z变换与离散时间傅里叶变换
数字信号处理复习 (3)

式。
4、正弦型序列
x(n) sin(n )
要求:会判断正弦型序列的周期性
四、正弦序列的周期性
x(n) sin(n ) 的周期有三种情况:
2 1 、 N 是整数,则x(n)是周期序列,周期为N;
2 P 2、 是有理数,(其中P、Q为互质整数), Q
则x(n)是周期序列,周期为P;
m
x ( m) h ( n m)
上式中,若序列x(n)和h(n)的长度分别是M和L,
则y(n)的长度为L+M-1。
三、几种常用序列 1、单位抽样序列δ(n) (1)定义式
1 (n 0) ( n) 0 (n 0)
1 (n m) ( n m) 0 (n m)
n
1.2 线性、移不变(LSI)系统 一、线性系统: 若y1(n)=T[x1(n)]、y2(n)=T[x2(n)], 则a1 y1(n)+ a2y2(n)=T[a1x1(n)+ a2x2(n)]
例:判断下列系统是否线性系统。
y(n)=x(n)+1 y(n)=x(n+5) y(n)=x(3n)
二、移不变系统:
当n<0时,h(n)=0,则系统是因果系统。
例:下列单位抽样响应所表示的系统是否因果系统? A.h(n)=δ(n) C.h(n)= R10(n) B.h(n)=u(n) D.h(n)=e-20nu(n)
五、稳定系统 1、稳定系统的定义: 稳定(BIBO)系统是指当输入有界时,输出也有界的系统。 例:判断下列系统是否稳定系统。 y(n)=x(n-2)
二、掌握用留数法求Z反变换的方法
例:已知
X( z) 1 (1 2 z 1 )(1 1.2 z 1 )
第六章 Z变换

6.3 z变换的反变换
2π j , 柯西公式: ∫ z dz = C 0,
n
m = −1 m ≠ −1
6.3 z变换的Βιβλιοθήκη 变换6.3 z变换的反变换
6.3 (1)幂级数展开法
6.3 (1)幂级数展开法
6.3 (1)幂级数展开法
例2 、 x[ n] = u[ n]
X ( z) = ∑ z
n =0
+∞
−n
1 = , z >1 −1 1− z
+∞ 1 X (ω ) = + π ∑ δ (ω − 2kπ ) − jω 1− e k = −∞
例3、
x[n] = − a u[− n − 1]
n
−1 n −n
a z X ( z) = − ∑ a z = − ∑ a z = − −1 1− a z n = −∞ n =1 1 = ,z <a −1 1 − az
第6章 Z变换 章 变换
引言
x(n) = z
n
LTI
y(n) = H(z)z
n
h(n)
H (z) =
jω
n = −∞
∑
+∞
h(n ) z −n ,
H ( z ) 为 h ( n )的 z 变换 .
z = re , 当r=1时,即为h( n)的傅立叶变换。
z变换是离散时间傅里叶变换的推广,在连续时 变换是离散时间傅里叶变换的推广, 变换是离散时间傅里叶变换的推广 间域内与拉氏变换相对应。 间域内与拉氏变换相对应。
(3) ZT[δ (n +1)] = ∑δ (n +1)z + ∑δ (n +1)z
n=0
离散傅里叶变换(DFT)

尾补L-M
(2) 第1行以后的各行均是前一行向右循环移1位
(3) 矩阵的各主对角线上的序列值均相等。
y(0)c x(0) x(L1) x(L2)
y(1)c
x(1)
x(0) x(L1)
y(2)c
= x(2)
x(1)
x(0)
y(L1)c x(L1) x(L2) x(L3)
m0
n'm
精选课件
N1
N1
X(k) x1(m)WN km x2(n')WN kn '
m0
n'0
X1(k)X2(k), 0kN1
由于 X ( k ) D F T [ x ( n ) ] X 1 ( k ) X 2 ( k ) X 2 ( k ) X 1 ( k ), 因此
x (n ) ID F T [X (k)] x 1 (n ) x2(n)x2(n) x 1 ( n )
精选课件
若 则
且
D[F x(n)T ]X (k) D [ x ( F n (m T )N R )N ( n ) ] W N m X ( k k ) ID [X (k F ( l)T N ) R N ( k ) ] W N n x ( ln )
证明:
N 1
N 1
Y ( k ) D F T [ y ( n ) ] N x ( ( n m ) ) N R N ( n ) W N k n x ( ( n m ) ) N W N k n
m0
(3.2.5)
yc(n)=h(n) x(n)
L称为循环卷积区间长度,L≥max[N,M]。
精选课件
dtft,dft和z变换的关系

dtft,dft和z变换的关系
DTFT、DFT和Z变换都是信号处理领域中常见的变换方法。
它们可以将时域信号转换为频域信号,或将离散时间域信号转换为复平面上的Z域信号。
虽然它们之间有些区别,但它们的本质都是通过数学方法来描述信号的频域特性。
DTFT是离散时间傅里叶变换的一种形式,可以将一个离散时间域信号转化为连续频域信号。
通过DTFT可以得到一个信号的频谱,从而分析信号的频域特性。
DTFT的公式是一个无限长的求和式,需要对信号进行无限次的积分,因此需要消耗大量的计算资源。
DFT是离散傅里叶变换的一种形式,它可以将一个N点离散时间域信号转化为N点频域信号。
相比于DTFT,DFT的计算量更小,因为它只需要对N个采样点进行有限次的计算。
因此,DFT常常用于实际信号处理中,比如在数字音频中进行频谱分析。
Z变换是一种复变函数的变换,可以将一个离散时间域信号转换为复平面上的Z域信号。
Z变换的主要应用是在数字控制系统和数字滤波器中。
通过Z变换,可以将差分方程转换为代数方程,从而进行系统分析和设计。
Z变换的公式类似于DTFT的无限长求和式,需要进行无限次的积分或求和。
综上所述,DTFT、DFT和Z变换都是信号处理中常用的变换方法,它们可以将时域信号转换为频域信号或复平面上的Z域信号。
虽然它们的应用场景和计算方法略有不同,但它们的本质都是描述信号的频域特性。
现代信号处理 总结1

第1章 离散时间信号与系统1、 傅里叶分析和Z 变换的区别、缺陷、特点关系:点数为N 的有限长序列x(n)的Z 变换为X(z),而其离散傅里叶变换为X(k),两者均表示了同一有限长序列x(n)的变换,它们之间的关系是:对z 变换在单位圆上取样可得DFT 。
而DFT 的内插就是变换。
傅里叶变换优缺点(1) 傅里叶变换缺乏时间和频率的定位功能 (2) 傅里叶变换对于非平稳信号的局限性(3) 傅里叶变换在时间和频率分辨率上的局限性傅立叶变换是最基本得变换,由傅里叶级数推导出。
傅立叶级数只适用于周期信号,把非周期信号看成周期T 趋于无穷的周期信号,就推导出傅里叶变换,能很好的处理非周期信号的频谱。
但是傅立叶变换的弱点是必须原信号必须绝对可积,因此适用范围不广。
Z 变换的本质是离散时间傅里叶变换(DTFT ),如果说拉普拉斯变换专门分析模拟信号,那Z 变换就是专门分析数字信号,Z 变换可以把离散卷积变成多项式乘法,对离散数字系统能发挥很好的作用。
Z 变换看系统频率响应,就是令Z 在复频域的单位圆上跑一圈,即Z=e^(j2πf),即可得到频率响应。
2、系统的记忆性、因果性、可逆性(1)记忆性如果系统在任意时刻n0的响应仅与该时刻的输入f(n0)有关,而与其它时刻的输入无关,则称该系统为非记忆系统(或系统无记忆性),否则称为记忆系统。
系统的记忆性有时也被称为动态特性。
该特性强调系统的响应是否仅与当前时刻的输入有关。
对于无记忆LTI 系统,其系统冲激响应为,其中()()h n K n δ=,K 为一常数。
由于系统频率响应是冲激响应的傅氏变换、系统函数为系统冲激响应的z 变换,因此,无记忆LTI 系统的系统频率响应和系统函数分别为H(ω)=K ,H(z)=K 。
(2) 因果性如果系统任意时刻的响应与以后的输入无关,则该系统称为因果系统(或系统具有因果性),否则为非因果系统。
该特性强调的是,系统的响应是否与未来的输入有关。
郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第8章 z变换、离散时间系统的z域分

(7)
X
z
1 2
n
u
n
u
n
10
z
n
9 n0
1 2
n
z
n
9 n0
1 2z
n
1
1 2z
1 1
10
z 0
2z
X(z)的零、极点分布图如图 8-2-1(g)所示。
(8)
8 / 75
圣才电子书
十万种考研考证电子书、题库视频学习平
X
z
n台
1 2
圣才电子书
十万种考研考证电子书、题库视频学习平
台
第 8 章 z 变换、离散时间系统的 z 域分析
8.1 复习笔记
从本章开始陆续讨论 Z 变换的定义、性质以及它与拉氏变换、傅氏变换的联系。在此 基础上研究离散时间系统的 z 域分析,给出离散系统的系统函数与频率响应的概念。通过 本章,读者应掌握对于离散时间信号与系统的研究,是先介绍 z 变换,然后引出序列的傅 里叶变换以及离散傅里叶变换(第九章)。
4 / 75
圣才电子书
十万种考研考证电子书、题库视频学习平
台
于实轴的直线映射到 z 平面是负实轴;
(3)在 s 平面上沿虚轴移动对应于 z 平面上沿单位圆周期性旋转,每平移 ωs,则沿
单位圆转一圈。
2.z 变换与拉氏变换表达式
Z
x nT X z zesT X s Z
n
u
n
1 3
n
u
n
z
n
n
(3)
X
z
n
1 3
n
u
n
z
n
n0
傅里叶变换 拉普拉斯变换 z变换
傅里叶变换拉普拉斯变换 z变换主题:傅里叶变换、拉普拉斯变换和z变换引言:在信号与系统领域,傅里叶变换、拉普拉斯变换和z变换是三种重要的数学工具。
它们被广泛应用于信号处理、图像处理、电路分析等领域。
本文将介绍这三种变换的基本概念和应用,并探讨它们之间的关系和特点。
一、傅里叶变换1.1 基本概念傅里叶变换是将一个函数表示为正弦和余弦函数的线性组合。
对于一个函数f(t),其傅里叶变换F(ω)定义如下:F(ω) = ∫[f(t)e^(-jωt)]dt其中,ω是频率,e^(-jωt)表示复指数函数。
1.2 特点和应用傅里叶变换具有如下特点:- 可以将一个信号分解成不同频率的分量,进而进行频谱分析。
- 可以将时域信号转换为频域信号,便于对信号的时频属性进行分析。
- 在信号处理中,傅里叶变换在滤波、频谱分析等方面有着重要的应用。
1.3 傅里叶变换的逆变换傅里叶变换的逆变换可以将频域信号恢复为时域信号。
逆变换的定义如下:f(t) = ∫[F(ω)e^(jωt)]dω二、拉普拉斯变换2.1 基本概念拉普拉斯变换是将一个函数表示为指数衰减函数的线性组合。
对于一个函数f(t),其拉普拉斯变换F(s)定义如下:F(s) = ∫[f(t)e^(-st)]dt其中,s是复数变量,表示频域变量。
2.2 特点和应用拉普拉斯变换具有如下特点:- 可以对连续时间信号进行频域分析,并描述系统的稳定性。
- 可以求解线性时不变系统的微分方程。
- 在控制系统、电路分析等方面有着广泛的应用。
2.3 拉普拉斯变换的逆变换拉普拉斯变换的逆变换可以将频域信号恢复为时域信号。
逆变换的定义如下:f(t) = (1/2πj)∫[F(s)e^(st)]d s,积分路径为垂直于Im(s)轴的线。
三、z变换3.1 基本概念z变换是傅里叶变换和拉普拉斯变换的离散形式,也是一种离散时间信号的频域分析方法。
对于一个离散时间信号f[n],其z变换F(z)定义如下:F(z) = ∑[f[n]z^(-n)]其中,z是复数变量。
第2章 z变换与DTFT
∞
∞
−1
∞
=∑ z +∑ z a a
n n n= 1 n=0
∞
n −n
az Q∑ z = a 1−az n= 1
n n
∞
az <1⇒ z <1/ a
az−1 <1⇒ z > a
1 Q∑ z = a 1−az−1 n=0
n −n
∞
∴ a ≥1 , 公 收 域 X z)不 在 当 时 无 共 敛 , ( 存
j Im z] [
C
Rx −
Rx +
0
R z] e[
变换与DTFT 第2章 z变换与 章 变换与
1 x(n) = X(z)zn−1dz c∈(Rx− , Rx+ ) 2 j ∫c π
利用留数定理求围线积分,令
F(z) = X(z)zn−1
若F(z)在围线c上连续,在c内有K个极点zk,则:
x(n) = ∑ es[F(z)]z=zk R
例: x(n) = RN (n)的 变 及 收 域 1 求 z 换 其 敛
解 X : (z)= ∑x(n)z−n = ∑RN (n)z−n
n=−∞ n=−∞ ∞ ∞
1− z−N =∑ −n = z 1− z−1 n= n=0 N z −1 = N−1 ) z (z −1
N− 1
q n1 − q n2 +1 qn = ∑ 1− q n = n1
0 ≤ n ≤ n2 1
Q 0−n →∞ ∞−n →0 ∴ R : 0< z ≤∞ oc
n ≤ n2 ≤ 0 1
Q 0−n →0 ∞−n →∞ ∴ R : 0 ≤ z <∞ oc
z变换应用实例
z变换应用实例Z变换是一种在离散时间系统中分析和处理信号的工具,它将离散时间信号从时域转换到频域。
Z变换在信号处理、控制系统和通信领域中有广泛的应用。
本文将介绍Z变换的基本概念,并提供几个Z变换的应用实例。
一、Z变换的基本概念Z变换是对离散时间序列进行变换的数学工具,类似于傅里叶变换的作用。
Z 变换将离散时间序列从时域转换到复平面的频域。
在Z变换中,我们用z来表示复平面的频域变量。
Z变换的定义如下:X(z) = Σ[ x(n) * z^(-n) ],其中n为离散时间变量,x(n)为离散时间序列的值,z 为变换域的复变量。
Z变换的性质包括线性性质、平移性质、尺度性质和频移性质等。
通过对这些性质的应用,我们可以方便地对离散时间信号进行分析和处理。
二、Z变换的应用实例1. 数字滤波器设计在数字滤波器设计中,Z变换可以用来分析和设计数字滤波器的频率响应。
通过将滤波器的差分方程转换为Z域的传递函数,可以方便地分析滤波器的频率特性。
以FIR滤波器为例,我们可以通过将差分方程中的离散时间序列和滤波器的单位冲激响应进行Z变换,从而得到滤波器的传递函数。
进一步可以在Z域对滤波器进行分析和设计,包括频率响应的调节、滤波器阶数的确定等。
2. 信号压缩在信号压缩领域,Z变换可以用来表示信号的频域特性。
通过对信号进行Z变换,可以提取信号的频谱信息,从而实现信号的压缩。
对于语音信号等周期信号,可以使用Z变换将其从时域转换为频域,并选择性地保留频域特性较显著的分量。
通过对这些分量进行有效编码,可以实现信号的压缩。
3. 系统传递函数分析在系统控制中,Z变换可以用来分析和设计控制系统的性能。
通过将系统的差分方程进行Z变换,可以得到系统的传递函数。
利用得到的传递函数,可以方便地分析系统的稳定性、零极点分布、频率响应等性能指标。
可以进一步进行控制系统的校正、参数调节等操作。
4. 信道均衡在数字通信系统中,信道均衡是提高系统性能的重要技术之一。
02-第二章 序列的Z变换与傅里叶变换
根据级数理论,式(2.1)收敛 的充分必要条件是满足绝对 可和条件,即
n
| x(n)z
n
|<
根据罗朗级数性质,收敛域一般是某个环域
收敛半径Rx-可以小到0,Rx+可以大到∞
收敛域以原点为中心,Rx-和Rx+为半径的环域
10
2.2.2 几种序列的Z变换及其收敛域
显然,级数X(z) 收敛。
讨论:级数X(z)中没有负幂项, |z|= 0时级数收敛,因此收敛域 包括0点,即为 0 ≤ |z| < Rx+
18
左边序列(非因果)的收敛域
当n2>0时,序列为非因果序列
X ( z)
n n | x ( n ) z | n2 n n n | x ( n ) z | | x ( n ) z | n 0 1 n2
例:长除法--X(z) 升幂排列
例2.7 求
3z 1 X ( z) (1 3z 1 )2
,|z|< 3的逆Z变换。
解:收敛域是圆内部,对应左边序列。当z=0时,X(z)趋 近于有限值0,说明收敛域包括0点,因此是逆因果序列。 把X(z)的分子分母按z的升幂排列
3z 1 X ( z ) 2 9 z 6 z 1 1
| <
14
右边序列(因果)的收敛域
假设:z是圆外任意一点,即|z|>|z1|
当n1≥0时,序列为因果序列
n X ( z ) | x(n)z n | < | x(n)z1 | < n n1 n n1
显然,级数X(z) 收敛。