函数的所有性质

合集下载

函数的基本性质

函数的基本性质

第四讲 函数的基本性质.函数的单调性概念(1)增函数和减函数的概念如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性.区间D 叫做函数y =f (x )的单调区间. (3)函数的单调性等价变形 设[]2121,,x x b a x x ≠∈,那么 ①[]1212()()()0x x f x f x --> ⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;②[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.2.运算法则:如果函数)(x f 和)(x g 在相同区间上是单调函数,则(1)增函数+增函数是增函数;(2)减函数+减函数是减函数;(3)增函数-减函数是增函数;(4)减函数-增函数是减函数;3.常见函数的单调性:(1)一次函数b kx y +=,当0>k 时,在区间),(+∞-∞上是增函数,当0<k 时,在区间),(+∞-∞上是减函数;(2)反比例函数xky =,当0>k 时,在区间)0,(-∞和区间),0(+∞上是减函数,当0<k 时,在区间)0,(-∞和区间),0(+∞上是增函数(3)二次函数c bx ax y ++=2,当0>a 时,在区间)2,(ab--∞是减函数,在区间),2(+∞-a b 是增函数,当0<a 时,在区间)2,(a b --∞是增函数,在区间),2(+∞-ab是减函数.4.函数单调性判定方法①定义法:取值、作差、变形、定号、下结论 ②运算法则法④图像法,利用图像研究函数的单调性.1.根据函数的单调性的定义,证明函数1)(3+-=x x f 在),(+∞-∞上是减函数。

2.判断函数)0()(>+=p xpx x f 的单调性3.根据函数的单调性的定义,证明函数x x x f -+=1)(2在),(+∞-∞上是减函数。

函数的基本性质

函数的基本性质

函数的基本性质(函数的单调性、奇偶性、周期性)一、函数单调性 1、可以从三个方面理解(1)图形刻画:对于给定区间上的函数()f x ,函数图象如从左向右连续上升,则称函数在该区间上单调递增;函数图象如从左向右连续下降,则称函数在该区间上单调递减。

(2)定性刻画:对于给定区间上的函数()f x ,如函数值随自变量的增大而增大,则称函数在该区间上单调递增;如函数值随自变量的增大而减小,则称函数在该区间上单调递减。

(3)定量刻画,即定义。

2、判断增函数、减函数的方法:①定义法:一般地,对于给定区间上的函数()f x ,如果对于属于这个区间的任意两个自变量的值1x 、2x ,当21x x <时,都有()()21x f x f <〔或都有()()21x f x f >〕,那么就说()f x 在这个区间上是增函数(或减函数)。

与之相等价的定义: ⑴()()02121>--x x x f x f ,〔或都有()()02121<--x x x f x f 〕则说()f x 在这个区间上是增函数(或减函数)。

其几何意义为:增(减)函数图象上的任意两点()()()()2211,,,x f x x f x 连线的斜率都大于(或小于)0。

⑵()()()[]02121>--x f x f x x ,〔或都有()()()[]02121<--x f x f x x 〕则说()f x 在这个区间上是增函数(或减函数)。

②导数法:一般地,对于给定区间上的函数()f x ,如果()0`>x f 那么就说()f x 在这个区间上是增函数;如果()0`<x f 那么就说()f x 在这个区间上是减函数;如果函数()x f y =在某个区间上是增函数(或减函数),就说()f x 在这一区间上具有(严格的)单调性,这一区间叫做()f x 的单调区间。

如函数是增函数则称区间为增区间,如函数为减函数则称区间为减区间。

函数的性质专题讲义

函数的性质专题讲义

函数四大性质综合讲义1.函数的单调性(1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值3.(一)对称轴1.概念:如果一个函数的图像沿着一条直线对折,直线两侧的图像能够完全重合,则称函数具备对称性中的轴对称,该直线称为函数的对称轴。

2.常见函数的对称轴①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴⑤指数函数:既不是轴对称,也不是中心对称⑥对数函数:既不是轴对称,也不是中心对称⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)⑿对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。

函数的四大基本性质

函数的四大基本性质

函数的四大基本性质知总结基础知识:1【奇偶性】(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。

如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。

注意:①即定义域关于原点对称。

(2)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f (-x )与f (x )的关系;③作出相应结论:(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y 轴成轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇1. 以下函数:(1))0(1≠=x xy ;(2)14+=x y ;(3)x y 2=; (4)x y 2log =;(5))1(log 22++=x x y ,(6)221)(2-+-=x x x f ; 其中奇函数是 ,偶函数是 ,非奇非偶函数是 。

2.已知函数)(x f =11++-x x ,那么)(x f 是( )A.奇函数而非偶函数B. 偶函数而非奇函数C.既是奇函数又是偶函数D.既非奇函数也非偶函数2.【单调性】(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ②必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2)。

函数性质图像知识点总结

函数性质图像知识点总结

函数性质图像知识点总结一、函数的定义在数学上,函数可以定义为一种特殊的关系,它将输入(自变量)映射到输出(因变量)。

具体来说,如果对于每一个自变量值,函数都有唯一的对应因变量值,那么这个关系就是一个函数。

形式上,我们可以用f(x)来表示函数,其中x是自变量,f(x)是对应的因变量。

例如,y = 2x + 3就是一个函数,其中y是因变量,x是自变量。

二、函数的性质1.定义域和值域函数的定义域是指所有可能的自变量值的集合,而值域是所有可能的因变量值的集合。

在图像上,定义域通常表示为x轴上的取值范围,而值域则表示为y轴上的取值范围。

例如,对于函数f(x) = x²,其定义域为所有实数,而值域为非负实数集合。

2.奇函数与偶函数奇函数与偶函数是函数的对称性质。

如果对于任意的x,有f(-x) = -f(x),那么函数f(x)就是奇函数;如果对于任意的x,有f(-x) = f(x),那么函数f(x)就是偶函数。

奇函数在原点对称,而偶函数在y轴对称。

3.单调性函数的单调性是指在定义域上,函数值的增减关系。

如果对于任意的x₁和x₂,当x₁< x₂时有f(x₁)≤f(x₂),那么函数f(x)就是递增的;如果对于任意的x₁和x₂,当x₁< x₂时有f(x₁)≥f(x₂),那么函数f(x)就是递减的。

4.周期性如果存在一个正数T,使得对于所有的x,有f(x+T) = f(x),那么函数f(x)就是周期函数。

其中最小的T称为函数的周期,通常用P来表示。

常见的周期函数有sin(x)和cos(x)。

5.有界性函数的有界性是指函数值的范围限制。

如果存在两个实数M和N,使得对于任意的x,有|f(x)| ≤ M,那么函数f(x)就是有界的。

如果函数在定义域上有上界和下界,则称为有界函数。

6.反函数若对于一个函数f(x),存在一个函数g(x),使得f(g(x)) = x且g(f(x)) = x,那么函数g(x)就是函数f(x)的反函数。

函数的性质(高考总复习)

函数的性质(高考总复习)

---------------------------------------------------------------最新资料推荐------------------------------------------------------函数的性质(高考总复习)函数的性质一、函数的奇偶性 1.奇、偶函数的概念一般地,如果对于函数 f(x) 的定义域内任意一个 x,都有 f(-x) =f(x) ,那么函数 f(x)就叫做偶函数.一般地,如果对于函数 f(x)的定义域内任意一个 x,都有 f(-x) =-f(x) ,那么函数f(x)就叫做奇函数. 2.奇、偶函数的性质⑴奇函数的图象关于原点对称;偶函数的图象关于 y 轴对称.⑵奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反⑶若奇函数 f(x)在 x=0 处有定义,则 f(0)=0. 3. 设f(x) , g(x) 的定义域分别是 D1, D2,那么在它们的公共定义域上:奇+奇=奇,偶+偶=偶,偶+非零常数=偶,奇+非零常数=非奇非偶,奇奇=偶,偶偶=偶,奇偶=奇,练习 1.若函数 f(x) =x2-| x+a| 为偶函数,则实数 a=_______.2.若函数 f(x) =(x+a) (bx+2a) (常数 a、 bR) 是偶函数,且它的值域为(-,4],则该函数的解析式f(x) =_____ ___. 3.对于定义域为 R 的奇函数 f(x) ,下列结论成立的是( ) A. f(x) -f(-x) 0 C. f(x) f(-x) 0 4.如下图,给出了奇函数 y=f(x) 的局部图象,则 f(-2) 的值为( ) B. f(x) -f(-x) 0 D. f(x) f(-x) 0 A.32 B.-32 C.12 D.-12 5.已知函数( )f x 是定义在 R 上的奇函数,若1 / 7当时,,则当时,( )f x 的表达式为()A....6.已知函数的图像关于坐标原点对称,则实数a=( ) A、 1 B、 -1 C、 0 D、.如果奇函数在区间[3, 7]上是增函数且最小值为 5,那么在区间上是 ( ) A.增函数且最小值为.增函数且最大值为.减函数且最小值为.减函数且最大值为.若偶函数)(xf在上是增函数,则下列关系式中成立的是() A..) 2 (f)23()..2 (.设奇函数)(xf的定义域为,若当时, )(xf的图象如右图, 则不等式的解是 10.如果定义在区间[2-a, 4]上的函数 y=f(x) 为偶函数,那么 a=___ _____. 11.已知函数 f(x)=ax2+bx+3a+b 为偶函数,其定义域为[a-1, 2a],则 a的值为________. 12.若 f(x) =(m-1) x2+6mx+2 是偶函数,则f(0) 、f(1) 、f(-2) 从小到大的顺序是____ __. 13.已知奇函数 ( )f x 的定义域为上单调递减,且满足条件求a的取值范围。

常见函数的图像及其性质

常见函数的图像及其性质数学中的函数就像我们日常生活中的“机器”,通过给出一个输入,便能得到一个输出。

而函数所表示的“规律”,可以通过数学的方法加以描述和解释。

在数学中,常见的函数有线性函数、二次函数、指数函数、对数函数、三角函数等。

本文将介绍这些函数的图像及其性质。

一、线性函数线性函数是最基本、最简单的函数之一。

线性函数的一般形式为:y = kx + b其中,k和b是常数,x是自变量,y是因变量。

这里k表示直线斜率,b表示直线截距。

线性函数的图像是一条直线,其特点是斜率恒定。

当直线斜率为正时,函数是增长函数;当直线斜率为负时,函数是减少函数;斜率为0时,函数是常量函数。

二、二次函数二次函数是一种二次多项式函数,其一般形式为:y = ax² + bx + c其中,a、b、c是常数,x是自变量,y是因变量。

二次函数的图像是一个开口朝上或开口朝下的抛物线,因为其自变量是平方项的形式。

二次函数的性质包括:1. 当a > 0时,函数开口向上,有最小值;当a < 0时,函数开口向下,有最大值。

2. 当二次函数的判别式b²-4ac > 0时,函数图像与x轴有两个交点;当b²-4ac = 0时,函数图像与x轴有一个交点;当b²-4ac < 0时,函数图像与x轴没有交点。

三、指数函数指数函数是一种以常数e(自然对数常数)为底,自变量是指数的函数。

其一般形式为:y = a^x其中,a是一个大于0且不等于1的常数,x是自变量,y是因变量。

指数函数的图像有如下特点:1. 当a > 1时,函数在x轴右侧增长;当0 < a < 1时,函数在x 轴左侧增长。

2. 当a > 1时,函数的y值无上限,但x轴是渐近线;当0 < a < 1时,函数的y值趋于0,但x轴是渐近线。

四、对数函数对数函数是指既然函数,其一般形式为:y = logₐx其中,a是底数,a > 0且a ≠ 1,x是自变量,y是因变量。

函数的概念、性质及应用

函数的概念、性质及应用
函数是数学中用来表达一切变化及关系的基本概念,它与变量完全脱离,一般情况下
可以抽象为某一变量与另一变量之间的某种关系,用函数的方法可概括出变量之间的规律。

因此,许多数学定理的证明和应用,都是通过函数的形式来进行的,从而使得理论研究更
加严密。

函数的性质:
1、定义:定义域是函数的第一个性质,即函数之所以被称为函数,是因为它定义了
某个集合中的每个元素都分配一个唯一的值。

2、单调性:即定义域内的不同元素之间的函数值都是单调不断的。

3、可微性:可微性是指函数的值可以在任意定义域内微分并可以解出导数值。

4、对称性:对称性是指当函数定义域内的一个元素的偏导数值等于某个常数时,该
函数就具有与另一个元素的函数值之差等于此常数的特性。

应用:
1、函数在数学上的应用是最为广泛的,函数可以用来研究相关数学定理,可以用于
解决实际问题,也可以用来研究一些比较复杂的数学问题。

2、函数可以用来表示不同实际情况的转换关系,正是因为有了函数的表示,我们才
能够轻而易举的把实际问题转换成抽象数学问题。

3、函数可以用来分析物理和化学模型,例如我们可以用一些特殊的函数来表示物体
运动规律,而化学方程也是通过用函数表达出来的。

4、函数可以用来描述计算机程序操作,实际开发中函数是最重要的组成部分,通过
函数可以简化程序的复杂性。

函数的基本性质知识点总结

函数的基本性质知识点总结1.函数的定义:函数是一种数学对象,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。

函数通常以符号表示,例如f(x)。

2.定义域:函数的定义域是指函数能够接受的自变量的值的集合。

它是函数能够有效进行计算的自变量的范围。

通常用符号表示为D(f)。

3.值域:函数的值域是指函数在定义域上所有可能的函数值的集合。

它是因变量的取值范围。

通常用符号表示为R(f)。

4.图像:函数的图像是指由函数的所有有序对(x,f(x))组成的点的集合。

可以通过将自变量的取值代入函数的表达式来确定函数的图像。

5.奇偶性:函数的奇偶性指函数在坐标系中的对称性。

一个函数被称为奇函数,如果对于定义域上的任何x值,-x处的函数值等于x处的相反数。

一个函数被称为偶函数,如果对于定义域上的任何x值,-x处的函数值等于x处的函数值。

6.单调性:函数的单调性指函数在定义域上的增减趋势。

一个函数被称为严格递增函数,如果对于定义域上的任意两个x值,f(x1)<f(x2)。

一个函数被称为严格递减函数,如果对于定义域上的任意两个x值,f(x1)>f(x2)。

7.周期性:函数的周期性指函数在定义域上以一定的周期重复。

一个函数被称为周期函数,如果存在一个正整数T,对于定义域上的任意x值,有f(x+T)=f(x)。

8.连续性:函数的连续性指函数在定义域上的无间断性。

一个函数在点x=c处连续,如果当x趋近于c时,f(x)趋近于f(c)。

一个函数在整个定义域上连续,如果它在每个点都连续。

9.可导性:函数的可导性指函数在一些点上的导数是否存在。

函数f(x)在点x=c处可导,如果当x趋近于c时,f(x)的斜率存在,并且等于c处的导数。

10.极值:函数的极值指函数在定义域上的最大值和最小值。

一个局部最大值是指函数在一些区间上的最大值,而不一定是整个定义域上的最大值。

一个局部最小值是指函数在一些区间上的最小值,而不一定是整个定义域上的最小值。

函数的基本性质

函数的基本性质一.函数的单调性:1. 定义:设D 为函数)(x f 定义域的子集。

对任意的D ,21∈x x 且21x x <时,都有⇔>--⇔>--⇔<0)](()([0)()()()(1212121221)x x x f x f x x x f x f x f x f 函数)(x f y =在D 上是增加的。

对任意的D ,21∈x x 且21x x <时,都有⇔<--⇔<--⇔>0)](()([0)()()()(1212121221)x x x f x f x x x f x f x f x f 函数)(x f y =在D 上是减少的。

2. 图像特点:自左向右看图像是上升的。

(图像在此区间上是增加的) 自左向右看图像是下降的。

(图像在此区间上是减少的)3.判断函数单调性的方法:(1)图像法:作出函数图像,由图像直观判断求解,只能用于判断。

(数形结合) 解题程序:解析式-----图像-----单调区间(2)性质法:需要先记清基本初等函数的单调性。

高中基本初等函数:一次函数:)0(≠+=k b kx y ,二次函数:)0(2≠++=a c bc ax y 反比例函数:)0(≠=k x k y ,简单幂函数:3,2,21,1,1)(-=∈=αααR x y 指数函数:)10(≠>=a a a y x 且,对数函数:)10(log ≠>=a a x y a 且, “对勾”函数:)0(>+=a x ax y①a x f y +=)(与)(x f y =的单调性相同。

②当0>a 时,函数)(x af y =与)(x f y =的单调性相同;当0<a 时,函数)(x af y =与)(x f y =的单调性相反;③在公共定义域内,增函数)(x f +增函数)(x g 是增函数, 减函数)(x f +减函数)(x g 是减函数;增函数)(x f -减函数)(x g 是增函数,减函数)(x f -增函数)(x g是减函数;④两函数积的单调性:当)(x f ,)(x g 在公共区间上都是增(减)函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的性质(奇偶性、单调性、周期性、对称性)“定义域优先”的思想是研究函数的前提,在求值域、奇偶性、单调性、周期性、换元时易忽略定义域,所以必须先考虑函数的定义域,离开函数的定义域去研究函数的性质没有任何意义。

1. 奇偶性f(-x)与f(x)之间的关系:①f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数; ②f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇;③f(-x)÷f(x)=1是偶;f(x)÷f(-x)=-1为奇函数. (1)若定义域关于原点对称(2)若定义域不关于原点对称 非奇非偶 例如:3xy =在)1,1[-上不是奇函数常用性质:1.0)(=x f 是既奇又偶函数;2.奇函数若在0=x 处有定义,则必有0)0(=f ; 3.偶函数满足)()()(x f x f x f =-=;4.奇函数图象关于原点对称,偶函数图象关于y 轴对称;5.0)(=x f 除外的所有函数的奇偶性满足:(1)奇函数±奇函数=奇函数 偶函数±偶函数=偶函数 奇函数±偶函数=非奇非偶(2) 奇函数×奇函数=偶函数 偶函数×偶函数=偶函数 奇函数×偶函数=奇函数 6.任何函数)(x f 可以写成一个奇函数2)()()(x f x f x --=ϕ和一个偶函数2)()()(x f x f x -+=ψ的和。

2. 单调性 定义:函数定义域为A ,区间,若对任意且① 总有则称在区间M 上单调递增② 总有则称在区间M 上单调递减应用:(一)常用定义法来证明一个函数的单调性一般步骤:(1)设值(2)作差(3)变形(4)定号(5)结论 (二) 求函数的单调区间定义法、图象法、复合函数法、导数法(以后学) 注:常用结论(1) 奇函数在对称区间上的单调性相同 (2) 偶函数在对称区间上的单调性相反 (3) 复合函数单调性-------同增异减3. 周期性(1)一般地对于函数,若存在一个不为0的常数T ,使得内一切值时总有,那么叫做周期函数,T 叫做周期,kT (T 的整数倍)也是它的周期(2)如果周期函数在所有周期中存在一个最小正数,就把这个最小正数叫最小正周期。

注:常用结论(1)若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期(自己证明) (2)若定义在R 上的函数y = f (x) 图像同时关于直线x = a 和直线x = b 成轴对称 (a ≠b ),则y = f (x)是周期函数,且2| a -b|是其一个周期。

(自己证明)(推论)若定义在R 上的偶函数)(x f 的图象关于直线a x =)0(≠a 对称,则)(x f 是周期函数,a 2是它的一个周期 (3)若)()(x f a x f -=+;)(1)(x f a x f =+;)(1)(x f a x f -=+;则)(x f 是周期函数,2a 是它的一个周期4.对称性一、函数自身的对称性定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a -x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P (2a -x ,2b -y )也在y = f (x)图像上, ∴ 2b -y = f (2a -x) 即y + f (2a -x)=2b 故f (x) + f (2a -x) = 2b ,必要性得证。

(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y 0 = f (x 0) ∵ f (x) + f (2a -x) =2b∴f (x 0) + f (2a -x 0) =2b ,即2b -y 0 = f (2a -x 0) 。

故点P (2a -x 0,2b -y 0)也在y = f (x) 图像上, 而点P 与点P 关于点A (a ,b)对称,充分性得证。

推论:函数 y = f (x)的图像关于原点O 对称的充要条件是f (x) + f (-x) = 0 定理2. 函数 y = f (x)的图像关于直线x = a 对称的充要条件是f (a +x) = f (a -x) 即f (x) = f (2a -x) (证明留给读者)推论:函数 y = f (x)的图像关于y 轴对称的充要条件是f (x) = f (-x) 定理3函数 y = f (x)的图像关于直线x = a 对称的充要条件是f (a +x) = f (a -x) 或 f (x) = f (2a -x)定理4.若函数y = f (x) 图像同时关于直线x = a 和直线x = b 成轴对称 (a ≠b ),则y = f (x)是周期函数,且2| a -b|是其一个周期。

二.不同函数对称性定理5. 函数y = f (a+x)与y = f (b-x)的图像关于直线x = (b-a)/2成轴对称定理6. 互为反函数的两个函数关于直线y=x对称【典型例题】[例1] 判断下列函数奇偶性(1)(且)(2)(3)(4)(5)解:(1)且∴奇函数(2),关于原点对称∴奇函数(3),关于原点对称∴既奇又偶(4)考虑特殊情况验证:;无意义;∴非奇非偶(5)且,关于原点对称∴为偶函数[例2](1),为何值时,为奇函数;(2)为何值时,为偶函数。

答案:(1)(恒等定理)∴时,奇函数(2)∴(恒等定理)∴∴巩固:已知定义域为R的函数12()2xxbf xa+-+=+是奇函数。

(Ⅰ)求,a b的值;(Ⅱ)若对任意的t R∈,不等式22(2)(2)0f t t f t k-+-<恒成立,求k的取值范围;(Ⅰ)简解:取特殊值法因为()f x是奇函数,所以(0)f=0,即111201()22xxbb f xa a+--=⇒=∴=++又由f(1)= - f(-1)知111222.41aa a--=-⇒=++(Ⅱ)解法一:由(Ⅰ)知11211()22221xx xf x+-==-+++,易知()f x在(,)-∞+∞上为减函数又因()f x是奇函数,从而不等式:22(2)(2)0f t t f t k-+-<等价于222(2)(2)(2)f t t f t k f k t-<--=-,因()f x为减函数,由上式推得:2222t t k t->-.即对一切t R∈有:2320t t k-->,从而判别式14120.3k k∆=+<⇒<-[例3] 求函数的解析式(1)为R上奇函数,时,,解:时,∴∴(2)为R上偶函数,时,解:时,∴[例4] 求下列函数的增区间(1)(2)答案:(1),∴(2)作图∴[例5]若在区间,求取值范围。

答案:分类讨论(1)①当在区间,符合题意②当时,要在区间,则有∴[例6] ,为偶函数,试比较的大小关系。

解:∵为偶函数∴则函数关于直线x=2对称∵在(0,2)∴(提示:看离对称轴的远近)[例7] 为偶函数,,若,求取值范围。

解:∴[例8] 求下列函数是否为周期函数(1),满足(2),满足(3),满足(4),满足答案:(1)令∴∴∴T=2周期函数(2)∴T=4周期函数(3)∴T=4(4)∴T=8[例9] ,偶函数,周期函数,T=2,,,则,求当时,。

答案:[例10] ,偶函数,奇函数,则。

答案:奇偶∴∴∴奇∴巩固例1:定义在R上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x) 一定是()(A)是偶函数,也是周期函数 (B)是偶函数,但不是周期函数 (C)是奇函数,也是周期函数 (D)是奇函数,但不是周期函数 解:∵f (10+x)为偶函数,∴f (10+x) = f (10-x).∴f (x)有两条对称轴 x = 5与x =10 ,因此f (x)是以10为其一个周期的周期函数, ∴x =0即y 轴也是f (x)的对称轴,因此f (x)还是一个偶函数。

故选(A)例2:设定义域为R 的函数y = f (x)、y = g(x)都有反函数,并且f(x -1)和g -1(x -2)函数的图像关于直线y = x 对称,若g(5) = 1999,那么f(4)=( )。

1999; (B )2000; (C )2001; (D )2002。

解:∵y = f(x -1)和y = g -1(x -2)函数的图像关于直线y = x 对称,∴y = g -1(x -2) 反函数是y = f(x -1),而y = g -1(x -2)的反函数是:y = 2 + g(x), ∴f(x -1) = 2 + g(x), ∴有f(5-1) = 2 + g(5)=2001 故f(4) = 2001,应选(C )例3.设f(x)是定义在R 上的偶函数,且f(1+x)= f(1-x),当-1≤x ≤0时,f (x) = -21x ,则f (8.6 ) = _________解:∵f(x)是定义在R 上的偶函数∴x = 0是y = f(x)对称轴; 又∵f(1+x)= f(1-x) ∴x = 1也是y = f (x) 对称轴。

故y = f(x)是以2为周期的周期函数,∴f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (-0.6 ) = 0.3例4. 设f(x)是定义在R 上的奇函数,且f(x+2)= -f(x),当0≤x ≤1时,f (x) = x ,则f (7.5 ) = ( ) (A) 0.5 (B) -0.5 (C) 1.5 (D) -1.5解:∵y = f (x)是定义在R 上的奇函数,∴点(0,0)是其对称中心;又∵f (x+2 )= -f (x) = f (-x),即f (1+ x) = f (1-x), ∴直线x = 1是y = f (x) 对称轴,故y = f (x)是周期为2的周期函数。

∴f (7.5 ) = f (8-0.5 ) = f (-0.5 ) = -f (0.5 ) =-0.5 故选(B)【作业】1. 两位学生在思考一个开放题“满足的点称为函数的不动点,请你构造一个分段函数,使其具有无数个不动点,这些不动点构成一个公比不为1的等比数列”。

两位学生分别构造了一个函数():①②请你判断,正确的结论是()A. ①②都对B. ①对②错C. ①错②对D. ①②都错2. 函数与的图像关于()A. y轴对称B. 原点对称C. 直线x=1对称D. 关于y轴对称且关于直线x=1对称3. 若函数在()上是减函数,则的取值范围是()A. B. C. D.4. 函数在()上存在,使,则的取值范围是()A. B. C. 或 D.5. 若,则它们的大小关系为()A. B. C. D.6. 如图所示,点P在边长为1的正方形的边上运动,设M是CD边的中点,则当点P沿着A—B—C—M运动时,以点P经过的路程为自变量,三角形APM的面积函数的图像形状大致是()7. 函数()A. 在(1,)内单调递增B. 在(1,)内单调递减C. 在()内单调递增D. 在()内单调递减8. 函数的定义域为[],值域为,其反函数为,则的()A. 定义域为,值域为B. 定义域为,值域为C. 定义域为,值域为D. 定义域为,值域为9. 已知函数的图象是由函数的图像平移而得到的,如图所示,则的值是()A. B.C. D.10. 已知是偶函数,则图像的对称轴是()A. B. C. D.11. 对任意,有,时,,则()A. B. C. D.12. 方程的两个根均大于1,则的取值范围为()A. B. C. D.13. 若函数的图像与函数的图像关于直线对称,则()A. B.C. D.14. 把长为12cm的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是()A. B. C. D.15. 设函数的反函数为,且,则。

相关文档
最新文档