向量组线性相关的概念
向量组的线性相关性

★ 一个向量a=0线性相关,而 0时线性无关
★ 两个向量线性相关
它们对应分量成比例
★ 如果向量组中有零向量,则向量组一定线性相关.
16
二、判别方法
1. 向量组1,2 ,...,s线性相(无)关 方程 x11 x22 ... xss 0(没)有非零解.
设i (ai1 , ai2 , ..., ain )T , 方程组
三、应用举例
例1 设 1 1,1,0T ,2 0,1,1T , 3 (3,4,0)T
3 1
求
,
,
其中(
,
)
(1
,
2
,
3
)
2 1
1 1
.
解
,
31
22
,
3
1
2
3
1 0 3 0
31 22 3
k k ka1, ka2, , kan
向量的加法与数乘合称为向量的线性运算.
3、运算律 (设α,β,γ均是n维向量,λ,μ为实数) (1) (交换律)
(2) ( ) ( ) (结合律) (3) O (4) ( ) O (5) 1 (6) () ( ) ( ) (7) ( )
二、向量的运算
1、加法 (a1,a2,...,an ), (b1,b2,...,bn ),
a1 b1, a2 b2 , , an bn
( ) a1 b1, a2 b2 , , an bn
浙江科技学院线性代数向量组线性相关性及两个向量组之间关系

பைடு நூலகம்
3. x 2 y 3z 1 2x y z 2 4x 5 y 7z 4
通过方程组的初等变换,第三个方程的所有系数和常数项全 化为0,所以这个方程在方程组中是多余的,在解方程时, 可以去掉它。
线性方程组有无多余方程相当于方程组对应的向量组中 有无向量能由其余向量线性表示。
4. A : 1,2 , ,m 线性相关
§3.2 向量组的线性相关性与两 个向量组之间的关系
1
一、向量组的线性相关性 定义1 对于n维向量 1,2 , ,m , ,
如果存在一组数 k1 , k2 , , km , 使
k11 k22 kmm
称 是向量组 1 ,2 , ,m 的一个线性组合, 或者 可由向量组 1,2 , ,m 线性表示。
即线性方程组 x11 x22 xmm 有解。
定义2
给定向量组 A : 1,2 , ,m ,
如果存在不全为零的数 k1 , k2 , , km ,
使 k11 k22 kmm 0
则称向量组A是线性相关的;
否则称向量组A是线性无关的。
即当且仅当
k1 k2 km 0 时,
k11 k22 kmm 0 才成立.
则( 1, 2 ,
k11 k12
, t ) (1,2,
,
s
)
k21
k22
ks1
ks2
这一线性表示的系数矩阵
k1t
k2t
kst
14
P88 定理4 AX B 有解 R( A) R( A, B) 定理4 A :1 ,2 , ,s B : 1, 2 , , t
向量组B 能由向量组A 线性表示
证明:设有 x1 , x2 , x3 使 x1b1 x2b2 x3b3 0, 即 x(1 1 2) x2 ( 2 3 ) x3 ( 3 1 ) 0,
4.3 向量组的线性相关性

证 (方法1) 设 B 1, 2,L n , 且
有数x1,x2,…,xn,使得 x11 x22 L xnn 0,
即
x1
1, 2,L
,
n
x2
M
0,
xn
右边等式两边同时左乘矩阵A,得
ABx 0, 即 Ex 0, 所以 x 0, 即 x1 x2 L xn 0, 故由定义可知,
0
0
1
证 令 A (1,2,L ,n ),
则A恰为单位矩阵E,故R(A)=n。 根据判定定理,单位向量组线性无关。
例8
已知向量组 , ,
1
2
3
线性无关, 1
1
2
, ,
2
2
3
3
3
1
证明向量组 , ,
1
2
3
也线性无关.(典型考题,典型方法)
证明:(方法 1: 根据定义) 设有数k1,k2,k3,使得
则称向量组A 线性相关,否则称它线性无关。
当且仅当k1 k2 L ks =0时,
表达式 k11 k22 L kss 0成立。
定理2
线性相关和无关的判定定理
1,2 ,L ,s 线性无关
x11 x22 L xss 0 仅有零解
对矩阵 A=(1,2,L ,s ), R( A) 向量的个数s.
例2 零向量是任何一个同维向量组的线性组合
Q 0 01 02 L 0m
线性表示的表示系数可以是零
例3 向量组中的任何一个向量都是该向量组的线性组合。
i 01 02 L 1i L 0m
例4 对如下向量
(0,1,2)T ,1 (1,1,0)T ,2 (0,1,1)T ,3 (3, 4,0)T ,
3.2线性相关性

a11 a21 A 1 , 2 , , s a n1 a12 a22 an 2 a1 s x1 a2 s x2 ,x ans xs
• 证明:设x1a1+x2a2 +…+xsas=0(3.2),即
第二节 向量组的线性相关性
一、向量组线性相关性的概念 二、向量组线性相关性的判定 三、向量组线性相关性的性质
• 一、向量组线性相关性的概念
• 定义4 给定向量组A: 1, 2,…, s, 如果存在不全 为零的数k1, k2,…, ks, 使 k11+k22 +…+kss=0 • 称向量组A是线性相关的, 否则称它线性无关。
• • • •
引理 设有列向量组a1, a2 , …, as, 其中 a1=(a11, a21, …, an1)T, a2 =(a12, a22, …, an2)T, …, as=(a1s, a2s, …, ans)T(s个n维列向量) 则向量组a1, a2 , …, as线性相关齐次线性方程组 Ax=0 (3.1) • 有非零解, 其中
3-2向量组的线性相关与线性无关

的线性组合 解 设存在四个数 x1 , x2 , x3 , x4 ,使得
β = x1α1 + x2α 2 + x3α 3 + x4α 4
即
1 1 1 1 1 2 1 1 −1 =x +x −1 + x3 + x4 1 2 1 1 −1 1 −1 1 1 −1 −1 1
亦即( x1 + x 3 )α 1 + ( x1 + x 2 )α 2 + ( x 2 + x 3 )α 3 = 0, 线性无关, 因 α 1,α 2,α 3 线性无关,故有
x 1 + x 3 = 0, x 1 + x 2 = 0, x + x = 0. 2 3
1 0 1 由于 1 1 0 = 2 ≠ 0 0 1 1
全为零的数 k1 , k 2 ,L , k m 使 r r r r k1α 1 + k 2α 2 + L + k mα m = 0
则称向量组A是线性相关的,否则称它线性无关. 是线性相关的,否则称它线性无关. 1. α 1 , α 2 , L , α n 线性无关 ⇔ 只有当 k1 = L = k n = 0时 ,
才有 k1α 1 + k 2α 2 + L + k nα n = 0 成立 .
2. 对于任一向量组 , 不是线 性无关就是线性相关 .
3.向量组只包含一个向量α 时, 若α = 0 则 α 线性相关, 若α ≠ 0, 则 α 线性无关 .
4.包含零向量的任何向量 组是线性相关的 .
5.对于含有两个向量的向 量组, 它线性相关的 充要条件是两向量的分 量对应成比例 .
高中数学中的向量线性相关与线性无关

高中数学中的向量线性相关与线性无关在高中数学学习中,向量是一个非常重要的概念。
而在向量的研究中,线性相关与线性无关是一个基础而又关键的概念。
本文将探讨高中数学中的向量线性相关与线性无关的概念及其应用。
一、向量的线性相关与线性无关的定义在向量的研究中,我们经常会遇到多个向量同时出现的情况。
而这些向量之间的关系可以分为线性相关和线性无关两种情况。
1. 线性相关如果存在一组不全为零的实数$k_1,k_2,…,k_n$,使得向量$v_1,v_2,…,v_n$满足以下关系:$k_1v_1+k_2v_2+…+k_nv_n=0$其中,$0$表示零向量。
那么我们称向量$v_1,v_2,…,v_n$线性相关。
2. 线性无关如果不存在一组不全为零的实数$k_1,k_2,…,k_n$,使得向量$v_1,v_2,…,v_n$满足以上关系,那么我们称向量$v_1,v_2,…,v_n$线性无关。
二、线性相关与线性无关的几何意义线性相关与线性无关的概念在几何上有着重要的意义。
我们以二维向量为例进行说明。
假设有两个非零向量$\vec{v_1}$和$\vec{v_2}$,我们可以将它们画在二维平面上。
如果这两个向量共线,即它们的方向相同或相反,那么它们是线性相关的。
反之,如果这两个向量不共线,即它们的方向不同,那么它们是线性无关的。
同样地,对于三维向量,我们可以将它们画在三维空间中。
如果多个向量共面,那么它们是线性相关的。
反之,如果多个向量不共面,那么它们是线性无关的。
三、线性相关与线性无关的应用线性相关与线性无关的概念在向量的运算中有着广泛的应用。
以下是一些常见的应用场景:1. 向量的线性组合线性相关的向量可以通过调整系数的大小,通过线性组合的方式得到零向量。
而线性无关的向量则不能通过线性组合得到零向量。
2. 坐标系的建立在坐标系的建立中,我们通常会选择线性无关的向量作为坐标轴。
这样可以保证坐标系的唯一性和准确性。
3. 向量的基与维数如果向量组中的向量线性无关,并且能够通过线性组合得到其他向量,那么我们称这组向量为基。
线性代数向量的线性相关性

k1, k2 ,L , km 使得 k11 k22 kmm 0 (*)
则称向量组M是线性相关的,否则称M是线性无关的
注:(1) 对任意向量组 M 1,2,L ,m , 肯定存在一组数
k1, k2 ,L , km 使得 k11 k22 kmm 0 (*) 例 k1 0, k2 0,L , km 0 ; 所不同的是:
k3 0
故向量组线性无关
k1am1 k2am2 L kmamm 0 km 0
L L k1an1 k2an2 L kmanm 0
注 若向量组中的向量作成矩阵的行或列所得矩阵A为
阶梯形矩阵,且 aii 均不为零, 则称向量组为阶梯形向量组
例4结论为“阶梯形向量组线性无关
特别地 Rn 中标准基 e1,e2,L ,en 线性无关
1
2
3
k2
0
1 5 6 k0
10 1
因为 1 2 3 0 由克莱姆法则知道方程有非零解。
15 6
故向量组线性相关
例2* 讨论向量组 1 1 2 0 , 2 0 2 1 , 3 0 0 1
的线性相关性 解:设有数 k1, k2 , k3 使 k11 k22 k33 0 即方程
0
0
M
m
0
amm
M
anm
, m ,m n 证明向量组线性无关
证明:设有数 k1, k2 ,L , km 使 k11 k22 L kmm 0
L L L L k1a11 0
k1a21 k2a22 0
即 k1a31 k2a32 k3a33 0
k1 0 k2 0
M 1,2,L ,m 线性无关当且仅当
向量组的线性相关性

+
kmj am
=
(α1,α
,
2
αm
)
⎛ ⎜ ⎜ ⎜
k1 k2
j j
⎞ ⎟ ⎟ ⎟
⎜⎜⎝ kmj ⎟⎟⎠
⎛ k11 k12
从而(b1 ,b2 ,
,bL ) = (a1,a2,
am
)
⎜ ⎜ ⎜
k21
k22
⎜ ⎝ km1 km2
k1l ⎞
k2l
⎟ ⎟
⎟
⎟ kml ⎠
这里,矩阵 kmxl = (ki j ) 称这一线性表示的系数矩阵。
若干个同维数的列(行)向量所组成的集合叫向量组。矩阵 A = (aij )mxn 有 m 个 n 维行向量或 n 个 m 维列向量。反之,由有限个向量所组成的向量组可以构成
一个矩阵。m 个 n 维列向量所组成的向量组: a1,a2, am,构成一个 nxm 矩阵
A
=
(α1,α
,
2
αm)
;
m
个
n
维行向量所组成的向量组
方程 Anxm X = En 有解的充分必要条件是 R( A) = n .
6
本例用矩阵的语言可叙述为: 对矩阵 Amxn ,存在矩阵 Qnxm ,使 AQ = Em 的充分必要条件是 R( A) = m ; 对矩阵 Amxn ,存在矩阵 Pnxm ,使 PA = En 的充分必要条件是 R( A) = n ,显然, 当 m = n 时,P、Q 便是 A 的逆阵,故上述结论可看作是逆阵概念的推广。 三、小结 1、向量、向量组、线性组合及向量组等价的的概念。 2、向量线性表示的判定方法:定义及三个定理。 四、作业,P108、2、3、4、5。
0
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量组线性相关的概念
向量组线性相关是线性代数学中一个基本的概念,它涉及到它们之间的关系。
两个或多个向量,或一组由多个向量构成的线性组合,被称为向量组。
如果这些组中的每个向量都存在着唯一的关系,通常被称为向量组线性相关。
首先,要明确的是,什么是向量组。
向量组是一组由多个向量构成的线性组合。
这些向量通常与相关的系数相连,以表示每个向量对这个组的作用。
举个例子,如果只有两个向量,a和b,那么它们组
成的向量组可以写为a + b,其中a和b代表着两个向量。
另外,如果有更多的向量,那么他们将分别写成a1 + a2 + + an,其中n表
示他们的个数。
接下来就是线性相关的概念。
线性相关是指两个或多个变量之间的线性关系,如果两个变量之间有着精确的正相关或负相关,那么就可以说这两个变量之间具有线性相关性。
对于向量组来说,线性相关的概念也一样,如果向量组中的每一个向量都有着唯一的关系,那么就可以说这个向量组具有线性相关性。
线性相关在许多不同的领域也有着广泛的应用。
例如,在数学上,线性相关的概念可以用来解决任何一系列的方程,它可以用来解释不同变量间的关系以及相互之间的关系。
在物理学,研究事物之间的线性相关性可以帮助我们理解和研究它们之间的相互作用。
此外,线性相关的概念也在经济学、生物学和商业分析中有着重要的应用。
另外,由于线性相关的概念可以用来表示定系数之间的线性关系,
因此它也可以用来计算不同变量之间的线性回归,从而帮助我们进行相关性分析,从而更好地理解这些变量之间的关系。
总之,向量组线性相关是一个重要的数学概念,它可以用来表示不同变量之间的线性关系,并可以用来计算线性回归,从而帮助我们更好地理解这些变量之间的关系。
此外,线性相关也广泛地应用在各个领域,由此可以看出线性相关的重要性及其对各个领域的重要性。