些污染物和一些有碱性的物资,泥分的存在极大的降低了硅砂的粒度组成,提高了树脂的消耗量,同时有碱性的物资在树脂砂硬化过程中消耗了大量的催化剂——对甲苯磺酸等物资,造成砂型硬化很慢甚至不硬化,所以硅砂必须经过擦洗和粒度分选处理。在处理过程中,必须注意对擦洗用水的管理。一些硅砂供应商擦洗用水控制不严,导致含泥量超

新型水玻璃自硬砂工艺在铸钢生产中的应用

新型水玻璃自硬砂工艺在铸钢生产中的应用 作者:浙江永嘉兰开铸造公司刘建强黄云天 .、八、- 一?刖言 目前国内外冷凝自硬砂工艺主要分为二大类:无机类粘结剂以水玻璃砂工艺为主,有机类粘结剂以呋喃和碱性酚醛树脂砂工艺为主。以上二大类自硬砂工艺在二十世纪下半期至今在全世界铸造业应用并不断成熟完善。但此二种工艺在性能上各有特点,也存在问题。特别在铸钢、合金钢件的铸造时有明显工艺上的不足。C02硬化水玻璃加入量高(一般为7%-8%),砂的残留强度高,溃散性差,旧砂再生回用困难。有机粘结剂树脂砂工艺的出现,在一定程度上解决了CO2水玻璃砂的固有缺陷,但碱性酚醛树脂成本高,呋喃树脂砂易出现铸件裂纹、气孔等缺陷。水玻璃“新三法” (VRH微波烘硬、有机脂)的问世,使水玻璃的加入量降低了一半,溃散性大有改善,但新“三法”在工艺上存在着一定的缺陷,VRH法因设备投资大及铸件尺寸受真空室限制;微波烘硬法因铸型吸湿性强及电微波转化率低;回用砂率综合性能差等缺点,严重制约了水玻璃砂的发展。 随着水玻璃基础理论研究的不断进展,水玻璃砂溃散性差和旧砂再生困难等缺点并非水玻璃的固有特性。它来源于对水玻璃化学和胶体化学认识不足和使用不当 (1)0目前国内以沈阳汇亚通铸造材料有限责任公司等单位在这方面的研究取得 了领先。他对普通水玻璃进行一系列化学和物理改性及电离子架接,研制开发了 新型水玻璃和专用酯类固化剂自硬砂工艺,为水玻璃砂的第三次中兴产生了质的飞跃。 二.新型水玻璃酯硬砂工艺的应用 我公司年产阀门承压铸钢件2000余吨,产品以单价小批量为主,壳体主要壁厚 10~60mm且薄件居多。材质牌号有普通碳素钢,耐热耐高温铬钼钢、铬钼钡钢及各种耐酸不锈钢。其中有30%是电站阀门铸件,有20%左右是出口阀门配套铸件。因此,对造型工艺及材料要求相当苛刻。我们于2000年下半年开始对原粘土砂工艺进行技术改造,要求采用新工艺、新材料,以低成本高质量满足当前生产及市场竞争的需要,在选择工艺方案阶段,我们对普通水玻璃自硬砂,呋喃树脂自硬砂及新型水玻璃自硬砂三种砂型工艺,分别在不同材质、不同品种的阀 门铸钢件上进行了工艺试验,试验用原砂为福建平潭优质擦洗硅砂,粒度为40 / 70 目, SiO2含量》96%,含泥量和含水量分别w 0.5 %,角形系数w 1.25 %,

相关文档
最新文档