专题九指数指数函数导数运算

专题九指数指数函数导数运算
专题九指数指数函数导数运算

指数与导数运算

1、复合函数:已知函数u=g(x),定义域为M,值域为N,函数y=f(u),定义域为N;y

通过u构成x的新函数

y=f[g(x)],称y为x的复数函数,其中u为中间变量。

如:u=g(x)=3x+1, y=f(u)=sinu,则y=f[g(x)]=sin(3x+1)

2、复合函数的求导法则

若u=g(x)在x处可导,y=f(u)在x的对应点u处可导y′u=f′(u),则y=f[g(x)]在点x可导,

且y′x=y′u·u′x,即f[g(x)] ′=f′(u)·g′(x)。

即复合函数对自变量的导数,等于已知函数对中间变量的导数,乘中间变量对自变量的导数。

如,y=sin(3x+1),其中,y=sinu, u=3x+1

∴y′x=y′u·u′x=cosu(3x+1)′=3cos(3x+1)

3、运用复合函数的求导法则要注意:

准确判断复合函数的复合关系是用好法则的前提。

应该从外向里分析,最外层的主体函数结构是以基本函数为主要形式,各层的中间变量结构也都是基本函数关系,这样一层一层分析,最里层应是关于自变量x的基本函数或关于自变量x 的基本函数经有限次四则运算而得到的函数。

4、指数、对数函数求导公式,不要求掌握推导过程,只要求会运用公式。

[典型例题]

例1.求y=(2x+1)5的导数。

解:设y=u5, u=2x+1,则

y x′=y u′·u x′=(u5)′·(2x+1)′x=5u4·2=5(2x+1)4·2=10(2x+1)4。

点评:①准确分清复合函数的结构层次

如y=f(x)=2x+1,y=g(x)=x5

则y=f[g(x)]=2x5+1,

y=g[f(x)]=(2x+1)5是不同的函数。

②复合函数的求导熟练以后,中间步骤可以省略,不必再写出函数的复合过程,对经过多次复合及四则运算而形成的复合函数,可以直接应用公式和法则,以最外层开始由外及内,逐层求导。

例2.求的导数。

解:,

设,u=2x+1,

∴.

点评:将根式与分式形式写成分数指数与负指数形式,转化为幂函数的复合形式求导,会使问题得到简化,注意这种识别与转化。

如:,。

例3:求导①②

解:方法1:①令y=lnu, ,

.

方法2:先将商的对数化为对数的差

y=ln(1+3x2)-ln(2-x2)

∴.

②方法1:令y=lnu, ,

.

方法2:原函数定义域为-1

∴.

点评:①先将函数化简,再求导会简化运算过程

②化简函数时,要注意保证等价变形(即函数的定义域不能改变)例4:已知f(x)在R上可导,F(x)=f(x2-4)+f(4-x2),求F′(2)。

解:F′(x)=2xf′(x2-4)-2xf′(4-x2)

∴F′(2)=4f′(0)-4f′(0)=0。

例5:证明:可导的奇函数其导函数是偶函数

证明:方法一:运用导数的定义来证,f′(-x)=f′(x)

∵f(x)为奇函数,∴f(-x)=-f(x)

方法二:用复合函数求导法则

∵f(x)为奇函数,∴f(-x)=-f(x)

两边对x求导,得f′(-x)·(-x)′=-f′(x)即-f′(-x)=-f′(x)

∴f′(-x)=f′(x)。

例6:求导:(1)y=2x·e x(2)(3)

解:(1)y′=2x ln2·e x+2x·e x=(ln2+1)·2x·e x.

(2),令y=a n, ,

∴.

(3)

.

点评:(1)在y=2x·e x求导中,有同学写成即将乘法运算与复合运算混淆。

(2)在求导中,有同学先化为后,。

错在将指数函数y=a x(a为常数)与幂函数y=x n(n为常数)混淆。

例7:已知0

解:y>0,两边取对数得

∵y是x的函数,由复合函数的求导法则对上式两边求导,得:

∴,∵,

∴.

点评:本题可利用求导的四则运算法则予以求导,本题利用取对数法求导,好在可以把积商求导化为较简单的和、差求导,把幂和根式的求导问题简单化。但运用此法时,要注意可以取对数的条件。

例8:y=(tanx)sinx

解:

指数运算、指数函数

§1.4指数运算、指数函数 【复习要点】 1.指数、对数的概念、运算法则; 2.指数函数的概念, 性质和图象. 【知识整理】 1.指数的概念;运算法则:n n n mn n m n m n m b a ab a a a a a ===?+)(,)(, )1,,,0(* >∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 2.指数函数的概念, 性质和图象如表: 其中利用函数的图象来比较大小是一般的方法。 4.会求函数y =a f (x)的单调区间。 5.含参数的指数函数问题,是函数中的难点,应初步熟悉简单的分类讨论。 【基础训练】 1]4 3的结果为 ( ) A.5 B.5 C.-5 D.-5 2.将322-化为分数指数幂的形式为 ( ) A .2 1 2- B .3 12- C .2 12 - - D .6 52-

3.下列等式一定成立的是 ( ) A .2 33 1 a a ?=a B .2 12 1a a ?- =0 C .(a 3)2=a 9 D .6 13121a a a =÷ 4.下列命题中,正确命题的个数为 ( ) ①n n a =a ②若a ∈R ,则(a 2-a +1)0=1 ③y x y x +=+3 433 4 ④623)5(5-=- A .0 B .1 C .2 D .3 5.化简11111321684 21212121212-----??????????+++++ ???????????????????,结果是 ( ) A .1 1 321122--? ?- ? ?? B .1 132 12--??- ??? C .1 3212-- D .1321122-??- ??? 6 .4 4 等 于 ( ) A .16a B .8a C .4a D .2 a 【例题选讲】 1.设3 2212 ,-==x x a y a y ,其中a >0,a ≠1,问x 为何值时有 (1)y 1=y 2 ? (2)y 1<y 2? 2.比较下列各组数的大小,并说明理由 (1)431.1,434.1,3 21.1 (2)4 316.0- ,2 35 .0- ,8 325.6 (3)5 32 )1(+a ,4 32 )1(+a 3.已知函数3234+?-=x x y 的值域为[7,43],试确定x 的取值范围. 4.设01a <<,解关于x 的不等式2 2 232 223 x x x x a a -++->

教程-训练-指数运算与指数函数

指数运算与指数函数 【知识概述】 一、根式的性质: 1.a a n n =)( 2.当n 为奇数时,a a n n = 3.当n 为偶数时,???<-≥==)0()0(||a a a a a a n 二、幂的有关概念: 正整数指数幂:()n a a a a n N *=?? ?∈n 个 零指数幂:)0(10 ≠=a a , 负指数幂:∈=-p a a p p (1 Q , 正分数指数幂:m a a a n m n m ,0(>=、∈n N * 且)1>n 三、有理指数幂的运算性质 1.r a a a a s r s r ,0(>=?+、∈s Q ), 2.r a a a s r s r ,0()(>=?、∈s Q ), 3.∈>>?=?r b a b a b a r r r ,0,0()( Q ) 四、指数函数 1.指数函数定义:函数)1,0(≠>=a a a y x 且称指数函数,函数的定义域为R ,值域为 ),0(+∞

2.函数图像: 3.性质:(1)图象都经过点(0,1) (2)1a >时,x y a =为增函数;10a >>时,x y a =为减函数 (3)x y a =为非奇非偶函数 【学前诊断】 1. [难度]易 计算:(1)( ) ) 12 10 2 3 170.0272179--????--+- ? ????? ; (2 (3 . 2. [难度]中 函数e e e e x x x x y --+=-的图象大致为( ). 3. [难度]中 若函数x x x f -+=3 3)(与x x x g --=3 3)(的定义域均为R ,则( ). A. )(x f 与)(x g 与均为偶函数 B.)(x f 为奇函数,)(x g 为偶函数 C. )(x f 与)(x g 与均为奇函数 D.)(x f 为偶函数,)(x g 为奇函数 D

指数运算和指数函数

指数运算和指数函数 一、知识点 1.根式的性质 (1)当n 为奇数时,有a a n n = (2)当n 为偶数时,有???<-≥==) 0(,) 0(,a a a a a a n n (3)负数没有偶次方根 (4)零的任何正次方根都是零 2.幂的有关概念 (1)正整数指数幂:)(.............*∈??=N n a a a a a n n (2)零指数幂)0(10 ≠=a a (3)负整数指数幂 ).0(1 *∈≠= -N p a a a p p (4)正分数指数幂 )1,,,0(>*∈>=n N n m a a a n m n m 且 (5)负分数指数幂 n m n m a a 1= - )1,,,0(>*∈>n N n m a 且 (6)0的正分数指数幂等于0,0的负分数指数幂无意义 3.有理指数幂的运算性质 (1)),,0(,Q s r a a a a s r s r ∈>=?+ (2)),,0(,)(Q s r a a a rs s r ∈>= (3)),0,0(,)(Q r b a a a ab s r r ∈>>?= 4.指数函数定义:函数)10(≠>=a a a y x 且叫做指数函数。 5. 指数函数的图象和性质 x a y = 0 < a < 1 a > 1 图 象 性 质 定义域 R 值域 (0 , +∞) 定点 过定点(0,1),即x = 0时,y = 1 (1)a > 1,当x > 0时,y > 1;当x < 0时,0 < y < 1。 (2)0 < a < 1,当x > 0时,0 < y < 1;当x < 0时,y > 1。 单调性 在R 上是减函数 在R 上是增函数 对称性 x y a =和x y a -=关于y 轴对称

高一数学讲义-指数运算与指数函数

指数运算和指数函数 要求层次重点难点幂的运算 C ①根式的概念 ②有理指数幂 ③实数指数幂 ④幂的运算 ①分数指数幂的概 念和运算性质 ②无理指数幂的理 解 ③实数指数幂的意 义 指数函数的概念 B 在理解实数指数幂 的意义的前提下理 解指数函数 在理解实数指数幂 的意义的前提下理 解指数函数 指数函数的图象和 性质 C ①对于底数1 a>与 01 a <<时指数函 数的不同性质 ②掌握指数函数的 图象和运算性质 ①对于底数1 a>与 01 a <<时指数函 数的不同性质 ②掌握指数函数的 图象和运算性质 ③掌握指数函数作 为初等函数与二次 函数、对数函数结 合的综合应用问题 板块一:指数,指数幂的运算 (一)知识内容 1.整数指数 ⑴正整数指数幂:n a a a a =???,是n个a连乘的缩写(N n + ∈),n a叫做a的n次幂,a叫做幂的底数,n叫做幂的指数,这样的幂叫做正整数指数幂. ⑵整数指数幂:规定:01(0) a a =≠, 1 (0,) n n a a n a - + =≠∈N. 高考要求 第4讲 指数运算与指数函数 知识精讲

2.分数指数 ⑴ n 次方根:如果存在实数x ,使得n x a =(R,1,N )a n n +∈>∈,那么x 叫做a 的n 次方根. ⑵ 求a 的n 次方根,叫做a 开n 次方,称做开方运算. ① 当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.这时, a 的n 表示. ② 当n 是偶数时,正数的n 次方根有两个,它们互为相反数.正数a 的正、负n 0)a >. ⑶正数a 的正n 次方根叫做a 的n 次算术根. 负数没有偶次方根.0的任何次方根都是0 0. n 叫做根指数,a 3.根式恒等式: n a =;当n a =;当n ||a a a ?=?-? 0a a <≥. 4.分数指数幂的运算法则 ⑴正分数指数幂可定义为:1(0)n a a > 0,,,)m m n m a a n m n +==>∈N 且 为既约分数 ⑵负分数指数幂可定义为:1(0,,,)m n m n m a a n m n a - += >∈N 且 为既约分数 5.整数指数幂推广到有理指数幂的运算性质: ⑴(0,,Q)r s r s a a a a r s +=>∈ ⑵()(0,,Q)r s rs a a a r s =>∈ ⑶()(0,0,Q)r r r ab a b a b r =>>∈ 6.n 次方根的定义及性质:n 为奇数时 a =,n 为偶数时 a =. 7. m n a = m n a - =(0a >,,*m n N ∈,且1n >) 零的正分数指数幂为0,0的负分数指数幂没有意义. 8.指数的运算性质:r s r s a a a +=,()r r r ab a b =(其中,0a b >,,r s ∈R ) 9.无理数指数幂 ⑴ 无理指数幂(0,a a αα>是无理数)是一个确定的实数. ⑵ 有理数指数幂的运算性质同样适用于无理数指数幂. 10.一般地,当0a >,α为任意实数值时,实数指数幂a α都有意义. 对任意实数α,β,上述有理指数幂的运算法则仍然成立.

指数对数函数求导

一、自然常数e 1、求导x a dx d 令x a y = 已知导数差商公式定义式: x x f x x f x f x ?-?+=→?) ()()(lim 0 ' 由导数差商定义式得: x a a x a a x x f x x f x f x x x x x x x x ?-?=?-=?-?+=?→??+→?→?1 )()()(lim lim lim 000'(因子x a 与x ?无关,因此我们可以将它提到极限号前面) 注意到上式中的极限是函数)(x f 的导数在0=x 处的值,即 x a a f x x ?-?=?→?1)0(lim 00 ' 因此,我们已经说明了如果指数函数x a x f =)(在0=x 处是可微的,则该函数是处处可微的,并且 x a f x f ?=)0()('' 上述等式说明了任何指数函数的变化率是和指数函数本身成正比的. 令x a a f a M x x ?-?==?→?1 )0()(lim 00 ' 0,因为x a 已知,要求)('x f 必须 求得)(0a M ,从x a a M x x ?-=?→?1 )(l i m 0 0的定义式可以猜测)(0a M 可能 是一个无线不循环的数值,只能无限取小x ?值求得)(0a M 的估算值,

这种估算的过程相当繁琐且得不到)(0a M 的准确数值. h h h 1 2- h h 1 3- 0.1 0.7177 1.1612 0.01 0.6956 1.1047 0.001 0.6934 1.0992 0.0001 0.6932 1.0987 在上表中,给出了2=a 和3=a 时的情况,通过数值举例,说明了)0('f 的存在.极限明显存在并且 当2=a ,69.012)0(lim 0 ' ≈?-=?→?x f x x 当3=a ,10.11 3)0(lim 0' ≈?-=?→?x f x x 实际上,我们将在《微积分》5.6节说明它们极限存在并且精确到小数点后六位,如下: 693147.0)2(0≈=x x dx d 098612.1)3(0 ≈=x x dx d 因此,由等式①,我们有 x x dx d 2)69.0()2(?≈ x x dx d 3)10.1()3(?≈ 在等式①对于底数a 的所有可能的选择中,当1)0('=f 时,微分 公式最为简单,即x e y =,x e y =',并且有11 )(lim 00=?-=?→?x e e M x x ,

指数运算与指数函数(学案)

指数运算与指数函数 高考要求 知识梳理 知识点一:有理数指数幂 1. n 次方根概念与表示 一般地,如果n x =a ,那么x 叫做a 的n 次方根,其中n >1,且*N n . n

2.根式概念 式子a n 叫做根式,这里n 叫做根指数,a 叫做被开方数. 3.根式的性质 ① n a =. ② ||,a n a n ?=??,为奇数为偶数; 4.分数指数幂 正分数指数幂:a m n =√a m n (a >0,m,n ∈N ?,n >1) 负分数指数幂:a ? m n = 1 a m n = √a m n a >0,m,n ∈N ?,n >1) 0的正分数指数幂等于0;0的负分数指数幂没有意义 5.实数指数幂的运算性质 a r a s =a r+s (a >0,s ∈Q ) (a r )s =a rs (a >0,s ∈Q ) (a b )r =a r b r (a >0,s ∈Q ) 知识点二:指数函数的图像和性质 1.指数函数概念: 形如0(>=a a y x 且1≠a )函数叫指数函数,其中x 是自变量,函数定义域为R . 2.指数函数图象与性质 R

知识点三:指数函数性质的运用(比较大小) 指数函数在第一象限按逆时针方向底数依次增大 考点解析 典型习题一:指数幂(根式)的化简与计算 例1、已知当27=x ,64=y 时,化简并计算 例2、已知 01x <<,且1 3x x -+=,求112 2 x x - -的值. 典型习题二:指数函数的图像问题 例1、已知函数2 ()x f x m -=(0m >,且1m ≠)恒过定点(,)a b ,则在直角坐标系中函数 ||1 ()()x b g x a +=的图象为( ) )6 5 )(41(561 312112 13 2-----y x y x y x

导数--对数函数与指数函数的导数练习题

高三第三章导数--对数函数与指数函数的导数练习题 一、选择题(本大题共6小题,每小题3分,共18分) 1.下列求导数运算正确的是 A.(x +x 1)′=1+21x B.(log 2x )′=2ln 1x C.(3x )′=3x log 3e D.(x 2cos x )′=-2x sin x 2.函数y =ln(3-2x -x 2)的导数为 A.32+x B.2231x x -- C.32222-++x x x D.3 2222-+-x x x 3.函数y =lncos2x 的导数为 A.-tan2x B.-2tan2x C.2tan x D.2tan2x 4.函数y =x x a 22-(a >0且a ≠1),那么y ′为 A.x x a 22-ln a B.2(ln a ) x x a 22- C.2(x -1) x x a 22-·ln a D.(x -1) x x a 22-ln a 5.函数y =x ln 的导数为 A.2x x ln B.x x ln 2 C.x x ln 1 D.x x ln 21 6.函数y =sin32x 的导数为 A.2(cos32x )·32x ·ln3 B.(ln3)·32x ·cos32x C.cos32x D.32x ·cos32x 二、填空题(本大题共5小题,每小题3分,共15分) 7.设y =x x e e 2 )12(+,则y ′=___________. 8.在曲线y =5 9++x x 的切线中,经过原点的切线为 9.函数y =x 22的导数为y ′=___________. 10.函数y =log 3cos x 的导数为___________. 11.曲线y =e x -e ln x 在点(e ,1)处的切线方程为___________. 三、解答题(本大题共3小题,每小题9分,共27分) 12.求函数y =ln(21x +-x )的导数.

指数运算法则

指数运算法则 指数函数的一般形式为y=a^x(a>0且不=1) ,函数图形下凹,a大于1,则指数函数单调递增;a小于1大于0,则为单 调递减的函数。指数函数既不是奇函数也不是偶函数。要想使 得x能够取整个实数集合为定义域,则只有使得a的不同大小 影响函数图形的情况。 一、法则 在函数y=a^x中可以看到: (1)指数函数的定义域为所有实数的集合,这里的前提 是a大于0且不等于1,对于a不大于0的情况,则必然使得 函数的定义域不存在连续的区间,因此我们不予考虑,同时a 等于0一般也不考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4) a大于1,则指数函数单调递增;a小于1大于0, 则单调递减。 (5)可以看到一个显然的规律,就是当a从0趋向于无 穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y 轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y 轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平 直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过定点(0,1) (8)指数函数无界。 (9)指数函数既不是奇函数也不是偶函数。

(10)当两个指数函数中的a互为倒数时,此函数图像是 偶函数。例1:下列函数在R上是增函数还是减函数?说明理由. ⑴y=4^x 因为4>1,所以y=4^x在R上是增函数;⑵ y=(1/4)^x 因为0<1/4<1,所以y=(1/4)^x在R上是减函数1对 数的概念如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那 么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对 数的底数,N叫做真数. 由定义知:①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特 别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化式子名称abN指 数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)loga(M/N)=logaM-logaN. (3)logaM n=nlogaM (n∈R). 二、记忆口决 有理数的指数幂,运算法则要记住。 指数加减底不变,同底数幂相乘除。 指数相乘底不变,幂的乘方要清楚。 积商乘方原指数,换底乘方再乘除。 非零数的零次幂,常值为 1不糊涂。 负整数的指数幂,指数转正求倒数。 看到分数指数幂,想到底数必非负。 乘方指数是分子,根指数要当分母。 看到分数指数幂,想到底数必非负。

对数函数与指数函数的导数(1)

课 题: 3.5对数函数与指数函数的导数(1) 教学目的: 1.理解掌握对数函数的导数的两个求导公式. 2.在学习了函数四则运算的求导法则与复合函数求导法则的基础上,应用对数函数的求导公式,能求简单的初等函数的导数 教学重点:应用对数函数的求导公式求简单的初等函数的导数. 教学难点:对数函数的导数的记忆,对数函数求导公式的灵活运用. 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1. 常见函数的导数公式: 0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -= 2.法则1 )()()]()([' ''x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'(Cu x Cu x '= 法则3 ' 2 '' (0)u u v uv v v v -??=≠ ??? 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u ) 在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 4.复合函数的求导法则 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数 5.复合函数求导的基本步骤是:分解——求导——相乘——回代. 二、讲解新课: ⒈对数函数的导数(1): x x )'(ln = 证明:∵ x x f y ln )(==

高一数学指数运算及指数函数试题(有答案)

高一数学指数运算及指数函数试题 一.选择题 1.若xlog 23=1,则3x+9x的值为(B) A.3B.6C.2D.解:由题意x=, 所以3x==2, 所以9x=4,所以3x+9x=6 故选B 2.若非零实数a、b、c满足,则的值等于(B)A.1B.2C.3D.4 解答:解:∵, ∴设=m, a=log5m,b=log2m,c=2lgm, ∴= =2lgm(log m5+log m2) =2lgm?log m10 =2. 故选B. 3.已知,则a等于() A.B.C. 2 D. 4 解:因为所以 解得a=4 故选D 4.若a>1,b>1,p=,则a p等于() A.1B.b C.l og b a D.a log b a

解:由对数的换底公式可以得出p==log a(log b a), 因此,a p等于log b a. 故选C. 5.已知lg2=a,10b=3,则log125可表示为(C) A.B.C.D. 解:∵lg2=a,10b=3, ∴lg3=b, ∴log125= = =. 故选C. 6.若lgx﹣lgy=2a,则=(C) A.3a B.C.a D. 解:∵lgx﹣lgy=2a, ∴lg﹣lg=lg﹣lg=(lg﹣lg) =lg=(lgx﹣lgy)=?2a=a; 故答案为C. 7.已知函数,若实数a,b满足f(a)+f(b﹣2)=0,则a+b= A.﹣2 B.﹣1 C.0D.2 解:f(x)+f(﹣x)=ln(x+)+ln(﹣x+=0 ∵f(a)+f(b﹣2)=0 ∴a+(b﹣2)=0 ∴a+b=2 故选D.

8.=() A.1B.C.﹣2 D. 解:原式=+2×lg2+lg5=+lg2+lg5=+1=, 故选B. 9.设,则=() A.1B.2C.3D.4解:∵, ∴= =()+()+()= =3 故选C 10.,则实数a的取值区间应为(C) A.(1,2)B.(2,3)C.(3,4)D.(4,5)解:=log34+log37=log328 ∵3=log327<log328<log381=4 ∴实数a的取值区间应为(3,4) 故选C. 11.若lgx﹣lgy=a,则=(A)

指数运算和指数函数

指数运算与指数函数 一、知识点 1、根式得性质 (1)当n为奇数时,有(2)当n为偶数时,有 (3)负数没有偶次方根 (4)零得任何正次方根都就就是零2、幂得有关概念 (1)正整数指数幂: (2)零指数幂 (3)负整数指数幂 (4)正分数指数幂 (5)负分数指数幂 (6)0得正分数指数幂等于0,0得负分数指数幂无意义 3、有理指数幂得运算性质 (1) (2) (3) 4、指数函数定义:函数叫做指数函数。 0 <a < 1 a > 1 图象 性质定义域R 值域(0 , +∞) 定点 过定点(0,1),即x= 0时,y = 1 (1)a> 1,当x>0时,y>1;当x< 0时,0 <y<1。 (2)0 <a< 1,当x> 0时,0 1。 单调性在R上就就是减函数在R上就就是增函数 对称性与关于y轴对称 (1) ①②③④ 则:0<b

②当两个式子均为正值得情况下,可用作商法,判断,或即可、 四、典型例题 类型一、指数函数得概念 例1、函数就就是指数函数,求得值、 【答案】2 【解析】由就就是指数函数, 可得解得,所以、 举一反三: 【变式1】指出下列函数哪些就就是指数函数? (1);(2);(3);(4); (5);(6)、 【答案】(1)(5)(6) 【解析】(1)(5)(6)为指数函数、其中(6)=,符合指数函数得定义,而(2)中底数不就就是常数,而4不就就是变数;(3)就就是-1与指数函数得乘积;(4)中底数,所以不就就是指数函数、 类型二、函数得定义域、值域 例2、求下列函数得定义域、值域、 (1);(2)y=4x-2x+1;(3);(4)(a为大于1得常数) 【答案】(1)R,(0,1);(2)R [); (3) ;(4)[1,a)∪(a,+∞) 【解析】(1)函数得定义域为R (∵对一切xR,3x≠-1)、 ∵,又∵3x>0, 1+3x>1, ∴ , ∴ , ∴ , ∴值域为(0,1)、 (2)定义域为R,,∵2x>0,∴即x=-1时,y取最小值,同时y可以取一切大于得实数,∴值域为[)、 (3)要使函数有意义可得到不等式,即,又函数就就是增函数,所以,即,即,值域就就是、 (4)∵∴定义域为(-∞,-1)∪[1,+∞), 又∵ ,∴,∴值域为[1,a)∪(a,+∞)、 【总结升华】求值域时有时要用到函数单调性;第(3)小题中值域切记不要漏掉y>0得条件,第(4)小题中不能遗漏、 举一反三: 【变式1】求下列函数得定义域: (1) (2) (3) (4) 【答案】(1)R;(2);(3);(4)a>1时,;01时,;0

指数运算及指数函数的性质

任课教 师 学科授课时间:年月学生姓 名 年级授辅导章节: 辅导内 容 考试大 纲 重点 难点 课堂检测听课及知识掌握情况反馈: 教学需:加快□;保持□;放慢□;增加内容□ 课后巩固作业__________ 巩固复习____________________ ; 预习布置_________________ 课后学 生 分析总结你学会了那些知识和方法: 你对那些知识和方法还有疑问: 签字教务主任签字:学习管理师:

1、熟练掌握指数运算, 2、熟记指数函数性质. 一、指数幂与指数运算 根式 正数的分数指数幂: = = = 有理数指数幂的运算性质: 例 1、(1) ;(2)

(3) .(4) 例2、(1)(2013·南昌高一检测) 若10m=2,10n=3,则1 = . (2)化简 = (3)若(1-2x 有意义,则x的取值范围是 (4)当 有意义时,化简 - 的结果是 (5)已知a,b是方程x2-6x+4=0的两根,且a>b>0,求 的值 .

二、指数函数与指数函数的性质 形如 定义域为R 例1、下列函数中,哪些是指数函数? (1)y=10x;(2)y=10x+1;(3)y=-4x;(4)y=xx;(5)y=xα(α是常数). 例2、指数函数y= b·ax在[b,2]上的最大值与最小值的和为6,则a= 指数函数的图像与性质: 1.函数y= 的定义域是_ ______. 2.函数 的定 义域为;函数 的值域为 3.函数y=ax-2 013+2 013(a>0,且a≠1)的图象恒过定点 4.函数y=a2x+b+1( a>0,且a≠1)的图象恒过定点(1,2),则b=_______.

指数对数的导数

求指数、对数函数的导数 例 求下列函数的导数: 1.1ln 2+=x y ;2.)132(log 22++=x x y ; 3.)sin(b ax e y +=; 4.).12cos(3+=x a y x 分析:对于比较复杂的函数求导,除了利用指数、对数函数求导公式之外,还需要考虑应用复合函数的求导法则来进行.求导过程中,可以先适当进行变形化简,将对数函数的真数位置转化为有理函数的形式后再求导数. 解:1.解法一:可看成1,,ln 2+===x v v u u y 复合而成. .1 11 2)1(2 111 )2(2 11222212221 +=+?+=?+?+=??='?'?'='--x x x x x x x x x v u v u y y x v u x 解法二:[])1(11 1ln 222'++='+='x x x y .121121 11)1()1(2111 22222122+=?+? +='+?+?+= -x x x x x x x x 解法三:)1ln(2 11ln 22+=+=x x y , [] .1122)1(1121)1ln(2122222+=+='+?+?='+='x x x x x x x y 2.解法一:设132,log 2 2++==x x u u y ,则 )34(log 12+??='?'='x e u u y y x u x .1 32log )34()34(132log 2222++?+=+++?=x x e x x x x e 解法二:[] )132(1 32log )132(log 22222'++?++='++='x x x x e x x y .132log )34()34(132log 2222+++=+?++=x x e x x x x e 3.解法一:设b ax v v u e y u +===,sin ,,则

指数运算和指数函数

第五讲 指数运算和指数函数 一、知识点 1.根式的性质 (1)当n 为奇数时,有a a n n = (2)当n 为偶数时,有? ? ?<-≥==)0(,) 0(,a a a a a a n n (3)负数没有偶次方根 (4)零的任何正次方根都是零 2.幂的有关概念 (1)正整数指数幂:)(.............*∈??=N n a a a a a n n (2)零指数幂)0(10≠=a a (3)负整数指数幂 ).0(1*∈≠= -N p a a a p p (4)正分数指数幂 )1,,,0(>*∈>= n N n m a a a n m n m 且 (5)负分数指数幂 n m n m a a 1 = -)1,,,0(>*∈>n N n m a 且 (6)0的正分数指数幂等于0,0的负分数指数幂无意义 3.有理指数幂的运算性质 (1)),,0(,Q s r a a a a s r s r ∈>=?+ (2)),,0(,)(Q s r a a a rs s r ∈>= (3)),0,0(,)(Q r b a a a ab s r r ∈>>?= 4.指数函数定义:函数)10(≠>=a a a y x 且叫做指数函数。

1.函数21 )2()5(- -+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0 ,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 4.函数2 2 ) 21 (++-=x x y 得单调递增区间是 ( ) A .]2 1 ,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 5.已知2 )(x x e e x f --= ,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数 C .奇函数,在R 上为减函数 D .偶函数,在R 上为减函数 二、填空题 6.已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是 . 7.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 . 8.已知-1-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值. 11.(12分)(1)已知m x f x +-= 1 32)(是奇函数,求常数m 的值; (2)画出函数|13|-=x y 的图象,并利用图象回答:k 为何值时,方程|3X-1|=k 无 解?有一解?有两解? 12.已知函数f(x)= 1 1+-x x a a (a>0且a ≠1). (1)求f(x)的定义域和值域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性.

教案 对数函数的导数公式

教案 对数函数的导数公式 (回忆公式) 求下列几个函数的导数: (1)y=sinx 3 +sin 3 3x ;(2)1 22sin -=x x y 【探索研究】 一、对数函数的导数 ()e x x a a log 1log =' 公式一 说明:此公式的记忆要点是:将x 拿到对数前面并“倒”一下,原来x 的地方换成“e ” 练习1:求下列对数函数的导数(随手写出) (1)x lg ;(2))2(log 2-x a (3))lg(sin x (4)x ln 例2 求21lg x y -= 处理:例2放在第(3)题后讲解 ()x x 1ln = ' 公式二 例1 求)132ln(2++x x 的导数 处理:例题教师板演 练习2:求下列对数函数的导数(随手写出) 二、指数函数的导数 ()a a a x x ln =' 公式三 说明:指导学生记忆此公式,并说明a 应为正数。 练习3:求下列指数函数的导数(随手写出) (1)3x ;(2)x 3+3x ;(3)a 5x ;(4)e x ; ()x x e e =' 公式四 练习4:求下列指数函数的导数(随手写出) (1)e 3x ;(2)x 2e x ;(3)e 2x cos3x ;(4)x n e -x 练习5:求下列指数函数的导数(随手写出) (1)y=e x sinx ;(2)y=e x lnx 【求导小测】 1. 求下列函数的导数 (1)) sin(b ax e y +=;(2))12cos(3+x a x ;(3)( )2 sin 1-x e 说明:一些复杂的求导问题基本为复合函数求导问题,按照复合函数的求导方法,首先要选

指数函数的运算性质

指数函数的运算性质 教学目标:能用分数指数幂的运算法则解决一些数学问题. 教学重难点:重点 掌握分数指数幂的运算法则. 知识复习: 上一节课,学习了分数指数幂的概念,即 给定a 对于任意给定的,(,,(,)1),m n m n Z m n ∈=存在唯一的0,b >使得,n m b a =把b 叫作a 的m n 次幂,记作 (0).m n b a a => 正分数指数幂的根式形式,即 (0,,),m n a a m n Z +=>∈ 其中n 叫作根指数,m 叫幂指数. 负分数指数幂的意义,即 1 (0,,,m n m n a a m n Z a -+==>∈且1).n > 0的正分数幂等于零,0的非负分数幂无意义. 无理指数幂(可以用有理数的不足近似数和过剩近似数进行逼近) 一、正整数指数幂的运算法则 (1)同底数幂相乘 ;m n m n a a a +=同底数幂相除 (0).m m n m n n a a a a a a --==≠ (2)幂的乘方 ();m n mn a a = (3)积的乘方 ().m m m a b a b =商的乘方1()(0).n n n n a ab a b b b --??==≠ ???

其中,.m n N ∈ 把它推广到分数指数幂也成立, 二、分数指数幂的运算法则 90对于,0,,a b m n >取任意数,有 (1);m n m n a a a += (2)();m n mn a a = (3)().m m m a b a b = 三、例题 例1. 用指数形式表示并化简. 例2. 化简 (1)3);x 1(2)()(4).a a a x y y - 例3. 已知103,10 4.αβ==求() ()()(2)510 ,10,10,10.βαβαβα+-- 四、探究问题与作业 1. 函数y ex =与x y e =的交点个数. 课后作业:习题1、2、3. 五、课后小节 指数函数的性质 六、板书设计

高三数学复合函数的导数、对数与指数函数的导数人教版知识精讲

高三数学复合函数的导数、对数与指数函数的导数人教版 【本讲教育信息】 一. 教学内容: 复合函数的导数、对数与指数函数的导数 二. 本周教学重、难点: 1. 复合函数的求导法则 设)(x u ?=在点x 处有导数)(x u x ?'=',)(u f y =在点x 的对应点u 处有导数 )(u f y u '=',则))((x f ?在点x 处也有导数,且x u x u y y '?'='或)()())((x u f x f x ??''=' 2. 对数函数的导数 (1)x x 1)(ln = ' (2)e x x a a log 1 )(log =' 3. 指数函数的导数 (1)x x e e =')( (2)a a a x x ln )(=' 【典型例题】 [例1] 求下列函数的导数 (1)3 2)2(x x y += (2)2 45x e y += (3)32c bx ax y ++= (4)3 12 )(sin x y = (5))1ln(2x x y ++= (6)x x y 33 log = (7)x x y 2sin 5cos = 解: (1)2 2 2 22)2)(1(6)22()2(33x x x x x x u u y ++=++='?=' (2)x e u e y x u 82 45?='?='+ (3))2()(3 13132 2 32 b ax c bx ax u u y +++='='-- (4)3 2 222 32232)(sin 3cos 22cos )(sin 3 1)2(cos 31x x x x x x x v u v u y y x v u =?=??='?'?'='-- (5)])1(121 1[11)1(1122 222'+++++='++++= 'x x x x x x x x y 2 2211 )11(11x x x x x +=++++= (6))(log log 1log 33 323332ex x e x x x x y =?+=' (7)2)2(sin )2(sin 5cos 2sin )5(cos )2sin 5cos (x x x x x x x y ' -'='=' 2 )2(sin 2cos 5cos 22sin 5sin 5x x x x x ?-?-=

指数运算与指数函数

指数运算与指数函数 1、4 (-3)4 的值是( ) A 、3 B 、-3 C 、±3 D 、81 2、4 1 8116- ?? ? ??的值是() A 、23 B 、32 C 、481 D 、-814 3.化简[32)5(-]4 3的结果为 ( ) A .5 B .5 C .-5 D .-5 4、设m,n ∈R,a,b>0,则下列各式中正确的有( ) (1)a m .a n =a mn (2)(a m )n =a mn (3)(ab)n =a n b n (4)(a b )m =a m -b m (5) (a b )m =a m b -m A 、5 B 、4 C 、3 D 、2 5、 a 3a.5a 4 (a>0)的值是( ) A 、1 B 、a C 、a 1 5 D 、a 17 10 6.设5.1344.029 .01)2 1 (,8,4-===y y y ,则 ( ) A .y 3>y 1>y 2 B .y 2>y 1>y 3 C .y 1>y 2>y 3 D .y 1>y 3>y 2 7、在某种细菌培养过程中,每30分钟分裂一次(一个分裂为两个),经过4个小时,这种 细菌由一个可繁殖成( ) A 、8 B 、16 C 、256 D 、32 8、如图,设a,b,c,d>0,且不等于1,y=a x , y=b x , y=c x ,y=d x 在同一坐标系中的图象如图,则a,b,c,d 的大小顺序( ) A 、a1 D 、a>2 10、下列各不等式中正确的是( ) A 、(12 )23 >(12 )13 B 、223 >232 C 、(12 )32 >223 D 、(12 )32 <22 3 11、对于a>0,r,s ∈Q ,以下下运算中正确的是( ) A 、a r a s =a rs B 、(a r )s =a r+s C 、(a b )r =a r b -r D 、a r b s =(ab)r+s y=d x y=c x y=b x y=a x O y x

对数与导数

课 题: 3.5对数函数与指数函数的导数(2) 教学目的: 1.理解掌握指数函数的导数的两个求导公式. 2.在学习了函数的四则运算的求导法则与复合函数的求导法则的基础上,应用指数函数的求导公式,能求简单的初等函数的导数 教学重点:结合函数四则运算的求导法则及复合函数的求导法则,应用对数函 数、指数函数的求导公式求简单的初等函数的导数. 教学难点:指数函数的求导公式的记忆,以及应用指数函数的求导公式. 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1. 常见函数的导数公式: 0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x sin )'(cos -=2.法则1 )()()]()(['''x v x u x v x u ±=±. 法则2 [()()]'()()()u x v x u x v x u x v x '= +, [()]'(Cu x Cu x '= 法则3 '2''(0)u u v uv v v v -??=≠ ??? 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 4.复合函数的求导法则 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数 5.复合函数求导的基本步骤是:分解——求导——相乘——回代. 6.对数函数的导数: x x )'(ln = x x a a l o g 1)'(log = 7.引例 求函数)100()3)(2)(1(----=x x x x y )100(>x 的导数. 分析:这里所给的函数是100个因式的积,对于这种结构形式的函数,直

相关文档
最新文档