2013浙江宁波中考数学

合集下载

2013年中考数学二轮专题复习课件专题二:图表信息问题

2013年中考数学二轮专题复习课件专题二:图表信息问题

(2)选择适当的函数表示s与t之间的关系,求出相应
的函数解析式;
上 页
下 页
返 回
(3)①刹车后汽车行驶了多长距离才停止?
专 题 解 读
②当t分别为t1,t2(t1<t2)时,对应s的值分别为s1, s2,请比较与的大小,并解释比较结果的实际意
义.
专 题 突 破
课 时 跟 踪 检 测
上 页
下 页
返 回
课 时 跟 踪 检 测
专 题 突 破
在甲地游玩的时间是 1-0.5=0.5(h).
(2)妈妈驾车速度:20×3=60(km/h)
如图,设直线BC解析式为y=20x+ b1,
上 页
下 页
返 回
专 题 解 读
专 题 突 破
把点 B(1,10)代入得 b1=-10. ∴直线 BC 解析式为 y=20x-10 ①. 设直线 DE 解析式为 y=60x+b2, 4 把点 D3,0代入得 b2=-80. ∴直线 DE 解析式为 y=60x-80 ②. 联立①②,得 x=1.75,y=25. ∴交点 F(1.75,25). ∴小明出发 1.75 小时(105 分钟)被妈妈追上, 此时离家 25 km.
上 页
下 页
返 回
专 题 解 读

(1)设等边三角形的一边为a,则a2+a2=2a2,
课 时 跟 踪 检 测
∴符合“奇异三角形”的定义.∴是真命题; (2)∵∠C=90°,则a2+b2=c2①,
∵Rt△ABC是奇异三角形,且b>a,
专 题 突 破
∴a2+c2=2b2②,
由①②得:b= ∴a∶b∶c=1∶ 2a,c= 2∶ 3. 3a,
上 页
下 页

浙江省各市2013年中考数学分类解析 专题2 代数式和因式分解

浙江省各市2013年中考数学分类解析 专题2 代数式和因式分解

浙江省各市2013年中考数学分类解析 专题2 代数式和因式分解一、选择题1. (2013年浙江杭州3分)下列计算正确的是【 】 A .m 3+m 2=m 5 B .m 3m 2=m 6 C .()()21m 1m m 1-+=-D .()4221m m 1-=--2. (2013年浙江杭州3分)若a b 3a b 7+=-=,,则ab =【 】 A .-10B .-40C .10D .403. (2013年浙江杭州3分)如图,设k =(a >b >0),则有【 】A.k>2 B.1<k<2 C.D.4. (2013年浙江舟山3分)下列运算正确的是【】A.x2+x3=x5B.2x2﹣x2=1 C.x2•x3=x6D.x6÷x3=x3-+的结果是【】5. (2013年浙江金华、丽水3分)化简2a3aA.-a B.a C.5a D.-5a()2a3a23a a-+=-+=.故选B。

6. (2013年浙江宁波3分)下列计算正确的是【】A.a2+a2=a4B.2a﹣a=2 C.(ab)2=a2b2D.(a2)3=a57. (2013年浙江湖州3分)计算6x3•x2的结果是【】A.6x B.6x5C.6x6D.6x98. (2013年浙江衢州3分)下列计算正确的是【】A.3a+2b=5ab B.a﹣a4=a4C.a6÷a2=a3D.(﹣a3b)2=a6b29. (2013年浙江绍兴4分)计算3a•(2b)的结果是【】A.3ab B.6a C.6ab D.5ab10. (2013年浙江浙江嘉兴4分)下列运算正确的是【 】A .x 2+x 3=x 5B .2x 2﹣x 2=1C .x 2•x 3=x 6D .x 6÷x 3=x 311. (2013年浙江温州4分) 若分式x 3x 4-+的值为0,则x 的值是【 】 A . x 3= B . x 0= C . x 3=- D . x 4=-二、填空题1. (2013年浙江舟山4分)x 的取值范围是 ▲ .x 30x 3-≥⇒≥。

宁波地区初中数学2013年中考模拟考试中关注度较高的热点试题

宁波地区初中数学2013年中考模拟考试中关注度较高的热点试题

浙教版数学2013年中考模拟考试中关注度较高的热点试题--选择题中考模拟试题的特点:1.体现考纲所要求落实的基础知识和基本技能;2.该强化的知识要求和能力要求;3.试探方向,1.已知m ,n 为实数,则解可以为 –3 < x <3的不等式组是 ( )⎩⎨⎧<<11.nx mx A ⎩⎨⎧><11m .nx x B ⎩⎨⎧<>11.nx mx C ⎩⎨⎧>>11.nx mx D 2.如图,在平面直角坐标系中,P ⊙与x 轴相切于原点O ,平行于y 轴的直线交P ⊙于M , N 两点.若点M 的坐标是(21-,),则点N 的坐标是( ) A .(24)-, B. (2 4.5)-, C.(25)-, D.(2 5.5)-,3.如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则表上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)标5,点(-1,1)处标6,点(0,1)处标7,…,以此类推,则标20132的格点的坐标为( )A.(1006,1005)B.(1007,1006)C.(2013,2012)D.(2012,2013)4.如图,游乐园的大观览车半径为25米,已知观览车绕圆心O 顺时针做匀速运动,旋转一 周用12分钟,某人从观览车的最低处(地面A 处)乘车,问经过4分钟后,此人距地面 CD 的高度是( )(观览处最低处距地面的高度忽略不计). A.252B.25C.752D.1)25.如图,将边长为cm 的正方形ABCD 沿直线l 向右翻动(不滑动),当正方形连续翻动8 次后,正方形的中心O 经过的路线长是( )cm. A .8B .8C .3πD .4π6.如图,把正△ABC的外接圆对折,使点A 与劣弧BC⌒ 的中点M 重合,折痕分别交AB 、AC 于D 、E ,若BC=5,则线段DE 的长为 ( )A.52B.103C.3D.3第2题第3题 第4题第5题第11题则下列结论正确的是和连接和的图象于点和分别交函数轴作过点正半轴上任一点是若点如图,,)0()0(,,,.721OQ OP Q P x xk y x xk y y PQ M x M >=>=A .∠POQ 不可能等于90° 21.k k QMPM B =C .这两个函数的图象一定关于x 轴对称D .△POQ 的面积是(|k 1|+|k 2|) 8.如图,菱形ABCD 和菱形ECGF 的边长分别为3和4,∠A =120°,则图中阴影部分的面积( ) A. B .349 C .32 D .9.如图,已知点A (12,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD =AD =8时,这两个二次函数的最大值之和等于( )A .5B . 27C .8D .610.如图,以M (﹣5,0)为圆心、4为半径的圆与x 轴交于A .B 两点,P 是⊙M 上异于A .B 的一动点,直线PA .PB 分别交y 轴于C .D ,以CD 为直径的⊙N 与x 轴交于E 、F ,则EF 的长( ) A . 等于4B .等于6C .等于4D .随P 点变化11.如图,AB 是⊙O 的直径,弦BC =2cm ,F 是弦BC 的中点, ∠ABC =60°.若动点E 以2cm/s 的速度从A 点出发沿着A→B→A的方向运动,设运动时间为t (s )(0≤t <3),连接EF ,当△BEF 是直角三角形时,t 的值为( ) A.47 B. 1第7题 第9题第8题2y( )C.47或1 D.47或1或4912.如图,已知A 、B 两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D 是⊙C 上的一个动点,射线AD 与y 轴交于点E ,则 △ABE 面积的最大值是( )A .3 B .113 C .103D .413.如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD=BD ,∠C=70°,现给出以下四个结论:①∠A=45°;②AC=AB ;③ ; ④CE ·AB=2BD 2其中正确结论的个数为 ( )A .1个B .2个C .3个D .4个14. 已知点A,B 分别在反比例函数y=x2 (x>0),y=x8- (x>0)的图像上且OA ⊥OB,则tanB 为( ) A.21 B.21 C.31 D.3115.如图,已知EF 是⊙的直径,把∠A 为60°的直角三角板ABC 的一条直角边BC 放在直线EF 上,斜边AB 与⊙O 交于点P , 点B 与点O 重合;将△ABC 沿OE 方向平移,使得点B 与点E 重合 为止。

2013年浙江省中考数学压轴题解析汇编

2013年浙江省中考数学压轴题解析汇编

2013年浙江省各地市数学中考压轴题解析汇编【2013·浙江宁波·26题】如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD。

过P、D、B三点作⊙Q与y轴的另一个交点为E,延长DQ 交⊙Q于点F,连结EF,BF。

(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时,①求证:∠BDE=∠ADP;②设DE=x,DF=y,请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B、D、F 为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由。

解:(1)设直线AB的函数解析式为y=kx+b,将点A∵EF=DE=OE+OD=2+OD ∴OH=2+OD 13(0,4)、B(4,0)代入得:OD=2+OD=4 ∵OB=OH+HB=2+OD+解得∴OD=,即点D坐标为(0,)∴直线AB的函数解析式为y=-x+4 由此可求得直线CD的解析式为y=x+ 33(2)① ∵B(4,0),C (-4,0)∴OB=OC=4 联立直线AB解析式可求得,点P坐标为(2,2)∴OD是BC的垂直平分线∴∠BDE=∠CDE ② 当BD∶BF=1∶2时,如图②。

∵∠CDE=∠ADP(对顶角) ∴∠BDE=∠ADP 过点F作FH⊥x轴于H。

② 连接EP。

与①同理可证Rt△BHF∽Rt△DOB ∵∠BDE=∠BAD+∠DBP则∴FH=8,HB=2OD ∠ADP=∠DPE+∠DEP,且∠BDE=∠ADP OBODBD∴∠BAD+∠DBP=∠DPE+∠DEP 连接EB。

与(2)同理可证得DE=EF ∵∠DBP=∠DEP ∴∠DPE=∠BAD ∵FH=OD+DE=OD+EF=OD+OH=OD+OB+HB=OD+OB+2OD=3OD+OB ∵∠DPE=∠DFE ∴∠DFE=∠BAD 44∵OA=OB ∴∠BAD=∠OBA=45°,即点D坐标为(0,-)∴8=3OD+4,得OD=33∴∠DFE=45°14由此可求得直线CD的解析式为y=-x- ∵DF是⊙Q的直径∴∠DEF=90°33∴△DEF是等腰直角三角形联立直线AB解析式可求得,点P坐标为(8,-4)22∴DF=DE,即y=x 综上,存在满足题述条件的Rt△BDF,点P坐标(3)① 当BD∶BF=2∶1时,如图①。

【VIP专享】2013年宁波市八校联考中考数学模拟试卷及答案(解析版)

【VIP专享】2013年宁波市八校联考中考数学模拟试卷及答案(解析版)
解答: 解:第 1 次跳后落在 2 上; 第 2 次跳后落在 1 上;
2012 次跳后应循环在哪个数上即
第 3 次跳后落在 3 上; 第 4 次跳后落在 5 上;
… 4 次跳后一个循环,依次在 ∴2012÷4=503 ,
2,1, 3, 5 这 4 个数上循环,
∴应落在 5 上, 故选 D .
点评: 考查数的变化规律;得到青蛙落在数字上的循环规律是解决本题的关键.
面积.
解答: 解:设留下的矩形的宽为 x,
∵留下的矩形与矩形相似,
∴,
x=2 ,
∴留下的矩形的面积为:( 8﹣2) ×4=24( cm2)
故答案为: 24. 点评: 本题主要考查了相似多边形的性质,在解题时要能根据相似多边形的性质列出方程是本题的关键. 16.( 3 分)( 2013 ?宁波模拟)抛物线 y=x 2 先向右平移 1 个单位,再向上平移 3 个单位,得到新的抛物线 解析式是 y= ( x﹣1)2+3 .
∵∠α=75 °,
∴∠ABO=180 °﹣45°﹣75°=60°,
∴OB=OA ÷tan∠ABO=

∴点 B 的坐标为( 0, ),
∴ =0+b, b= . 故选 B .
点评: 本题灵活考查了一次函数点的坐标的求法和三角函数的知识,注意直线
y=x+b ( b> 0)与 x 轴的夹
角为 45°.
11.( 3 分)( 2013 ?宁波模拟)如图, OABC 是边长为 1 的正方形, OC 与 x 轴正半轴的夹角为 15°,点 B 在抛物线 y=ax 2( a< 0)的图象上,则 a 的值为( )
次沿顺时针方向跳两个点;若停在偶数点上,则下次沿逆时针方向跳一个点.若青蛙从

中考数学总复习第1课 实数

中考数学总复习第1课 实数
2.在做实数运算题时,要先理清运算顺序再计算,在计 算的过程中要注意各项符号的处理.
【精选考题 6】 (2013·浙江衢州) 4-23÷|-2|×(-7+ 5).
点评:(1)本题考查实数的运算,难度较小. (2)熟练掌握实数的运算法则是解题的关键.
解析: 4-23÷|-2|×(-7+5) =2-8÷2×(-2) =2+8=10.

【解析】 原式=3×9.42-3×9.42=0.
【答案】 0
考点剖析
考点一 实数的分类
知识清单
正整数 自然数 整数 0
负整数
有理数
正分数 有限小数或无
实数
分数 负分数 限循环小数
正无理数 无理数 负无理数 无限不循环小数
根据需要,我们也可以按符号进行分类,如:
正实数
实数 零
负实数
考点点拨
1.实数的概念及分类常以选择题和填空题的形式出现,题目 难度一般较小.对于实数的分类,应用较多的为按正、负 分类,在分类讨论及探索性问题中也常常涉及实数分类的 知识.
真题体验
1.(2013·浙江金华)在数 0,2,-3,-1.2 中,属于负整
数的是
()
A.0
B.2
C.-3
D.-1.2
【解析】 本题易错选 D,需注意读题,本题题干中要选
的是负整数,所以应满足两个条件:(1)负数:(2)整数,只
有-3 符合,故选 C.
【答案】 C
2.(2013·浙江宁波)-5 的绝对值为
值永远是非负的,绝对值的非负性往往也是题中的隐 含条件.数轴上 a,b 所表示的两个点之间的距离即为 |a-b|.
【精选考题 3】 (2013·浙江舟山)-2 的相反数是 ( )

浙江省各市2013年中考数学分类解析 专题8 平面几何基础

浙江省各市2013年中考数学分类解析专题8 平面几何基础一、选择题1. (2013年浙江杭州3分)下列“表情图”中,属于轴对称图形的是【】(2013杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:答案选D;2. (2013年浙江金华、丽水3分)如图,AB∥CD,AD和BC相交于点O,∠A=200,∠COD=1000,则∠C的度数是【】A.800B.700C.600D.5003. (2013年浙江宁波3分)下列电视台的台标,是中心对称图形的是【】【答案】D。

4. (2013年浙江宁波3分)一个多边形的每个外角都等于72°,则这个多边形的边数为【】A.5 B.6 C.7 D.85. (2013年浙江宁波3分)如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的【】A.6 B.8 C.10 D.126. (2013年浙江湖州3分)如图,已知直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数为【】A.30°B.60°C.120°D.150°∴∠2=180°﹣∠1=180°-60°=120°。

故选C。

7. (2013年浙江湖州3分)在正三角形、等腰梯形、矩形、平行四边形中,既是轴对称图形又是中心对称图形的是【】A.正三角形B.等腰梯形C.矩形D.平行四边形8. (2013年浙江台州4分)下列四个艺术字中,不是轴对称的是【】9. (2013年浙江温州4分)下列各组数可能是一个三角形的边长的是【】A. 1,2,4B. 4,5,9C. 4,6,8D. 5,5,1110. (2013年浙江温州4分)如图,在△ABC中,点D,E分别在AB,AC上,DE∥BC,已知AE=6,ADDB34,则EC的长是【】A. 4.5B. 8C. 10.5D. 14二、填空题1. (2013年浙江金华、丽水4分)如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD 交AC于点D,AD=3,BC=10,则△BDC的面积是▲ 。

2013年浙江省各市中考数学分类解析专题12押轴题

浙江省各市2013年中考数学分类解析 专题12 押轴题一、选择题1. (2013年浙江杭州3分)给出下列命题及函数y=x ,y=x 2和y=1x①如果21>a>a a,那么0<a <1;②如果21a >a>a ,那么a >1;③如果21>a >a a,那么-1<a <0;④如果21a >>a a时,那么a <-1.则【 】A .正确的命题是①④B .错误的命题是②③④C .正确的命题是①②D .错误的命题只有③如果21>a >a a,那么a 值不存在,命题③错误;如果21a >>a a时,那么a <-1,命题④正确。

综上所述,正确的命题是①④。

故选A 。

2. .(2013年浙江舟山3分)对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:()()1212A B x x y y ⊕=+++.例如,A (-5,4),B (2,﹣3),()()A B 52432⊕=-++-=-.若互不重合的四点C ,D ,E ,F ,满足C D D E E F F D ⊕=⊕=⊕=⊕,则C ,D ,E ,F 四点【 】 A .在同一条直线上 B .在同一条抛物线上 C .在同一反比例函数图象上 D .是同一个正方形的四个顶点3. (2013年浙江金华、丽水3分)如图1,在Rt△ABC 中,∠ACB=900,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止。

过点P 作PD⊥AB,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示。

当点P 运动5秒时,PD 的长是【 】A .1.5cmB .1.2cmC .1.8cmD .2cm4. (2013年浙江宁波3分)7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足【】A.a=52b B.a=3b C.a=72b D.a=4b5. (2013年浙江湖州3分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是【】A.16 B.15 C.14 D.13【答案】C。

2013年宁波市数学中考部分试题评析及教学建议

2013年宁波市数学中考部分试题评析及教学建议
王伟
【期刊名称】《理科考试研究(初中版)》
【年(卷),期】2014(000)001
【总页数】2页(P13-14)
【作者】王伟
【作者单位】浙江省宁海桃源中学 315600
【正文语种】中文
【相关文献】
1.2011年河北省中考数学试题评析及教学建议
2.2009年浙江省宁波市数学中考试题评析与思考
3.关注核心知识重视基本方法——2013年宁夏中考数学试题评析
4.2005年宁波市中考数学试题评析
5.一道中考压轴题的多变思考与教学建议——以\"2013年湖南长沙中考数学卷的压轴题\"为例
因版权原因,仅展示原文概要,查看原文内容请购买。

【中考12年】浙江省宁波市2002-中考数学试题分类解析 专题09 三角形

宁波市2002-2013年中考数学试题分类解析专题09 三角形选择题1. (2002年浙江宁波3分)如图,△ABC中,AB=7,AC=6,BC=5,点D、E分别是边AB、AC的中点,则DE的长为【】2. (2004年浙江宁波3分)如图所示,在△ABC中,D,E分别是AB,AC的中点,且AB=10,AC=14,BC=16,则DE等于【】3. (2004年浙江宁波3分)如图,在四边形ABCD中,E是AB上一点,EC∥AD,DE∥BC,若S△BEC=1,S△ADE=3,则S△C DE等于【】4. (2006年浙江宁波大纲卷3分)如图,已知圆锥的底面直径等于6,高等于4,则其母线长为【】【分析】易知,圆锥的底面半径、高和母线构成直角三角形,半径为3 ,高为4,根据勾股定理可得其母线长为5。

故选D。

5. (2006年浙江宁波大纲卷3分)如图,为了确定一条小河的宽度BC,可在点C左侧的岸边选择一点A,使得AC⊥BC,若测得AC=a,∠CAB=θ,则BC=【】6. (2006年浙江宁波课标卷3分)如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE 的长等于【】7. (2007年浙江宁波3分)如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为【】8. (2009年浙江宁波3分)等腰直角三角形的一个底角的度数是【】A.30°B.45°C.60°D.90°【答案】B。

【考点】等腰直角三角形的性质。

【分析】直接根据等腰直角三角形的性质得等腰直角三角形的一个底角的度数是45°。

故选B。

9. (2010年浙江宁波3分)如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB 的角平分线,则图中等腰三角形共有【】A、5个B、4个C、3个D、2个10. (2011年浙江宁波3分)如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为 ,那么滑梯长l为【】11. (2012年浙江宁波3分)如图,在Rt△ABC中,∠C=90°,AB=6,cosB=23,则BC的长为【】1 2. (2012年浙江宁波3分)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为【】二、填空题1. (2002年浙江宁波3分)tan45°=▲2. (2002年浙江宁波3分)如图,△ABC中,AB=AC,△DEF中,DE=DF,要使得△ABC∽△DEF,还需增加的一个条件是▲ (填上你认为正确的一个即可,不必考虑所有可能情况).3. (2002年浙江宁波3分)如图,G是正六边形ABCDEF的边CD的中点,连结AG交CE于点M,则GM:MA=▲【答案】1:6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年浙江省宁波市中考数学试卷 一、选择题(共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一项符号题目要求) 1.(3分)(2013•宁波)﹣5的绝对值为( ) A. ﹣5 B. 5 C. ﹣ D.

考点: 绝对值. 分析: 根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案. 解答: 解:﹣5的绝对值为5, 故选:B. 点评: 此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

2.(3分)(2013•宁波)下列计算正确的是( ) A. a2+a2=a4 B. 2a﹣a=2 C. (ab)2=a2b2 D. (a2)3=a5

考点: 幂的乘方与积的乘方;合并同类项. 分析: 根据合并同类项的法则,同底数幂的乘法以及幂的乘方的知识求解即可求得答案. 解答: 解:A、a2+a2=2a2,故本选项错误;

B、2a﹣a=a,故本选项错误; C、(ab)2=a2b2,故本选项正确; D、(a2)3=a6,故本选项错误; 故选:C. 点评: 本题考查了同底数幂的乘法,合并同类项,一定要记准法则才能做题.

3.(3分)(2013•宁波)下列电视台的台标,是中心对称图形的是( ) A. B. C. D.

考点: 中心对称图形. 分析: 根据中心对称图形的概念对各选项分析判断后利用排除法求解. 解答: 解:A、不是中心对称图形,故本选项错误; B、不是中心对称图形,故本选项错误; C、不是中心对称图形,故本选项错误; D、是中心对称图形,故本选项正确. 故选D. 点评: 本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合是解题的关键. 4.(3分)(2013•宁波)在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是( ) A. B. C. D.

考点: 概率公式. 分析: 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 解答: 解:解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,

从中随机摸出一个,则摸到红球的概率是=. 故选:D. 点评: 本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.

5.(3分)(2013•宁波)备受宁波市民关注的象山港跨海大桥在2012年12月29日建成通车,此项目总投资约77亿元,77亿元用科学记数法表示为( ) A. 7.7×109元 B. 7.7×1010元 C. 0.77×1010元 D. 0.77×1011元

考点: 科学记数法—表示较大的数. 分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,

要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 解答: 解:77亿=77 0000 0000=7.7×109,

故选:A. 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|

<10,n为整数,表示时关键要正确确定a的值以及n的值.

6.(3分)(2013•宁波)一个多边形的每个外角都等于72°,则这个多边形的边数为( ) A. 5 B. 6 C. 7 D. 8

考点: 多边形内角与外角. 分析: 利用多边形的外角和360°,除以外角的度数,即可求得边数. 解答: 解:多边形的边数是:360÷72=5. 故选A. 点评: 本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.

7.(3分)(2013•宁波)两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是( ) A. 内含 B. 内切 C. 相交 D. 外切

考点: 圆与圆的位置关系. 分析: 由两个圆的半径分别为2和3,圆心之间的距离是d=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系. 解答: 解:∵两个圆的半径分别为2和3,圆心之间的距离是d=5, 又∵2+3=5, ∴这两个圆的位置关系是外切. 故选D. 点评: 此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.

8.(3分)(2013•宁波)如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的( ) A. 6 B. 8 C. 10 D. 12

考点: 三角形中位线定理;三角形三边关系. 分析: 本题依据三角形三边关系,可求第三边大于2小于10,原三角形的周长大于14小于20,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于7而小于10,看哪个符合就可以了. 解答: 解:设三角形的三边分别是a、b、c,令a=4,b=6, 则2<c<10,14<三角形的周长<20, 故7<中点三角形周长<10. 故选B. 点评: 本题重点考查了三角形的中位线定理,利用三角形三边关系,确定原三角形的周长范围是解题的关键.

9.(3分)(2013•宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是( ) A. B. C. D.

考点: 展开图折叠成几何体. 分析: 根据长方体的组成,通过结合立体图形与平面图形的相互转化,分别分析得出即可. 解答: 解:A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意; B、剪去阴影部分后,无法组成长方体,故此选项不合题意; C、剪去阴影部分后,能组成长方体,故此选项正确; D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意; 故选:C. 点评: 此题主要考查了展开图折叠成几何体,培养了学生的空间想象能力.

10.(3分)(2013•宁波)如图,二次函数y=ax2=bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是( ) A. abc<0 B. 2a+b<0 C. a﹣b+c<0 D. 4ac﹣b2<0

考点: 二次函数图象与系数的关系. 分析: 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断. 解答: 解:A、根据图示知,抛物线开口方向向上,则a>0.

抛物线的对称轴x=﹣=1>0,则b<0. 抛物线与y轴交与负半轴,则c<0, 所以abc>0. 故本选项错误;

B、∵x=﹣=1, ∴b=﹣2a, ∴2a+b=0. 故本选项错误; C、∵对称轴为直线x=1,图象经过(3,0), ∴该抛物线与x轴的另一交点的坐标是(﹣1,0), ∴当x=﹣1时,y=0,即a﹣b+c=0. 故本选项错误; D、根据图示知,该抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,则4ac﹣b2

<0. 故本选项正确; 故选D. 点评: 本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口

方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.

11.(3分)(2013•宁波)如图,梯形ABCD中,AD∥BC,AB=,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为( )

A. B. C. D. 2 考点: 梯形;等腰三角形的判定与性质. 分析: 延长AE交BC于F,根据角平分线的定义可得∠BAF=∠DAF,再根据两直线平行,内错角相等可得∠DAF=∠AFB,然后求出∠BAF=∠AFB,再根据等角对等边求出AB=BF,然后求出FC,根据两组对边平行的四边形是平行四边形得到四边形AFCD是平行四边形,然后根据平行四边形的对边相等解答. 解答: 解:延长AE交BC于F, ∵AE是∠BAD的平分线, ∴∠BAF=∠DAF, ∵AE∥CD, ∴∠DAF=∠AFB, ∴∠BAF=∠AFB, ∴AB=BF, ∵AB=,BC=4, ∴CF=4﹣=, ∵AD∥BC,AE∥CD, ∴四边形AFCD是平行四边形, ∴AD=CF=. 故选B.

点评: 本题考查了梯形的性质,等腰三角形的性质,平行四边形的判定与性质,梯形的问题,关键在于准确作出辅助线.

12.(3分)(2013•宁波)7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )

A. a=b B. a=3b C. a=b D. a=4b 考点: 整式的混合运算. 专题: 几何图形问题. 分析: 表示出左上角与右下角部分的面积,求出之差,根据之差与BC无关即可求出a与b的关系式. 解答: 解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a, ∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,

相关文档
最新文档