高二数学 空间向量及其运算练习题

高二数学 空间向量及其运算练习题
高二数学 空间向量及其运算练习题

高二数学 空间向量及其运算练习题

题海冲浪: 一、基础题:

1、平面向量中,下列说法正确的是( ) A 、如果两个向量的长度相等,那么这两个向量相等; B 、如果两个向量平行,那么这两个向量的方向相同;

C 、如果两个向量平行并且它们的模相等,那么这两个向量相等;

D 、同向且等腰三角形长的有向线段表示同一向量。 答案:D

2、已知空间向量四边形ABCD ,连结AC 、BD ,设M 、G 分别是BC 、CD 的中点,则MG AB AD -+等于( ) A 、32

DB B 、3MG D 、3GM D 、2MG 解析:

,2BD AD AB BD MG =-=

223AD AB MG

MG AB AD MG MG MG

∴-=∴-+=+=

答案:B

3、已知2,3a b ==,0

,60a b =,则|23a b -|等于( )

A B 、97

C D 、61

解析:222

223(23)412942a b a b a a b b -=-=-+=?=答案:C

4、已知,,a b c 是不共面的三个向量,则下列选项中能构成一个基底的一组向量是( ) A 、2,,2a a b a b -+ B 、2,,2b b a b a -+ C 、,2,a b b c - D 、,,c a c a c +- 解析:A 中,4

2

2()(2)33

a a

b a b =

-++ ∴排除A

B 中,42

2()(2)33b b a b a =-++ ∴排除B D 中,11

()()22

c a c a c =+-- ∴排除D

答案:C

5、已知非零向量,a b 不平行,并且其模相同,则a b +与a b -之间的并系是( ) A 、垂直 B 、共线 C 、不垂直 D 、以上都可以 答案:A

6、在空间四边形ABCD 中,连结AC 、BD ,若BCD 是正三角形,且E 为其中心,则

13

22

AB BC DE AD +

--的化简结果为 答案:

7、已知A 、B 、C 三点不共线,对平面ABC 外一点O ,分别根据条件: (1)

31

244

OP OA OB OC

=-+;(2)

23OP OA OB

=-+;(3)

22(sin )2(cos 2)OP OA OB OC αα=-++;(4)3OP AB OC =-; 能够确定P 与A 、B 、C 一定共面的有 解析:设OP xOA yOB zOC =++

(1)中31

,2,,1,,,,44

x y z x y z P A B C =

=-=++=-∴不共面; (2)中2,3,0,1,,,,x y z x y z P A B C =-==

++=∴共面;

(3)中22sin ,cos 1,,,,x y z x y z P A B C αα===++=∴共面; (4)中33()33OP AB OC OB OA OC OA OB OC =-=--=-+-

3,3,1,1,,,,x y z x y z P A B C =-==-++=-∴不共面;

8、若AB BE AB BC =,则AB CE 解析:由题意得,()0AB BE BC -=

0AB CE AB CE

∴=∴⊥

答案:⊥

9、如图,已知PA ⊥平面ABCD ,四边形ABCD 为正方形,G 为等腰三角形PDC 的重心,

,,AB i AD j AP k ===,试用基底{,,i j k }表示向量,,PG BG AG

解:延长PG 交CD 于E ,则

2211111

()()()3323333

212122333333

PG PE PC PD PC PD PA AB BC PA AD AP AB AD i j k

=

=?+=+=++++=-++=+-

122221

()333333

BG BP PG BA AP PG i k i j k i j k =+=++=-+++-=-++

122121

()333333AG AP PG k i j k i j k =+=++-=++

10、如图,在空间四边形OABC 中,OA=8,AB=6,AC=4,BC=5,

0045,60OAC OAB ∠=∠=,求OA 与BC 夹角的余弦值。

解:

BC AC AB =-

||||cos ,||||cos ,OA BC OA AC OA AB OA AC OA AC OA AB OA AB

∴=-=-008

4cos13586cos12024

162=??-??=-

243cos ,855|||

|

OA BC OA BC OA BC --∴=

==

? OA ∴与BC 夹角的余弦值为

325

- 一、能力提高

11、证明:如果三个向量,,a b c 不共面,那么对空间任一向量p ,表达式

,(,,)p xa yb zc x y z R =++∈唯一。

证明:假设命题的结论不成立,可设''',(',',')p x a y b z c x y z R =++∈,则

',',x x y y z z ===中至少有一个不成立,不妨设'x x ≠,又p xa yb zc =++,

(')(')(')''

''x x a y y b z z c

y y z z a b c

x x x x

∴-=-+---∴=+-- 而,b c 不共线,,,a b c ∴为共面向量,这与题设矛盾,故表达示

,(,,)p xa yb zc x y z R =++∈唯一。

12、如图,已知空间四边形OABC 中,M 为BC 的中点,N 为AC 的

中点,P 为OA 的中点,Q 为OB 的中点,若AB=OC ,求证:PM QN ⊥ 证明:

11

(),()22

OM OB OC ON OA OC =

+=+ 11

()()22

QN QO ON BO OA OC OA OB OC ∴=+=++=-+

=11

()()22

BA OC OC AB +=- 111

()()()222

PM PO OM AO OB OC OB OA OC AB OC ∴=+=++=-+=+

1()2PM QN AB OC ∴=+1()2OC AB -=222211

()(||||)44

OC AB OC AB -=-

,0,AB OC PM QN PM QN PM QN

=∴=∴⊥⊥即

13、如图所示,已知四面楚歌体ABCD 为正四面体,E 、F 分别是BC 、AD 的中点,求异面直线AE 、CF 所成的角。

解:设,,,AB a AC b AD c ===正四面体的棱长为m

则,a b c m ===且,,a b c 三向量两两夹角均为600,又

11

()()22AE AB AC a b =

+=+

111

()()(2)222

CF CA CD b c b c b =+=-+-=-

222020202

111

()(2)(22)

2241(cos 60cos 602cos 602)42

AE CF a b c b a c b c a b b m m m m m ∴?=+-=+-

-=+--=-D

C

3AE CF ==

22cos ,3||||(m AE CF AB CF AE CF -

∴==

=- 又异面直线所成角的范围是(0,]2π

,AE CF ∴所成的角为2

arccos 3

备选题:

1、 在正方体ABCD —A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点,求证:A 1O ⊥

平面GBD

证明:设11A B =a ,111,A D b A A c ==, 则0,0,0a b b c a c ===

而1

1111

()()22

AO A A AO A A AB AD c a b =+=++=++ BD AD AB b a =-=-

11111()()2222OG OC OG AB AD CC a b c =+=

++=+- 12222111

()()()()()

222

11

()(||||)0

22A O BD c a b b a c b a a b b a c b c a b a b a ∴=++-=-++-=-+-=-=

2

212222*********()()()()22222442

1111

()(||||)||04242

A O BD c a b a b c b a c a b c

b a

c b a c ∴=+++-=+++-=

+-=+-=

11

,AO BD AO OG ∴⊥⊥ 又

1

,BD OG O AO =∴⊥平面

BDG 1

B C 1

C 1

A 1

A

2、 如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形,且

11C CB C CD BCD ∠=∠=∠

(1) 求证:1C C BD ⊥ (2) 当

1

CD

CC 的值为多少时,能使1

AC ⊥平面1C BD ?请给出证明。 证明:(1)取1,,CD a CB b CC c ===为空间的一个基底,设菱形的边长为m ,1,,CD CB CC 中两两所夹的角为θ,于是BD CD CB a b =-=-,

1()||||cos ||||cos 0CC BD c a b c a c b c a c b θθ=-=-=-=

1CC BD ∴⊥,即有1CC BD ∴⊥

(2)设

1

(0),CD

CC λλ=>即1CD CC λ=时,能使1

AC ⊥平面C 1BD 1C D ?平面BC 1D ,BD ?平面1BC D ,11AC C D ∴⊥,且1

AC BD ⊥ 110,AC C D ∴=且1

0AC BD = 1

111()(),AC CD CB CC a b c C D CD CC a c =-++=-++=-=- 2

21

12

22

()()||cos cos AC C D a b c a c a a c a b b c a c c m

m m m m m θθλ

λ∴=-++-=-+-+-+=--?+?

+

令110,AC C D =得1λ=时,11AC C D ⊥ 同理可证,当1λ=时,1

AC BD ⊥ 1

1CD

CC ∴

=时,1

AC ⊥平面1C BD

高二数学-空间向量与立体几何测试题

1 / 10 高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

高中数学空间向量与立体几何测试题及答案

一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC 的表达中错误的一个是( ) A.11111AA A B A D ++ B.111AB DD D C ++ C.111AD CC D C ++ D.11111 ()2 AB CD AC ++ 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-, ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C 7.如图1,空间四边形ABCD 的四条边及对 角线长都是a ,点E F G ,,分别是AB AD CD ,,

的中点,则2a 等于( ) A.2BA AC · B.2AD BD · C.2FG CA · D.2EF CB · 答案:B 8.若123123123=++=-+=+-,,a e e e b e e e c e e e ,12323d e e e =++,且x y z =++d a b c ,则,,x y z 的值分别为( ) A.51122--,, B.51122 -,, C.51122 --,, D.51122 ,, 答案:A 9.若向量(12)λ=,,a 与(212)=-, ,b 的夹角的余弦值为8 9,则λ=( ) A.2 B.2- C.2-或 255 D.2或255 - 答案:C 10.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( ) A.7412??- ???,, B.(241),, C.(2141)-,, D.(5133)-,, 答案:D 11.在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C.3arccos 3 D.3arccos 6 答案:D 12.给出下列命题: ①已知⊥a b ,则()()a b c c b a b c ++-=···; ②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面; ③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底; ④若,a b 共线,则,a b 所在直线或者平行或者重合. 正确的结论的个数为( ) A.1 B.2 C.3 D.4 答案:C 二、填空题 13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则c = . 答案:2221055?? - ??? ,,

空间向量加减法练习题

3.1.1空间向量加减法习题 一、选择题1.下列命题正确的有()(1)若|a|=|b|,则a=b; →→(2)若A,B,C,D是不共线的四点,则AB=DC是四边形ABCD是平行四边形的充要条件; (3)若a=b,b=c,则a=c; ,b|a|=||??相等的充要条件是,b(4)向量a?;∥ba??(5)|a|=|b|是向量a=b的必要不充分条件;→→(6)AB=CD的充要条件是A与C重合,B与D 重合.A.1个B.2个 个.4C.3个 D C答案[][解析](1)不正确.两个向量长度相等,但它的方向不一定相同.→→AB=DC正确.(2)∵→→→→∴|AB|=|DC|且AB∥CD.又∵A,B,C,D不共线,∴四边形ABCD 是平行四边形.→→反之,在?ABCD中,AB=DC. ,a=b(3)正确.∵∴a,b的长度相等且方向相同.∵b=c,∴b,c的长度相等且方向相同.故a=c. (4)不正确.由a∥b,知a与b方向相同或相反. b./ |?a=||||=b?a|=b|,a|=ba(5)正确.→→→→→→同向.CD与AB,|CD|=|AB|,CD=AB.不正确(6) 故选C. 2.设A,B,C是空间任意三点,下列结论错误的是() →→→→→→0CA=AB+BC+BCA.AB+=AC B.→→→→→=-BA D.ABC.AB-AC =CB ][答案B[解析]注意向量的和应该是零向量,而不是数0. →→→→3.已知空间向量AB,BC,CD,AD,则下列结论正确的是()→→→A.AB=BC+CD →→→→B.AB-DC+BC=AD→→→→C.AD=AB +BC+DC →→→D.BC=BD-DC B答案][[解析]根据向量加减法运算可得B正确. →→4.在平行六面体ABCD—A′B′C′D′中,与向量AA′相等的向量(不含AA ′)的个数是() A.1个B.2个 4个D..C3个 答案[]C[解析]利用向量相等的定义求解. 5.两个非零向量的模相等是这两个向量相等的()A.充分不必要条件 .必要不充分条件B C.充要条件D.既不充分也不必要条件[答案]B [解析]两个非零向量的模相等,这两个向量不一定相等,但两向量相等模必相等,故选B. →→6.在平行六面体ABCD-ABCD中,M为AC与BD的交点,若AB=a,AD=b,11111111→→AA=c,则下列向量中与B )(相等的向量是M11. 11A.-a+b+c2211 cb+B.a+2211C.a-b+c 2211D.-a-b+c22[答案]A →→→[解析]B M=BB+BM11 1→→=AA+BD 121→→→=AA+(BA+BC )11111211=-a +b+c.∴应选A.227.在正方体ABCD-ABCD中,下列各式中1111→→→CC)+(1)(AB+BC1→→→(2)(AA+AD) +DC11111→→→(3)(AB+BB)+BC 111→→→(4)(AA+A B)+BC.11111→运算的结果为向量AC 的共有 ()1A.1个B.2个 个4个D..C3 D答案[] 8.给出下列命题:①将空间中所有的单位向量移到同一个点为

高二数学空间向量与立体几何测试题

高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

空间向量与空间角练习题

课时作业(二十) [学业水平层次] 一、选择题 1.若异面直线l 1的方向向量与l 2的方向向量的夹角为150°,则l 1与l 2所成的角为( ) A .30° B .150° C .30°或150° D .以上均不对 【解析】 l 1与l 2所成的角与其方向向量的夹角相等或互补,且 异面直线所成角的围为? ????0,π2.应选A. 【答案】 A 2.已知A (0,1,1),B (2,-1,0),C (3,5,7),D (1,2,4),则直线AB 与直线CD 所成角的余弦值为( ) A.52266 B .-52266 C.52222 D .-52222 【解析】 AB →=(2,-2,-1),CD →=(-2,-3,-3), ∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=53×22=52266, ∴直线AB 、CD 所成角的余弦值为52266 . 【答案】 A

3.正方形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,若PA =AB ,则平面PAB 与平面PCD 的夹角为( ) A .30° B .45° C .60° D .90° 【解析】 如图所示,建立空间直角坐标系,设PA =AB =1.则A (0,0,0),D (0,1,0),P (0,0,1).于是AD → =(0,1,0). 取PD 中点为E , 则E ? ????0,12,12, ∴AE → =? ????0,12,12, 易知AD →是平面PAB 的法向量,AE →是平面PCD 的法向量,∴ cos AD →,AE →=22 , ∴平面PAB 与平面PCD 的夹角为45°. 【答案】 B 4.(2014·师大附中高二检测)如图3-2-29,在空间直角坐标系Dxyz 中,四棱柱ABCD —A 1B 1C 1D 1为长方体,AA 1=AB =2AD ,点E 、F 分别为C 1D 1、A 1B 的中点,则二面角B 1-A 1B -E 的余弦值为( )

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

空间向量其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题 1 抛物线2 81x y - =的准线方程是 ( ) A . 321=x B . 2=y C . 32 1 =y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

数学选修空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

①几何表示法:_________________________ ②字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ①零向量:__________________________,记作___(零向量的方向具有任意性) ②单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③相等向量:____________________________ ④相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a的积是一个向量,记作λa,其长度和 方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb 数乘结合律:λ(aμ)=a) (λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

3.1空间向量及其运算第1课时完美版

§3.1.1空间向量及加减其运算 【学情分析】: 向量是一种重要的数学工具,它不仅在解决几何问题中有着广泛的应用,而且在物理学、工程科学等方面也有着广泛的应用。在人教A版必修四中,读者已经认知了平面向量,现在,学习空间向量时要注意与平面向量的类比,体会空间向量在解决立体几何问题中的作用。【教学目标】: (1)知识与技能:理解和掌握空间向量的基本概念,向量的加减法 (2)过程与方法:通过高一学习的平面向量的知识,引申推广,理解和掌握向量的加减法 (3)情感态度与价值观:类比学习,注重类比、推广等思想方法的学习,运用向量的概念和运算解决问题,培养学生的开拓创新能力。 【教学重点】: 空间向量的概念和加减运算 【教学难点】: 空间向量的应用

四.练习巩 固 1.课本P86练习1-3 2.如图,在三棱柱1 11C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +; (2)1AA CB AC ++; (3)CB AC AA --1 解:(1)11CA BA CB =+ (2)11AB AA CB AC =++ (3)11BA CB AC AA =-- 巩固知识,注意区别加 减法的不同处. 五.小结 1.空间向量的概念: 2.空间向量的加减运算 反思归纳 六.作业 课本P97习题3.1,A 组 第1题(1)、(2) 练习与测试: (基础题) 1.举出一些实例,表示三个不在同一平面的向量。 2.说明数字0与空间向量0的区别与联系。 答:空间向量0有方向,而数字0没有方向;空间向量0的长度为0。 3.三个向量a,b,c 互相平行,标出a+b+c. ‘解:分同向与反向讨论(略)。 4.如图,在三棱柱111C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +;

高中数学空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC u u u u r 的表达中错误的一个是( ) A.11111AA A B A D ++u u u r u u u u r u u u u r B.111AB DD D C ++u u u r u u u u r u u u u u r C.111AD CC D C ++u u u r u u u u r u u u u u r D.11111()2 AB CD AC ++u u u u r u u u u r u u u u r 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=u u u r u u u r u u u r ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-u u u r u u u r u u u r , ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

空间向量的加减数乘运算练习题集

课时作业(十四) [学业水平层次] 一、选择题 1.对于空间中任意三个向量a ,b,2a -b ,它们一定是( ) A .共面向量 B .共线向量 C .不共面向量 D .既不共线也不共面向量 【解析】 由共面向量定理易得答案A. 【答案】 A 2.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、D D .A 、C 、D 【解析】 BD →=BC →+CD →=-5a +6b +7a -2b =2a +4b ,BA → =-AB →=-a -2b ,∴BD →=-2BA →, ∴BD →与BA → 共线, 又它们经过同一点B , ∴A 、B 、D 三点共线. 【答案】 A 3.A 、B 、C 不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC → ,则P 、A 、B 、C 四点( ) A .不共面 B .共面

C .不一定共面 D .无法判断 【解析】 ∵34+18+1 8=1, ∴点P 、A 、B 、C 四点共面. 【答案】 B 4. (2014·莱州高二期末)在平行六面体ABCD -A 1B 1C 1D 1中,用向量AB →,AD →,AA 1→表示向量BD 1→ 的结果为( ) 图3-1-9 =AB →-AD →+AA 1→ =AD →+AA 1→-AB → =AB →+AD →-AA 1→ =AB →+AD →+AA 1→ 【解析】 BD 1→=BA →+AA 1→+A 1D 1→=-AB →+AA 1→+AD → .故选B. 【答案】 B 二、填空题 5.如图3-1-10,已知空间四边形ABCD 中,AB →=a -2c ,CD → =5a +6b -8c ,对角线AC ,BD 的中点分别为E 、F ,则EF → =________(用向量a ,b ,c 表示).

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

3.1.1空间向量及其加减运算专项练习与答案

3.1.1空间向量及其加减运算专项练习 一、选择题(每小题5分,共20分) 1.在平行六面体ABCD -A ′B ′C ′D ′中,与向量A ′B ′―――→ 的模相等的向量有( ) A .7个 B .3个 C .5个 D .6个 解析: |D ′C ′―――→|=|DC ―――→|=|C ′D ′―――→|=|CD →|=|BA →|=|AB →|=|B ′A ′―――→|=|A ′B ′―――→ |. 答案: A 2.已知向量a ,b 是两个非零向量,a 0,b 0是与a ,b 同方向的单位向量,那么下列各式中正确的是( ) A .a 0=b 0 B .a 0=b 0或a 0=-b 0 C .a 0=1 D .|a 0|=|b 0| 解析: 两单位向量的模都是1,但方向不一定相同或相反. 答案: D 3.下列命题是真命题的是( ) A .分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量 B .若|a |=|b |,则a ,b 的长度相等而方向相同或相反 C .若向量AB →,C D →满足|AB →|>|CD →|,且AB →与CD →同向,则AB →>CD → D .若两个非零向量AB →与CD →满足AB →+CD →=0,则AB →∥CD → 解析: A 错.因为空间任两向量平移之后可共面,所以空间任两向量均共面. B 错.因为|a |=|b |仅表示a 与b 的模相等,与方向无关. C 错.空间任两向量不研究大小关系,因此也就没有AB →>C D → 这种写法. D 对.∵AB →+CD → =0, ∴AB →=-CD →,∴AB →与CD →共线,故AB →∥CD → 正确. 答案: D 4.已知向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC → |,则( ) A.AB →=AC →+BC → B.AB →=-AC →-BC → C.AC →与BC → 同向 D.AC →与CB → 同向 解析: 由|AB →|=|AC →|+|BC →|=|AC →|+|CB → |,知C 点在线段AB 上,否则与三角形两边之和大于第三边矛盾,所以AC →与CB → 同向. 答案: D

数学高二-选修2-1测评7 空间向量的运算

学业分层测评(七) (建议用时:45分钟) [学业达标] 一、选择题 1.(2016·广州高二检测)若a ,b 均为非零向量,则a·b =|a ||b |是a 与b 共线的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 【解析】 由a·b =|a ||b |cos θ=|a||b|可知cos θ=1,由此可得a 与b 共线;反过来,若a ,b 共线,则cos θ=±1,a·b =±|a ||b |.故a·b =|a ||b |是a ,b 共线的充分不必要条件. 【答案】 A 2.如图2-2-7所示,已知三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,点G 在线段MN 上,且MG =2GN .设OG →=xOA →+yOB →+zOC → ,则x ,y ,z 的值分别为( ) 图2-2-7 A .x =13,y =13,z =1 3 B .x =13,y =13,z =1 6 C .x =13,y =16,z =1 3 D .x =16,y =13,z =1 3

【解析】 OG →=OM →+MG →=12OA →+23MN → =12OA →+23(ON →-OM →)=12OA →-23OM →+23ON → =? ????12-13OA →+23×12(OB →+OC →) =16OA →+13OB →+13OC →, ∴x =16,y =13,z =13. 【答案】 D 3.已知e 1、e 2互相垂直,|e 1|=2,|e 2|=2,a =λe 1+e 2,b =e 1-2e 2,且a 、b 互相垂直,则实数λ的值为( ) A.12 B .14 C .1 D .2 【解析】 ∵a ⊥b ,∴(λe 1+e 2)·(e 1-2e 2)=0. 又e 1⊥e 2,∴e 1·e 2=0. ∴λe 21-2e 22=0.又∵|e 1|=2,|e 2|=2, ∴4λ-8=0,∴λ=2. 【答案】 D 4.设向量a ,b 满足|a |=|b |=1,a·b =-12,则|a +2b |=( ) 【导学号:32550026】 A. 2 B . 3 C. 5 D .7 【解析】 依题意得|a +2b |2=a 2+4b 2+4a·b =5+4×? ????-12=3,则|a +2b | = 3. 【答案】 B

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

空间向量与立体几何单元测试试卷

五河二中高二数学测试卷(理科) 一、选择题: 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异 面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定 也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为 c z b y a x p ++=.其中正确命题的个数为 ( ) A .0 B .1 C . 2 D .3 2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共 面,则实数λ等于 ( ) A .627 B .637 C .647 D .65 7 3.直三棱柱ABC —A 1B 1C 1中,若c CC b CB a CA ===1,,, 则1A B =u u u r ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角>

空间向量及立体几何练习试题和答案解析

. 1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD, 点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. 的中点;PB(1)求证:M为 的大小;A2)求二面角B﹣PD﹣( 所成角的正弦值.BDP(3)求直线MC与平面 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小; (3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O,

∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, . . ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C (2,4,0),B(﹣2,4,0),M(﹣1,2,), ,.

高二数学空间向量与立体几何单元测试卷一

A A 1 D C B B 1 C 1 图 高二(2)部数学《空间向量与立体几何》单元测试卷一 班级____姓名_____ 一、选择题:(每小题5分,共60分). 1.在正三棱柱ABC —A 1B 1C 1中,若AB = 2BB 1,则AB 1与C 1B 所成的角的大小为( ) A .60° B .90° C .105° D .75° 2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=4 1 1B A ,则BE 1 与DF 1所成角的余弦值是 ( ) A . 1715 B .2 1 C . 17 8 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别 是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是 ( ) A . 10 30 B . 21 C .1530 D .10 15 4.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离 ( ) A . 5 15 B . 5 5 C . 5 5 2 D . 10 5 5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离 ( ) A . a 42 B .a 82 C .a 423 D .a 2 2 6.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离 ( ) A . 6 3 B . 3 3 C . 3 3 2 D . 2 3 7.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC = 2 1 PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值 ( ) A . 6 21 B . 3 3 8 C . 60210 D . 30 210 图 图

高中空间向量试题

高二数学单元试题 1.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2 a -b 互相垂直,则k 的值是( ) A . 1 B . 51 C . 53 D . 5 7 2.已知与则35,2,23+-=-+=( )A .-15 B .-5 C .-3 D .-1 3.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是 ( ) A .OM ++= B .OM --=2 C .3121++ =D .3 1 3131++= 4.已知向量a =(0,2,1),b =(-1,1,-2),则a 与b 的夹角为 ( ) A . 0° B . 45° C . 90° D .180° 5.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为 A .2 B .3 C .4 D .5 6.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =xa +yb +zc .其中正确命题的个数为( )A . 0 B .1 C . 2 D .3 7.已知空间四边形ABCD ,M 、G 分别是BC 、CD 的中点,连结AM 、AG 、MG ,则?→ ?AB +1 ()2 BD BC +等于( ) A .?→ ?AG B . ?→ ?CG C . ?→ ?BC D .21?→? BC 8.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A . +-a b c B .-+a b c C . -++a b c D . -+-a b c 9.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 10.已知点A (4,1,3),B (2,-5,1),C 为线段AB 上一点,且3||||AC AB =,则点的坐标是 ( ) A .715(,,)222- B . 3(,3,2)8- C . 107(,1,)33- D .573(,,)222 - 11.设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=?=?=?,则△BCD 是 ( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .不确定 12.(理科)已知正方形ABCD 的边长为4, E 、 F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,则点B 到平面 EFG 的距离为( ) A . 1010 B . 11112 C . 5 3 D . 1 二.填空题(本大题4小题,每小题4分,共16分) 13.已知向量a =(λ+1,0,2λ),b =(6,2μ-1,2),若a ∥b,则λ与μ的值分别是 . 14.已知a,b,c 是空间两两垂直且长度相等的基底,m=a+b,n=b -c ,则m ,n 的夹角为 . 15.已知向量a 和c 不共线,向量b ≠0,且()()??=??a b c b c a ,d =a +c ,则,??d b = .

相关文档
最新文档