物理电子学微电子跟固体电子学

物理电子学微电子跟固体电子学
物理电子学微电子跟固体电子学

物理电子学/微电子和固体电子学

Physical Electronics/ Microelectronics and Solid State

Electronics

(专业代码:080901/080903)

一、培养目标

博士学位获得者应具有坚实的数学、物理基础知识,掌握本学科坚实的理论基础及系统的专门知识,掌握相关的实验技术及计算机技术。掌握一门外语,具有从事科学研究及独立从事专门技术工作的能力以及严谨求实的科学态度和工作作风,能胜任研究机构、高等院校和产业部门有关方面的教学、研究、工程、开发及管理工作。

二、学科专业研究方向

1.物理电子信息探测与处理

2.物理电子器件与系统

3.传感器与信号处理

4.介质光波导与信息传输技术

5.专用集成电路设计与工艺

6.薄膜电子材料制备与测试分析

三、学制和学分

全日制博士研究生学制实行以四年为主的弹性学制;总学分≥14。硕博连读研究生和提前攻博生学制一般为5-6年,优秀者可提前毕业;总学分≥41学分,博士生最长学习年限不超过8年。

四、课程设置

表一、博士研究生课程设置

五、资格考试

为确保博士生培养质量,完善质量控制机制,增强和提高研究生的竞争意识和创新能力,学校对硕博连读生与提前攻博生实行转入博士资格考试制度,以期全面考核素质和能力,实现优胜劣汰。

考核内容包括从事本学科研究所需的基本理论知识、专业知识、相关学科知识以及分析问题、解决问题的能力。可以进行综合知识考试或指定若干门核心课程的考试。考试方式可以为笔试或口试、笔试相结合。各学科应成立博士生考试资格委员会,考试委员会由本学科和相关学科5名专家组成。考试委员会主席由教授(或相当职称的专家)担任。导师可以参加,但不能担任主席。

资格考试一般于硕博连读研究生与提前攻博生的第四小学期初进行。考试未通过者可有一次补考机会(时间为第四小学期末)。

六、开题报告

大量阅读有关文献是做好选题和论文工作的基础。本学科规定阅读文献不少于50篇,其中外文文献不少于25篇,由博士生导师对博士生阅读文献情况进行检查。

开题报告应包括论文选题依据(包括论文选题的意义、国内外研究现状分析等),论文研究方案(包括研究目标、研究内容和拟解决的关键问题、拟采取的研究方法、技术路线、实验方案及可行性分析、可能的创新之处等),预期达到的目标、预期的研究成果,论文详细工作进度安排和主要参考文献等。开题报告应按统一格式书写装订,由分院存档备查。

开题报告要求在本学科范围内公开举行报告会,开题报告评审小组成员3-5人,由导师组成员和相关学科专家组成,学位分委员会派人参加。评审小组应对报告人的选题进行严格评审,提出具体的评价和修改意见,不通过者限期重新开题,由原评审小组成员重新评审,仍未通过者终止培养。

开题报告通过后,若学位论文课题有重大变动,应重新作开题报告。

七、学位论文

博士学位论文结合科学研究课题进行,必须具有创新性和先进性。学位论文必须阐述本课题的国内外研究现状,学位论文主要工作、创新点和主要成果。语句通顺、结构严谨、论点鲜明正确。在论文答辩前,必须在国内外核心以上刊物上发表(包括已录用)与学位论文有关论文若干篇(根据南京理工大学博士、硕士学位授予细则补充规定)。

电磁场与微波技术/电路与系统

Electromagnetic Fields and Microwave Theory

/Circuits and Systems

(专业代码:080902/4)

一、学科介绍

该学科是学校211工程建设项目支持的学科,有博士学位授予权和博士后流动站,是我国首批硕士学位授权学科(1981年)。本学科有IEEE,Fellow和国家杰出青年基金获得者,大部分教师曾在国外高校进修或获得博士学位,师资力量雄厚,设备齐全。本学科有多项高层次科研项目的支撑,每年在国际国内核心期刊发表大量的学术论文,享有一定的国际声誉,具有良好的学术研究和工程应用能力,曾获得多项省部级与国家级科技进步奖。同时,本学科十分注重国际学术交流和合作,与多所国际知名大学联合培养研究生,研究方向始终与学科前沿同步。

主要研究方向为: 电磁理论与计算方法,射频集成电路与天线,智能天线与射频信息处理,电磁兼容,射频/微波毫米波系统(通信/雷达),光电集成电路,通讯网络VLSI,纳米电子技术,太赫兹理论与技术。

二、培养目标

本专业重点培养学生掌握宽厚的电磁理论与射频技术基础,扎实的射频电路与系统的分析与设计知识,具备从事移动通信的射频设计,各种集成电路分析与设计,雷达等电子系统高频前端设计的能力,培养学生具备较熟练英语的读说写能力和独立从事科学研究的素质。要求毕业生在军民用雷达,通信及射频识别(RFID)等领域能独立从事科研、教学和科技管理工作。毕业生主要就业去向包括中央部委及下属的大型研究院所,IT行业内的大型公司,及海内外高等院校等。就业现状和前景良好,目前就业率达100%.

三、学制和学分

全日制博士生学制一般为4年;总学分要求不低于14学分。硕博连读生和提前攻博生学制一般为5~6年; 总学分要求不低于41学分,博士生最长学习年限不得超过8年。

四、课程设置

表一、博士研究生课程设置

表二、硕博连读研究生课程设置

微电子学专业大学生职业生涯规划书

微电子学专业大学生职业生涯规划书 性格:有点内向,乐观,不喜欢和不熟悉的人分享太多兴趣爱好:大篮球,看电影,听音乐,看书情绪情感状况:遇到不开心的事时情绪会低落意志力状况:不够坚强已具备经验:当过七年的寄宿生,当过一个月的超市服务生,大学刚开始时为班上的同学团购收音机,在老家干过农活。 已具备能力:可以照顾好自己,可以好好的关心他人,拥有一定的自学能力,可以独立的完成一件事 现有外语计算机水平:CET--4、计算机二级 2 . 社会中的自我评估他人对你的看法与期望: 父亲:爸爸总认为我是家里最聪明的孩子,他希望我将来能走政治的路子母亲:妈妈是认为我是家中最乖的孩子,她只希望我的将来的生活美好亲戚:都认为我念书好,都认为我将来能成就一翻事业 1. 人际关系分析 1).校园环境对你的成才影响学校:某大学院系:专业:微电子学 2).人才供应状况与就业形势分析 对人才素质要求:具有良好的数学基础知识,微电子学基本理论素质和专业基础知识,掌握微电子学的基本理论方法和实验技能

3.)对知识的要求及学校中的哪些课程对从事该项职业有帮助:通过微电子学的基本理论和基础知识的学习和运用微电子学知识﹑方法进行科学研究和技术开发的基本训练,具有较强科学实验与科学思维能力和具备良好的科学素养,掌握大规模集成电路及新型半导体器件的设计﹑制造及测试所必须的基本理论和方法,具有电路分析﹑工艺分析﹑器件性能分析和版图设计等的能力 1. 初步职业理想:做一名资深集成电路开发工程师 2. 描述:职业类型:技术人员工作性质:为公司开发新产品工作待遇:享受应有的待遇职业地域:集成电路产业发达地区工作环境:外企 S:实现目标的优势:对学习该专业有热情,学习资源多,国内该人才紧缺 W:实现目标的弱点:国内在该学科方面技术比较落后,集成电路产业不发达,要成为该行业中的强者需要付出更大的努力 O:实现目标的机会:通过自己的努力,尽自己的最大努力实现 T:实现目标的障碍:意志不够坚强,家庭经济状况不 既然认清自己的弱点,那么定要实际行动改变一切。计算一下大学剩下的时间:只有两年半多一点。但是自身存在很大的不足,那么必定要通过研究生阶段的学习来进一步提高。

武汉大学微电子学与固体电子学研究生培养方案

微电子学与固体电子学专业攻读硕士学位 研究生培养方案 一、培养目标 本专业培养德、智、体全面发展的微电子学与固体电子学高层次专门人才。要求所培养的硕士研究生达到: 1、热爱祖国、热爱人民,认真学习并较好掌握马克思列宁主义理论。具有良好的道德修养和科学态度。愿意为祖国的现代化建设事业热忱服务。 2、具有严谨踏实的学风,较全面系统地掌握微电子学与固体电子学的基础理论和专业知识。注意跟踪了解微电子学与固体电子学发展的前沿动态。熟练掌握一门外国语。具有创新精神,能独立从事本专业的科研与技术开发工作。 3、身心健康。 二、研究方向 1、纳微电子学 纳米加工与纳米器件、宽带隙纳米材料与场效应晶体管、石墨烯材料与场效应晶体管、基于纳米结构的发光与显示器件等; 2、半导体传感电子学 压电、铁电、磁电材料与传感器件、电阻开关器件;氧化物光敏与气敏传感器件;GaN、ZnO、GaAs、硅等半导体光电材料与探测器等; 3、能源电子材料与器件 有机光伏电子学与器件、染料敏华太阳能电池、GaN/GaAs多结高效太阳能电池、新型高效硅太阳能电池等; 4、宽禁带半导体材料与器件 GaN、AlN、ZnO、MgO半导体材料与光电器件等; 5、微电子系统与集成电路设计 微纳电子器件模型设计、微电子系统与集成电路设计等; 6、磁电子学 磁电材料与传感器件、有机磁材料设计与计算、稀磁材料与器件等; 7、信息处理与微系统 基于大规模集成电路芯片的处理器系统;基于现代信号处理技术的图像增强、压缩、重建、识别算法与实现;高性能DSP与嵌入式CPU智能系统等; 8、生物医学电子学 生物医学微流纳流芯片、医学影像的特征信息提取算法研究、医学断层光电子技术等。

微电子科学与工程专业本科培养计划

微电子科学与工程专业本科培养计划 Undergraduate Program for Specialty in Microelectronic Science and Engineering 一、培养目标 Ⅰ.Program Objectives 本专业培养掌握微电子科学与工程专业必需的基础知识、基本理论和基本实验技能,能够从事该领域的各种微电子材料、器件、封装、测试、集成电路设计与系统的科研、教学、科技开发、工程技术、生产管理等工作的高级专门人才。 This program trains advanced talents with basic knowledge, theory and experimental skills necessary for Microelectronic Science and Engineering. These talents can be engaged in various works in microelectronic materials, devices, packaging, testing, integrated circuit design and system as well as the scientific research, education, technique development, engineering technology, production management. 二、基本规格要求 Ⅱ.Learning Outcomes 毕业生应获得以下几个方面的知识和能力: 1、具有扎实的自然科学基础,良好的人文社会科学基础和外语能力; 2、掌握本专业领域较宽的基础理论知识,主要包括固体物理、半导体物理、微电子材料、微电子器件、集成电路设计等方面的基础理论知识;在本专业领域内具备从事科学研究的能力; 3、受到良好的工程实践训练,掌握各种微电子器件与集成电路的分析、设计与制造方法,具有独立进行微电子材料及器件性能分析、集成电路设计、微电子工艺流程的基本能力;具备一定的工程开发和组织管理能力; 4、了解本专业的最新发展动态和发展前景,了解微电子产业的发展状况。 The program requires that the learners have the knowledge and abilities listed as follows: 1. Have solid foundation in natural science, basic fine knowledge in humanities and social sciences

我对计算机科学与技术的认识

我对计算机科学与技术的认识 在我没上大学之前,我只知道计算机叫电脑。能更快更方便的处理人工不太好处理的数字,可以玩游戏,可以看电影,可以处理文字。总之,我就感觉它很神奇,不可思议。同时听了很多关于黑客的事迹,老师、朋友们说它的神奇,我就很想去了解它的神秘之处。所以我认为学计算机科学与技术只要会玩电脑就行。 但上了大学我知道了学计算机科学与技术不只是玩电脑。会玩电脑只是会玩这机器而已,并不能算一个专业人士。计算机科学与技术培养的什么样的人才呢?计算机科学与技术到底学什么呢?这需要我去探索,去了解。然后要做的是要怎样去学好这门专业?这些问题就需要我们去思考,去摸索。 计算机科学与技术学什么呢? 目前我国计算机专业主要分为三大类:计算机基础专业、与理工科交叉的计算机专业、与文科艺术类交叉的计算机专业。根据各专业开设课程不同,获得这些专业的学士学位可以相当于计算机等级三级或四级水平。本专业学生主要学习计算机科学与技术方面的基本理论和基本知识,接受从事研究与应用计算机的基本训练,具有研究和开发计算机系统的基本能力。 主要课程:电路原理、模拟电子技术、数字逻辑、数值分析、计算机原理、微型计算机技术、计算机系统结构、计算机网络、高级语言、汇编语言、数据结构、操作系统、数据库原理、编译原理、图形学、人工智能、计算方法、离散数学、概率统计、线性代数以及算法设计与分析、人机交互、面向对象的设计方法、计算机英语等。 主要实践性教学环节:包括电子工艺实习、硬件部件设计及调试、计算机基础训练、课程设计、计算机工程实践、生产实习、毕业设计。 相近专业:微电子学、自动化、电子信息工程、地理信息系统、通信工程、电子科学与技术、生物医学工程、电气工程与自动化、信息工程、信息科学技术、软件工程、影视艺术技术、网络工程、信息显示与光电技术、集成电路设计与集成系统、光电信息工程、广播电视工程、电气信息工程、计算机软件、电力工程与管理、智能科学与技术、数字媒体艺术、探测制导与控制技术、数字媒体技术、信息与通信工程、建筑电气与智能化、电磁场与无线技术。 计算机科学与技术培养的什么样的人才呢? 培养具有良好的科学素养,系统地、较好地掌握计算机科学与技术包括计算机硬件、软件与应用的基本理论、基本知识和基本技能与方法,能在科研部门、教育单位、企业、事业、技术和行政管理部门等单位从事计算机教学、科学研究和应用的计算机科学与技术学科的高级科学技术人才。本专业培养和造就适应社会主义现代化建设需要,德智体全面发展、基础扎实、知识面宽、能力强、素质高具有创新精神,系统掌握计算机硬件、软件的基本理论与应用基本技能,具有较强的实践能力,能在企事业单位、政府机关、行政管理部门从事计算机技术研究和应用,硬件、软件和网络技术的开发,计算机管理和维护的应用型专门技术人才。 掌握计算机科学与技术的基本理论、基本知识和基本技能,特别是数据库,网络和多媒体技术。掌握计算机应用系统的分析和设计的基本方法。具有熟练地进行程序设计和开发计算机应用系统的基本能力和开发CAI软件的能力。具有创新意识、创新精神和良好的教师职业素养,具有从事计算机教学及教学研究的能力,熟悉教育法规,能够初步运用教育学和心理学的基本原理,具有善于与人合作共事的能力。了解计算机科学与技术的发展动态。掌握文献检索、资料查询的基本方法,具有独立获取知识和信息的能力。 然后要做的是要怎样去学好这门专业? 万丈高楼平地起!基础很重要,尤其是专业基础课,只有打好基础才能学得更深。C语

微电子学专业培养方案(20201028224901)

微电子科学与工程专业培养方案 一、培养目标 培养适应现代化建设和未来社会与科技发展需要,德、智、体、美全面发展与健康个性和谐统一,富有创新精神、实践能力和国际视野,掌握微电子技术基本理论、技能与最新技术发展动向、计算机系统与接口芯片基本理论和基本技能,受到严格的科学实验训练和电子产品开发的基本训练,具有较强实践能力、良好的科学素养、一定的企业管理知识和创新能力,能够在微电子设计和生产领域及各类电子信息技术领域从事科技开发、产品设计、工程技术与生产管理的高级技术应用型人才。 毕业生掌握微电子学专业所必需的基础知识、基本理论和基本实验技能,能在微电子学及相关领域从事科研、产品开发、工程技术、生产管理与行政管理等工作。 二、培养要求 本专业学生主要学习微电子学的基本理论和基本知识,受到科学实验与科学思维的 基本训练,具有良好科学素养,掌握大规模集成电路和新型半导体器件的设计、分析及测试所必需的基本理论和方法,具有集成电路分析、设计、器件性能分析和版图设计等基本能力。 毕业生应获得以下几方面的知识和能力: 1. 掌握半导体物理、半导体器件和VLSI设计与制造等方面的基本理论和基本知识, 掌握集成电路和 其它半导体器件的分析与设计方法; 2. 熟悉集成电路设计的CAD系统,掌握硬件描述语言及逻辑模拟、电路模拟、时序分析等技术,具 有应用EDA X具设计与分析集成电路的技能; 3. 具有大规模集成电路(VLSI)版图设计与可靠性分析的基本能力; 4. 掌握集成电路制造工艺理论,具备从事微电子生产线技术管理工作的能力;

5. 掌握电子电路技术、计算机原理与应用、软件设计与制作等基本知识,适应在相应工作领域(如 通信、电子技术、自动控制、计算机应用等)的需要; 6. 掌握资料查询、文献检索及运用现代信息技术获取信息的基本方法;具有一定的实验设计能力, 能创造实验条件,归纳、整理、分析实验结果,具备撰写论文,参与学术交流的能力; 7. 了解大规模集成电路VLSI和其它新型半导体器件的应用前景、最新发展动态, 以及电子产业发展 状况; 8. 熟悉国家电子产业政策、国内外有关的知识产权及其他法律法规。 三、主干学科 主干学科:微电子学、电子科学与技术。 四、核心课程 核心课程:电路分析理论、模拟电子线路、信号与系统、数字电子线路、半导体物 理学、集成电路原理与设计、半导体器件物理、微电子制造科学原理等方面的课程、 Verilog数字系统设计、集成电路设计EDA工具。 五、主要实践性教学环节 主要实践性教学环节:实验教学(电路实验、模拟电子线路实验、数字电子线路实验、信号与系统实验、C语言实验、单片机系列实验、PCB工艺实验、微电子系列实验、集成电路设计EDA工具实验、Verilog数字系统设计实验)、课程设计(电子工艺课程设计、电子技术课程设计、电路CAD S程设计、单片机课程设计、EAD技术课程设计、集成电路课程设计)、课外科技活动、教学实习、认识实习、生产实习、专业综合设计、毕业设计。

基础物理实验期末模拟

复旦大学基础物理实验期末考试复习题库 (内部资料请勿传阅) 整理汇编者:复旦大学临床医学(五年制)bsong@https://www.360docs.net/doc/d813933474.html, 示波器的原理及使用 1. 2. 3. 4.

5.一个已知相关参数的信号,60dB衰减,在已知示波器T和V参数设置的情况下在示波屏上V/DIV和T/DIV的相应读数(按照示波器读数规则) 答案A 9. 10. 11.答案C

13.答案:2 14. 15. 16、输入的信号为正弦波形,但是屏幕上只看到一条直线,可能的原因 A、按下了接地按钮 B、AC\DC档中选了DC档位 C、Volts/DEC衰减过大 D、扫描速度过 17.快衰变改变的是什么()A.幅度 B.频率 C.相位 D.波形 18.已经得到了正弦波图像,改变下面条件,一定不会使图像消失的是B A调节辉度intensity B交流AC变成直流DC(DC还是会保留交流部分。) C接地 D调节垂直position 19.使用示波器前,应先对示波器进行校准,将示波器内部提供的标准方波输入到CH1或CH2通道。用示波器观察李萨如图形时,图形不稳定,应该调节电平旋扭。 20.如果示波器上的波形在触发源开关选择正确的情况下总是沿横向左右移动,应该 先调节“SEC/DIV”旋钮再调节“LEVEL”触发电平调节旋钮 21.“VOLTS/DIV”和“TIME/DIV”旋钮的作用是什么? 22.测量被测信号的电压时,应通过调节衰减倍率开关(VOLTS/DIV)使其幅度尽量放大,但是不能超出显示屏幕为什么? 23.测量被测信号的周期和频率时,应通过调节扫描速度开关(TIME/DIV)使被测信号相邻两个波峰的水平距离尽量放大,但是不能超出显示屏幕为什么? 24.“VOLTS/DIV”和“TIME/DIV”旋钮所在位置分别为0.5v和0.2ms,请给

EDA技术的认识和体会

EDA技术的认识和体会 摘要:本学期我对EDA技术进行了学习,通过学习,我掌握了部分EDA技术的知识。本学期对 EDA 技术的学习为我的专业知识学习打开了一个全新的窗口——微电子技术领域。对EDA 技术,我更是有了全新的认识。微电子技术的进步主要表现在大规模集成电路加工技术即半导体工艺技术的发展上,使得表征半导体工艺水平的线宽已经达到了纳米级。所以,集成电路设计正在不断地向超大规模、极低功耗和超高速的方向发展。而现代电子设计技术的核心已日趋转向基于计算机的电子设计自动化技术,即EDA 技术。 EDA技术的特点和优势 技术就是依赖功能强大的计算机,在EDA 工具软件平台上,对以硬件描述语言 HDL 为系统逻辑描述手段完成的设计文件,自动地完成逻辑编译、化简、分割、综合、布局布线以及逻辑优化和仿真测试,直至实现既定的电子线路系统功能。EDA 技术使得设计者的工作仅限于利用软件的方式,即利用硬件描述语言和EDA 软件来完成对系统硬件功能的实现,这是电子设计技术的一个巨大进步。 EDA 技术在进入21 世纪后,得到了更大的发展。嵌入式处理器软核的成熟,使得SOPC 步入大规模应用阶段。电子技术领域全方位融入EDA 技术,除了日益成熟的数字技术外,传统的电路系统设计建模理念发生了重大的变化。同时,EDA 使得电子领域各学科的界限更加模糊,更加互为包容。这些都利于设计人员利用 EDA 技术进行电子系统设计,如全定制或半定制ASIC 设计,FPGA/CPLD 开发应用和印制电路板。从 EDA 技术的特点不难看出,相比于传统的数字电子系统或 IC 设计,EDA 技术拥有独特的优势。在传统的数字电子系统或 IC 设计中,手工设计占了较大的比例。因此,也存在很多缺点。例如:复杂电路的设计、调试十分困难;由于无法进行硬件系统仿真,如果某一过程存在错误,查找和修改十分不便;设计过程中产生大量文档,不易管理;可移植性差等。相比之下,EDA 技术有很大不同。它运用HDL 对数字系统进行抽象的行为与功能描述到具体的内部线路结构描述,从而可以在电子设计的各个阶段、各个层次进行计算机模拟验证,保证设计过程的正确性,可以大大降低设计成本,缩短设计周期。由于有各类库的支持,能够完成各种自动设计过程。它极大地简化了设计文档的管理,逻辑设计仿真测试技术也日益强大。 VHDL 在现在的EDA 设计中使用最多,也拥有几乎所有主流EDA 工具的支持。 EDA工具 EDA工具在EDA技术应用中占据极其重要的位置,EDA的核心是利用计算机完成电子设计全过程自动化,因此,基于计算机环境的EDA软件的支持是必不可少的。EDA工具大致可以分为如下5个模块:设计输入编辑器;仿真器;HDL综合器;适配器(或布局布线器);下载器。 VHDL语言基础

2020最新微电子科学与工程专业大学排名

2020微电子科学与工程专业大学排名 微电子科学与工程专业介绍 微电子科学与工程专业培养德、智、体全面发展,具有扎实的数理基础和电子技术基础理论,掌握新型微电子器件和集成电路分析、设计、制造的基本理论和方法;具备本专业良好的实验技能,能在微电子及相关领域从事科研、教学、科技开发、工程技术、生产管理与行政管理等工作的高级专门人才。 微电子科学与工程是物理学、电子学、材料科学、计算机科学、集成电路设计制造学等多个学科和超净、超纯、超精细加工技术基础上发展起来的一门新兴学科。微电子学是21世纪电子科学技术与信息科学技术的先导和基础,是发展现代高新技术和国民经济现代化的重要基础。主要研究半导体器件物理、功能电子材料、固体电子器件,超大规模集成电路(ULSI)的设计与制造技术、微机械电子系统以及计算机辅助设计制造技术等。 主干课程: 高等数学、大学物理及实验、电路分析基础及实验、模拟电路及实验、数学物理方法、C++语言、数字电路及实验、信号与系统及实验、半导体物理及实验、固体电子学、微电子器件、微电子集成电路、集成电路设计与制造、电子设计自动化、集成电路CAD、微电子技术专业实验和集成电路工艺实习等。 核心知识领域:电路理论、电子技术基础、信号与系统、电磁场与电磁波、半导体物理、微电子器件原理、集成电路设计原理、微电子工艺原理、集成电路封装与系统测试、嵌入式系统原理与设计、电子设计自动化基础等。 核心课程示例: 示例一:电路分析原理(64学时)、微电子与电路基础(48学时)、信号与系统(48学时)、半导体物理(64学时)、电子线路A(48学时)、数字逻辑电路(48学时)、数字集成电路设计(48学时)、集成电路工艺原理(48学时)、半导体器件物理(48学时)、数字集成电路原理(64学时)、电子系统设计(64学时)、集成电路计算机辅助设计(48学时)。 示例二:电路分析理论(48学时)、电磁场理论(48学时)、模拟电子线路(64学时)、信号与系统(64学时)、数字电子线路(64学时)、固体物理学(64学时)、半导体物理学(64学时)、集成电路原理与设计(64学时)、半导体器件物理(64学时)、微电子制造科学原理(48学时)。 示例三:核心必修课,包括电路分析(54学时)、模拟电子技术(48学时)、数字电子技术(48学时)、固体物理(48学时)、半导体物理(48学时)、半导体器件物理(64学时)、半导体工艺原理(48学时);专业方向核心限选课,包括半导体集成电路原理与设计(32学时)、集成电路CAD(32学时)、集成

半导体器件物理 试题库

半导体器件试题库 常用单位: 在室温(T = 300K )时,硅本征载流子的浓度为 n i = 1.5×1010/cm 3 电荷的电量q= 1.6×10-19C μn =1350 2cm /V s ? μp =500 2 cm /V s ? ε0=8.854×10-12 F/m 一、半导体物理基础部分 (一)名词解释题 杂质补偿:半导体内同时含有施主杂质和受主杂质时,施主和受主在导电性能上有互相抵消 的作用,通常称为杂质的补偿作用。 非平衡载流子:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度, 额外产生的这部分载流子就是非平衡载流子。 迁移率:载流子在单位外电场作用下运动能力的强弱标志,即单位电场下的漂移速度。 晶向: 晶面: (二)填空题 1.根据半导体材料内部原子排列的有序程度,可将固体材料分为 、多晶和 三种。 2.根据杂质原子在半导体晶格中所处位置,可分为 杂质和 杂质两种。 3.点缺陷主要分为 、 和反肖特基缺陷。 4.线缺陷,也称位错,包括 、 两种。 5.根据能带理论,当半导体获得电子时,能带向 弯曲,获得空穴时,能带 向 弯曲。 6.能向半导体基体提供电子的杂质称为 杂质;能向半导体基体提供空穴的杂 质称为 杂质。 7.对于N 型半导体,根据导带低E C 和E F 的相对位置,半导体可分为 、弱简 并和 三种。 8.载流子产生定向运动形成电流的两大动力是 、 。

9.在Si-SiO 2系统中,存在 、固定电荷、 和辐射电离缺陷4种基 本形式的电荷或能态。 10.对于N 型半导体,当掺杂浓度提高时,费米能级分别向 移动;对于P 型半 导体,当温度升高时,费米能级向 移动。 (三)简答题 1.什么是有效质量,引入有效质量的意义何在?有效质量与惯性质量的区别是什么? 2.说明元素半导体Si 、Ge 中主要掺杂杂质及其作用? 3.说明费米分布函数和玻耳兹曼分布函数的实用范围? 4.什么是杂质的补偿,补偿的意义是什么? (四)问答题 1.说明为什么不同的半导体材料制成的半导体器件或集成电路其最高工作温度各不相同? 要获得在较高温度下能够正常工作的半导体器件的主要途径是什么? (五)计算题 1.金刚石结构晶胞的晶格常数为a ,计算晶面(100)、(110)的面间距和原子面密度。 2.掺有单一施主杂质的N 型半导体Si ,已知室温下其施主能级D E 与费米能级F E 之差为 1.5B k T ,而测出该样品的电子浓度为 2.0×1016cm -3,由此计算: (a )该样品的离化杂质浓度是多少? (b )该样品的少子浓度是多少? (c )未离化杂质浓度是多少? (d )施主杂质浓度是多少? 3.室温下的Si ,实验测得430 4.510 cm n -=?,153510 cm D N -=?, (a )该半导体是N 型还是P 型的? (b )分别求出其多子浓度和少子浓度。 (c )样品的电导率是多少? (d )计算该样品以本征费米能级i E 为参考的费米能级位置。 4.室温下硅的有效态密度1932.810 cm c N -=?,1931.110 cm v N -=?,0.026 eV B k T =,禁带 宽度 1.12 eV g E =,如果忽略禁带宽度随温度的变化

微电子学与固体电子学

080903 微电子学与固体电子学

北京大学--信息科学技术学院-- 微电子学与固体电子学 中国科学院--半导体研究所-- 微电子学与固体电子学 中国科学院--电子学研究所-- 微电子学与固体电子学 北京交通大学--电子信息工程学院-- 微电子学与固体电子学 北京理工大学--信息科学技术学院-- 微电子学与固体电子学 北京邮电大学--电子工程学院-- 微电子学与固体电子学 南开大学--信息技术科学学院-- 微电子学与固体电子学 天津大学--电子信息工程学院-- 微电子学与固体电子学 北京工业大学--电子信息与控制工程学院-- 微电子学与固体电子学 北京工业大学--嵌入式系统重点实验室-- 微电子学与固体电子学 天津工业大学--信息与通信工程学院-- 微电子学与固体电子学 天津理工大学--电子信息与通信工程学院-- 微电子学与固体电子学 河北大学--电信学院-- 微电子学与固体电子学 燕山大学--车辆与能源学院-- 微电子学与固体电子学 大连理工大学--物理与光电工程学院-- 微电子学与固体电子学 大连理工大学--电子与信息工程学院-- 微电子学与固体电子学 辽宁大学--物理系-- 微电子学与固体电子学 沈阳工业大学--信息科学与工程学院-- 微电子学与固体电子学 吉林大学--电子科学与工程学院-- 微电子学与固体电子学 长春理工大学--理学院-- 微电子学与固

体电子学 哈尔滨工业大学--航天学院-- 微电子学与固体电子学 中国科学技术大学--理学院-- 微电子学与固体电子学 武汉大学--物理科学与技术学院-- 微电子学与固体电子学 复旦大学--信息科学与工程学院-- 微电子学与固体电子学 中国科学技术大学--合肥智能机械研究所-- 微电子学与固体电子学 黑龙江大学--电子工程学院-- 微电子学与固体电子学 复旦大学--微电子研究院-- 微电子学与固体电子学 兰州大学--物理科学与技术学院-- 微电子学与固体电子学 山东大学--威海分校-- 微电子学与固体电子学 山东师范大学--物理与电子科学学院-- 微电子学与固体电子学 上海交通大学--微电子学院-- 微电子学与固体电子学 上海交通大学--微纳米科学技术研究院-- 微电子学与固体电子学 华东师范大学--电子科学技术系-- 微电子学与固体电子学 上海大学--材料科学与工程学院-- 微电子学与固体电子学 同济大学--电子与信息工程学院-- 微电子学与固体电子学 厦门大学--物理系-- 微电子学与固体电子学 厦门大学--电子工程系-- 微电子学与固体电子学 福州大学--物理与信息工程学院-- 微电子学与固体电子学 河北工业大学--信息工程学院-- 微电子学与固体电子学 景德镇陶瓷学院--专业列表-- 微电子学与固体电子学 上海交通大学--空天科学技术研究院-- 微电子学与固体电子学 中南大学--物理科学与技术学院(物理学

微电子技术论文范文

微电子技术论文范文 微电子技术是随着集成电路,尤其是大规模集成电路发展起来的一门新技术。下面是由 ___的微电子技术,谢谢你的阅读。 微电子技术与产业群研究 【摘要】微电子技术进步促进了微电子产业的发展,同时,以微电子产业为基础的许多领域也正在形成产业群发展浪潮。本文旨在探讨微电子技术与产业群的关系,研究微电子产业群,区分微电子相关性产业群和微电子产业集群,揭示其产业群的特殊性,深化我们对微电子产业群的认识,促进其、快速发展。 【关键词】微电子技术;集成电路;产业群;产业集群;相关性产业群 微电子技术的不断进步促进了微电子产业的快速发展,同时,也在以微电子产业为基础的许多领域产生了极富创造性的变革,从而引领了新一轮的产业群发展浪潮。本文旨在通过对微电子技术与产业群发展关系的研究,探讨微电子产业群的分类以及它们的特征,把握微电子产业群发展的基本要求,促进微电子产业群健康有序发展。

一、微电子技术的发展 微电子技术是随着集成电路,尤其是超大规模集成电路而发展起来的一门新的系列技术,它包括系统和电路设计、器件、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术。微电子技术除集成电路外,还包括集成磁泡、集成超导器件和集成光电子器件等。为便于分析,我们设定:研究的微电子技术主要限于集成电路的器件、工艺技术等领域。 微电子技术始于1947年晶体管的发明,到1958年前后已研究以这种组件为基础的混合组件,1962年生产出晶体管―晶体管逻辑电路和发射极耦合逻辑电路。上个世纪70年代,由于单极型集成电路(MOS电路)在高度集成和功耗方面的优点,微电子技术进入了MOS 电路时代。从1958年TI研制出第一个集成电路触发器算起,到xx 年Intel推出的奔腾4处理器(包含5500万个晶体管)和512Mb DRAM(包含超过5亿个晶体管),集成电路年平均增长率达到45%。 目前,微电子技术正在快速发展,其发展表现在三点:一是缩小芯片中器件结构的尺寸,即缩小加工线条的宽度;二是增加芯片中所包含的元器件的数量,即扩大集成规模;三是开拓有针对性的设计应用。其中微电子前沿技术包括:微电子制造工艺(元器件的生产、测试和封装等);微电子材料的研究;超大规模集成电路/混合信号/射频

微电子科学与工程专业

微电子科学与工程专业 一、培养目标 本专业培养德、智、体等方面全面发展,具备微电子科学与工程专业扎实的自然科学基础、系统的专业知识和较强的实验技能与工程实践能力,能在微电子科学技术领域从事研究、开发、制造和管理等方面工作的专门人才。 二、专业特色 微电子科学与工程是在物理学、电子学、材料科学、计算机科学、集成电路设计制造学等多个学科和超净、超纯、超精细加工技术基础上发展起来的一门新兴学科。微电子技术是近半个世纪以来得到迅猛发展的一门高科技应用性学科,是21世纪电子科学技术与信息科学技术的先导和基础,是发展现代高新技术和国民经济现代化的重要基础,被誉为现代信息产业的心脏和高科技的原动力。本专业主要学习半导体器件物理、功能电子材料、固体电子器件,集成电路设计与制造技术、微机械电子系统以及计算机辅助设计制造技术等方面的基础知识和实践技能,培养出来的学生在微电子技术领域初步具有研究和开发的能力。 三、培养标准 本专业学生要求在物理学、电子技术、计算机技术和微电子学等方面掌握扎实的基础理论,掌握微电子器件及集成电路的原理、设计、制造、封装与应用技术,接受相关实验技术的良好训练,掌握文献资料检索基本方法,具有较强的实验技能与工程实践能力,在微电子科学与工程领域初步具有研究和开发的能力。 毕业生应获得以下几方面的知识和能力: 1. 具有较好的人文科学素养、创新精神和开阔的科学视野; 2. 树立终身学习理念,具有较强的在未来生活和工作中继续学习的能力; 3. 具有较扎实的自然科学基本理论基础; 4. 具备微电子材料、微电子器件、集成电路、集成系统、计算机辅助设计、封装技术和测试技术等方面的理论基础和实验技能; 5. 了解本专业领域的科技发展动态及产业发展状况,熟悉国家电子信息产业政策及国内外有关知识产权的法律法规; 6.掌握文献检索及运用现代信息技术获取相关信息的基本方法; 7.具有归纳、整理和分析实验结果以及撰写论文、报告和参与学术交流的能力。 77

《大学物理实验》课程教学大纲.docx

《大学物理实验》课程教学大纲 1. 课程名称(中文):物理实验英文名称:Physics Experiments 2.课程编码: 01000102 3.课程类别:基础独立设课 4.课程要求:必修基础实验 5.课程属性:独立设课 6.课程总学时:总学分: 7.实验学时: 51 学时总学分: 1.5学分 8.应开实验学期:第 2 学期至第 3 学期 9.适用专业:土木工程、化学工程与工艺、应用化学、材料科学与工程、生物工程、信息 与计算科学。 10.先修课程:大学物理 11. 编写人:徐子湘俸永格编写日前:2005年9月1日 一、实验课程简介 物理学是实验科学,物理规律的研究都是以严格的实验为基础,实验与数学分析相结合是 物理学研究中的一个特点。物理实验是大学生进行科学实验训练的一门基础课程,在实验过程中,通过理论的运用与现象的观测分析,充分提高学生分析问题与解决问题的能力;充分提高学生综 合运用理论知识解决实际问题的动手能力。本实验课程需学生应达到下列要求: 1、进一步巩固和加深对大学物理理论知识的理解,提高学生的综合素质。 2、能根据需要选学参考书,查阅手册,通过独立思考,深入钻研有关问题,学会自己 独立分析问题、解决问题,具有一定的创新能力。 二、实验教学目标与基本要求 1、本课程的主要目的是: (1)学生通过实验学习物理实验的基本理论、典型的实验方法及其物理思想。 (2)获得必要的实验知识和操作技能训练,培养学生的动手能力、工作能力、创造能力,提高学生分析问题、归纳问题、解决问题的能力。 (3)树立实事求是、一丝不苟、严格认真的科学态度。 2、本实验课程应达到下列要求: (1)进一步巩固和加深对大学物理理论知识的理解,提高学生的综合素质。 (2)能根据需要选学参考书,查阅手册,通过独立思考,深入钻研有关问题,学会自己独立分析问题、解决问题,具有一定的创新能力。

微电子器件__刘刚前三章课后答案(DOC)

课后习题答案 1.1 为什么经典物理无法准确描述电子的状态?在量子力学 中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。然而,电子和光子是微观粒子,具有波粒二象性。因此,经典物理无法准确描述电子的状态。 在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率ω和波矢k 建立联系的,即 k n c h p h E ====υ ω υ 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率ω和波矢k 。 1.2 量子力学中用什么来描述波函数的时空变化规律? 解:波函数ψ是空间和时间的复函数。与经典物理不同的是,它描述的不是实在的物理量的波动,而是粒子在空间的概率分布,是一种几率波。如果用()t r ,ψ表示粒子的德布洛意波的振幅,以 ()()()t r t r t r ,,,2 ψψψ*=表示波的强度,那么,t 时刻在r 附近的小体 积元z y x ???中检测到粒子的概率正比于()z y x t r ???2,ψ。

1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。 解:如图1.3所示,从能带的观点来看,半导体和绝缘体都存在着禁带,绝缘体因其禁带宽度较大(6~7eV),室温下本征激发的载流子近乎为零,所以绝缘体室温下不 能导电。半导体禁带宽度较小,只有1~2eV ,室温下已经有一定数量的电子从价带激发到导带。所以半导体在室温下就有一定的导电能力。而导体没有禁带,导带与价带重迭在一起,或者存在半满带,因此室温下导体就具有良好的导电能力。 1.4 为什么说本征载流子浓度与温度有关? 解:本征半导体中所有载流子都来源于价带电子的本征激发。由此产生的载流子称为本征载流子。本征激发过程中电子和空穴是同时出现的,数量相等,i n p n ==00。对于某一确定的半导体材料,其本征载流子浓度为kT E V C i g e N N p n n ==002 式中,N C ,N V 以及Eg 都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。 1.5 什么是施主杂质能级?什么是受主杂质能级?它们有何异同?

微电子的发展以及在医学上的应用

微电子技术发展趋势展望以及在医学中的应用 摘要: 电子技术是现代电子信息技术的直接基础。微电子技术的发展大大方便了人们的生活。它主要应用于生活中的各类电子产品,微电子技术的发展对电子产品的消费市场也产生了深远的影响。本文主要介绍了对微电子技术的认识、发展趋势以及微电子技术在医学中的应用。引言: 一、微电子技术的认识、发展历史以及在社会发展中所起的作用 1、微电子技术的认识 微电子技术,顾名思义就是微型的电子电路。它是随着集成电路,尤其是超大规模集成电路而发展起来的一门新的技术。 微电子技术是在电子电路和系统的超小型化和微型化过程中逐渐形成和发展起来的,其核心是集成电路,即通过一定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互联,采用微细加工工艺,集成在一块半导体单晶片(如硅和砷化镓) 上,并封装在一个外壳内,执行特定电路或系统功能。与传统电子技术相比,其主要特征是器件和电路的微小型化。它把电路系统设计和制造工艺精密结合起来,适合进行大规模的批量生产,因而成本低,可靠性高。它的特点是体积小、重量轻、可靠性高、工作速度快,微电子技术对信息时代具有巨大的影响。它包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,是微电子学中的各项工艺技术的总和。 2、发展历史 微电子技术是十九世纪末,二十世纪初开始发展起来的新兴技术,它在二十世纪迅速发展,成为近代科技的一门重要学科。它的发展史其实就是集成电路的发展史。1904 年,英国科学家弗莱明发明了第一个电子管——二极管,不就美国科学家发明了三极管。电子管的发明,使得电子技术高速发展起来。它被广泛应用于各个领域。1947 年贝尔实验室制成了世界上第一个晶体管。体积微小的晶体管使集成电路的出现有了可能。之后,美国得克萨斯仪器公司的基比尔按其思路,于1958 年制成了第一个集成电路的模型,1959 年德州仪器公司宣布发明集成电路。至此集成电路便诞生了。集成电路发明后,其发展非常迅速,其制作工艺不断进步,规模不断扩大。至今集成电路的集成度已提高了500 万倍,特征尺寸缩小200 倍,单个器件成本下降100 万倍。 3、微电子技术的应用 微电子技术广泛应用于民用、军方、航空等多个方面。现在人类生产的电子产品几乎都应用到了微电子技术。可以这么说微电子技术改变了我们的生活方式。 微电子技术对电子产品的消费市场也产生了深远的影响。价廉、可靠、体积小、重量轻的微电子产品,使电子产品面貌一新;微电子技术产品和微处理器不再是专门用于科学仪器世界的贵族,而落户于各式各样的普及型产品之中,进人普通百姓家。例如电子玩具、游戏机、学习机及其他家用电器产品等。就连汽车这种传统的机械产品也渗透进了微电子技术,采用微电子技术的电子引擎监控系统。汽车安全防盗系统、出租车的计价器等已得到广泛应用,现代汽车上有时甚至要有十几个到几十个微处理器。现代的广播电视系统更是使微电子技术大有用武之地的领域,集成电路代替了彩色电视机中大部分分立元件组成的功能电路,使电视机电路简捷清楚,维修方便,价格低廉。由于采用微电子技术的数字调谐技术,使电视机可以对多达100个频道任选,而且大大提高了声音、图像的保真度。 总之,微电子技术已经渗透到诸如现代通信、计算机技术、医疗卫生、环境工程在源、交通、自动化生产等各个方面,成为一种既代表国家现代化水平又与人民生活息息相关的高新技术。 4、发展趋势

中科院微电子学与固体电子学考研必读的经验

距离考研真正结束已经有好几个月了,好久没来逛论坛了,记得那时迷茫的我在论坛中一个个找帖子看,只要看到“微固”就一定会点进来看,找资料,请教问题。现在,终于告别了我的考研岁月,有辛酸、有汗水、更有一份份的感动,这其中的滋味,只有走过这段路的人才能真正体会得到!我想说,走过这段路的战友,不管结果如何,你们是真正的英雄!当你选择这条路的时候,其实你应经成功的战胜了自己! 说实话,我是二战过来的,考的是中国科学院大学微电子学与固体电子学,可惜败在了专业课上(虽然说专业课并不是很公平,自己复习的不好也是一个重要原因),之后就是毕业找工作,刚毕业出来什么都不懂,关键是工作又不是自己喜欢的,所以工作了三个月后我决定继续二战中科院。八月份,又回到熟悉的学校,熟悉的图书馆,记得坐在图书馆的第一个晚上,环顾四周,曾经的战友都不在了,一幅幅陌生的面孔,晚上从图书馆出来我哭了,不知道是什么感觉,就是控制不住我的泪水。心里的委屈无法倾诉,熟悉的地方,物是人非,那种感觉真的很辛酸!可是我在心底暗暗发誓:今年,我一定要考上! 我知道微固专业是中科院的三大王牌专业之一,每年的录取线都是领跑全院(今年是358),为了梦想,我想豁出去得了,冲!然后就是漫长的复习,从头开始,记得招生简章没出来之前,专业课我选的是固体物理,因为第一年看了一年固体物理的知识,学起来会快很多,命运给了我很大的恩惠。总之,老天给了我一个很好的开始毕竟有失也有得之前的复习也不全一无是处,所以说我更要加倍努力啦!有时候,考研真的单纯只是为了追逐那份心中的梦想,不去想考上了会怎么样,工作怎么样,心里会发誓一定要实现自己的梦想!为了证明自己!我的同学,第一年浙大落榜,第二年继续,这是一种怎样的精神在支持着?考研人,真的勇士!八月份,学校里各种辅导班都在上课,我报的新祥旭的专业课,按照老师的指导一步步地去看书复习,只要好好总结,学习效果还是很明显的。一家之谈,可能每个人的感受不一样吧!当然了有些就是不报班的同学学得也很不错! 在这里,我想把我数学的学习心得和大家分享一下,今年数学考的不是很好,120,本应该考得很好的,今年数学也较容易,结果考砸了。数学我买了一本李永乐的复习全书,个人觉得比陈文灯的好!主要是陈的书很多内容讲的太繁琐,很多讲题方法是很不错,讲了很多技巧,但是考研很少考到,所以我觉得与大纲偏离的太多。而李的书看起来就很舒服,讲的都是常见题型,常见解题方法,很多题型出的也很好。复习全书一定要认真做!我总共做了三遍,而且做数学题时把它当字典查,所以到最后这本书翻得实在是很烂。如果你觉得里面的题目不够做,可以再买一本660题,里面的小题都是很经典的! 专业课我想是大家比较关心的,因为考研的总分很大一部分取决于它!今年专业课考了130+,个人觉得也还有很大的提升空间,专业课也很简单,考试才考了一半我就已经完卷了,到最后也没有检查,就等着交卷迎接考研结束,现在想想挺后悔的。我本科学的就是微电子,考试指定的那本教材也是学过的。但是本科时没有好好学,基本上都是考研时才学通了这本书。相信拿到这本书在手里,你也是很难过的,全部都是公式,推导过程!翻一遍过来,头都大了。我当时也是这种感觉,该怎么学啊?当时我问一些学长,他们告诉我,要想把这本书学好,里面的所有公式都要会推导出来!我当时都蒙了,公式记都记不住怎么推啊?好多公式都很冗长!不过困难总是要克服的呀,只能咬咬牙,从头开始看吧!下面我来说说怎么学好这本书。我们都知道微固专业的基础是物理学方面的知识,所以说这本书是基础。不过我的建议是,如果你物理学的知识之前没有接触过,刚开始肯定很多内容都看不懂,但是不要求你看懂,你只要先了解一下基本概念就可以了。在知道都是讲一些什么的时候再回过头来详细地看。但是物理的一些内容要牵扯到量子力学的内容,主要是前面晶格结构的内容,我觉得如果大家不太了解的话,最好把这些书中的相关章节拿出来翻翻,了解一下也好,这些都是一些基础的东西。我想说一遍两遍看不明白很正常!慢慢自己琢磨,不懂就去问老师问同学,总会弄懂的。你要知道既然你选择了微固专业,就要做好吃苦的准备,相信自己一定行!永远不要灰心,你可以沮丧!但不可以放弃! 其次我想说,光看书也是不够的,要找一些题目来做,很多东西要通过做题才能真正掌握。其实我也知道普通物理的题目真的是很少!书店一般都买不到,课本后的习题也没有答案。但是困难来了,你要自己想办法!我也经常在网上下一些视频拿出来看,巩固专业基础的一些东西。我有一个同学,当时也考微固,我把这个视频拷给他,结果他只听了一两遍就不听了,说听不懂,我那个郁闷的啊唉。其实我想说每听一遍感觉都不一样,都有很多收获!觉得普通物理学得差不多了,就做点题目检验一下,要是有模糊的地方可以把教材拿出来再翻一翻,这样结合着看效果也不错。书上的很多公式自己慢慢去推导,多推导几遍就熟悉了,其实有些内容考试不考。书看过三遍左右的时候就要做真题了,历年真题,每一题都要做精做透!结合一些资料题目来做,课本上课后习题有很多也很好。平时可以把书合

相关文档
最新文档