倍角公式转换
三角函数的降次公式

三角函数的降次公式在三角函数的降次公式中,最常用的有如下几种:1.倍角公式:正弦函数的倍角公式:sin(2θ) = 2sin(θ)cos(θ)余弦函数的倍角公式:cos(2θ) = cos²(θ) - sin²(θ) =2cos²(θ) - 1 = 1 - 2sin²(θ)正切函数的倍角公式:tan(2θ) = (2tan(θ))/(1 - tan²(θ))2.半角公式:正弦函数的半角公式:sin(θ/2) = ±√((1 - cos(θ))/2)余弦函数的半角公式:cos(θ/2) =±√((1 + cos(θ))/2)正切函数的半角公式:tan(θ/2) = ±√((1 - cos(θ))/(1 +cos(θ)))3.和差公式:正弦函数的和差公式:sin(α ± β) = sin(α)cos(β) ±cos(α)sin(β)余弦函数的和差公式:cos(α ± β) = cos(α)cos(β) ∓sin(α)sin(β)正切函数的和差公式:tan(α ± β) = (tan(α) ± tan(β))/(1 ∓ tan(α)tan(β))4.三角函数的平方公式:正弦函数的平方公式:sin²(θ) + cos²(θ) = 1余弦函数的平方公式:1 + tan²(θ) = sec²(θ)正切函数的平方公式:1 + cot²(θ) = cosec²(θ)以上是常用的三角函数降次公式,可以通过这些公式将高次三角函数表达式化简为低次三角函数表达式,从而更方便地进行计算。
使用这些公式时,需要根据具体的问题和计算要求灵活选择合适的公式,并注意适时转换为简易形式,以减少运算的复杂度。
三角函数转换公式大全总结

三角函数转换公式大全总结三角函数是数学中常见的一类函数,由于其定义在一个单位圆上,可以用来描述很多自然现象和物理现象。
在数学中,经常会使用一些三角函数的转换公式来简化计算和推导。
下面是常见的一些三角函数转换公式总结。
1.正、余函数的关系:sin(x) = cos(x - π/2)cos(x) = sin(x + π/2)这两个公式很容易理解,就是将正弦函数和余弦函数互换角度就可以得到。
2.平方和差公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)这两个公式可以用来计算两个三角函数之间的和差关系。
通过平方和差公式,可以将两个三角函数之和或之差转化为两个三角函数之积。
3.和差化积公式:sin(x) + sin(y) = 2sin((x + y)/2)cos((x - y)/2)sin(x) - sin(y) = 2cos((x + y)/2)sin((x - y)/2)cos(x) + cos(y) = 2cos((x + y)/2)cos((x - y)/2)cos(x) - cos(y) = -2sin((x + y)/2)sin((x - y)/2)这四个公式可以用来将两个三角函数的和或差表示为两个三角函数的积。
4.倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x) tan(2x) = 2tan(x)/(1 - tan^2(x))这些公式可以用来计算两倍角度的三角函数值,可以用于简化计算和推导。
5.半角公式:sin(x/2) = ±√((1 - cos(x))/2)cos(x/2) = ±√((1 + cos(x))/2)tan(x/2) = ±√((1 - cos(x))/(1 + cos(x)))这些公式可以用来计算半角的三角函数值,同样可以用于简化计算和推导。
三角恒等变换公式大全

三角恒等变换公式大全三角函数是数学中的重要分支,它在许多科学与工程领域中具有广泛的应用。
而三角恒等变换公式是三角函数的重要性质之一。
它们可以将一个三角函数表达式转换为其他三角函数表达式,从而提供了在解决问题时的灵活性和简化计算的便利性。
在本文中,我们将介绍一些常用的三角恒等变换公式,帮助读者更好地理解和应用三角函数。
1. 正弦、余弦和正切的平方和差公式:- 正弦的平方和差公式:sin²(A ± B) = sin²A*cos²B ±2*sinA*sinB*cosA*cosB- 余弦的平方和差公式:cos²(A ± B) = cos²A*cos²B -2*sinA*sinB*cosA*cosB- 正切的平方和差公式:tan²(A ± B) = (tan²A ± tan²B) / (1 ∓tanA*tanB)2. 正弦和余弦的倍角公式:- 正弦的倍角公式:sin2A = 2*sinA*cosA- 余弦的倍角公式:cos2A = cos²A - sin²A = 2*cos²A - 1 = 1 -2*sin²A3. 正切的倍角公式:- 正切的倍角公式:tan2A = (2*tanA) / (1 - tan²A)4. 正弦、余弦和正切的半角公式:- 正弦的半角公式:sin(A / 2) = ± √[(1 - cosA) / 2]- 余弦的半角公式:cos(A / 2) = ± √[(1 + cosA) / 2]- 正切的半角公式:tan(A / 2) = ± √[(1 - cosA) / (1 + cosA)]5. 正切的和差公式:- 正切的和公式:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanA*tanB)6. 余弦的和差公式:- 余弦的和公式:cos(A ± B) = cosA*cosB ∓ sinA*sinB7. 三角函数的倒数公式:- sin(-A) = -sinA,cos(-A) = cosA,tan(-A) = -tanA8. 三角函数的互余关系:- sin(π/2 - A) = cosA,cos(π/2 - A) = sinA,tan(π/2 - A) = 1/tanA9. 三角函数的余角关系:- sin(π - A) = sinA,cos(π - A) = -cosA,tan(π - A) = -tanA10. 三角函数的化简公式:- sin(2π - A) = -sinA,cos(2π - A) = cosA,tan(2π - A) = tanA这些三角恒等变换公式为解决三角函数相关的数学问题提供了便利,读者在学习和应用时可根据具体情况选择合适的公式进行推导和计算。
三角函数的倍角公式与半角公式

三角函数的倍角公式与半角公式在学习三角函数的过程中,倍角公式和半角公式是非常重要的推导与应用。
它们能够使我们简化复杂的三角函数运算,并且在解决问题时提供更加灵活和便捷的方法。
本文将详细介绍三角函数的倍角公式和半角公式,并探讨它们的应用。
一、三角函数的倍角公式1. 正弦函数的倍角公式对于一个角θ,正弦函数的倍角公式可以表示为:sin(2θ) = 2sinθcosθ这个公式告诉我们,当我们需要求一个角的正弦函数的两倍时,可以通过将这个角的正弦函数与余弦函数相乘得到。
这在解决一些三角函数运算较为复杂的问题时非常有用。
2. 余弦函数的倍角公式同样地,余弦函数的倍角公式可以表示为:cos(2θ) = cos²θ - sin²θ这个公式告诉我们,当我们需要求一个角的余弦函数的两倍时,可以通过将这个角的余弦函数的平方减去正弦函数的平方得到。
这个公式可以在求解一些三角函数的平方和差问题时提供便捷的方法。
3. 正切函数的倍角公式tan(2θ) = (2tanθ)/(1-tan²θ)这个公式给出了正切函数的两倍与原角度的正切函数之间的关系。
在一些复杂的三角函数问题中,这个公式能够帮助我们简化计算,得出更加精确的结果。
二、三角函数的半角公式1. 正弦函数的半角公式对于一个角θ,正弦函数的半角公式可以表示为:sin(θ/2) = √[(1 - cosθ)/2]这个公式告诉我们,当我们需要求一个角的半角的正弦函数时,可以通过将这个角的余弦函数与1的差再除以2开方得到。
这个公式在一些角的半角问题的解决中非常有用。
2. 余弦函数的半角公式余弦函数的半角公式可以表示为:cos(θ/2) = √[(1 + cosθ)/2]这个公式告诉我们,当我们需要求一个角的半角的余弦函数时,可以通过将这个角的余弦函数与1的和再除以2开方得到。
在一些复杂的三角函数问题中,这个公式能够提供简化计算的方法。
3. 正切函数的半角公式tan(θ/2) = sinθ/(1 + cosθ)这个公式给出了正切函数的半角与原角度的正弦函数和余弦函数之间的关系。
倍角公式(可用)

×(− ) = − 13 13 169 5 2 119 2 cos2α =1− 2sin α =1− 2×( ) = 13 169 sin2α 120 169 120 tan2α = = (− ) × =− cos2α 169 119 119
变式练习:
5 π π 1.已 sin2 = , <α < , 知 α 13 4 2 求sin4 ,cos4 ,tan4 . α α α
倍角公式
高密市康成中学
一、和角公式
sin(α + β ) = sin α cos β + cos α sin β
cos(α + β ) = cosα cos β − sin α sin β
tan α + tan β tan(α + β ) = 1 − tan α tan β
提出问题
若“α = β ”,则
2
五、公式应用: 公式应用:
0
例1、 求下列各式的值: 、 求下列各式的值:
0
(1 )sin15 cos15 ; tan22.50 (3) ; 2 0 1− tan 22.5
(2)cos
2
π
8
−sin
2
π
8
;
(4)1− 2sin2 750.
1 1 0 0 解: (1)原 = (2sin 15 cos15 ) = 1 sin 300 = 式 4 2 π 2
1+sin2θ −cos2θ 例 3 求 : 证 = tanθ 1+sin2θ + cos2θ 2 1 + 2 sin θ cos θ − (1 − 2 sin θ ) 证明: 证明:左边 = 2 1 + 2 sin θ cos θ + ( 2 cos θ − 1) 2 sin θ (cos θ + sin θ ) sin θ = = 2 cos θ (cos θ + sin θ ) cos θ = tan θ = 右边 ∴ 原式成立 .
4.5和角公式、倍角公式与半角公式

1.和角公式cos(α-β)=cos αcos β+sin αsin β, (C α-β) cos(α+β)=cos αcos β-sin αsin β, (C α+β) sin(α-β)=sin αcos β-cos αsin β, (S α-β) sin(α+β)=sin αcos β+cos αsin β, (S α+β) tan(α-β)=tan α-tan β1+tan αtan β, (T α-β)tan(α+β)=tan α+tan β1-tan αtan β. (T α+β)2.倍角公式sin 2α=2sin αcos α,(S 2α)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,(C 2α) tan 2α=2tan α1-tan 2α.(T 2α)3.半角公式2cos α=±1+cos α2,(C 2α) sin 2α=±1-cos α2,(S 2α) tan 2α=±1-cos α1+cos α.(T 2α)(根号前的正负号,由角α2所在象限确定)4.公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan αtan β);(2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( √ )1.已知sin α+cos α=13,则sin 2⎝⎛⎭⎫π4-α等于( ) A.118 B.1718 C.89 D.29答案 B解析 由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin 2 ⎝⎛⎭⎫π4-α=1-cos ⎝⎛⎭⎫π2-2α2=1-sin 2α2=1+892=1718,故选B.2.若sin α+cos αsin α-cos α=12,则tan 2α等于( )A.-34B.34C.-43D.43答案 B解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3,则tan 2α=2tan α1-tan 2α=34.3.(2015·重庆)若tan α=13,tan(α+β)=12,则tan β等于( )A.17B.16C.57D.56 答案 A解析 tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17.4.(教材改编)sin 347°cos 148°+sin 77°cos 58°= . 答案22解析 sin 347°cos 148°+sin 77°cos 58° =sin(270°+77°)cos(90°+58°)+sin 77°cos 58° =(-cos 77°)·(-sin 58°)+sin 77°cos 58° =sin 58°cos 77°+cos 58°sin 77° =sin(58°+77°)=sin 135°=22. 5.设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为 .答案17250解析 ∵α为锐角,cos(α+π6)=45,∴α+π6∈⎝⎛⎭⎫π6,2π3, ∴sin(α+π6)=35,∴sin(2α+π3)=2sin(α+π6)cos(α+π6)=2425,∴cos(2α+π3)=2cos 2(α+π6)-1=725,∴sin(2α+π12)=sin(2α+π3-π4)=22[sin(2α+π3)-cos(2α+π3)]=17250.题型一 三角函数公式的基本应用例1 (1)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)= .(2)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是 . 答案 (1)-75(2) 3解析 (1)cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α, ∵sin α=35,α∈⎝⎛⎭⎫π2,π, ∴cos α=-45.∴原式=-75.(2)∵sin 2α=2sin αcos α=-sin α, ∴cos α=-12,又α∈⎝⎛⎭⎫π2,π, ∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3.思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.(1)若α∈(π2,π),tan(α+π4)=17,则sin α等于( )A.35 B.45 C.-35D.-45(2)已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是( )A.-233B.±233C.-1D.±1答案 (1)A (2)C解析 (1)∵tan(α+π4)=tan α+11-tan α=17,∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵sin 2α+cos 2α=1, ∴sin 2α=925.又∵α∈(π2,π),∴sin α=35.(2)cos x +cos(x -π3)=cos x +12cos x +32sin x=32cos x +32sin x =3(32cos x +12sin x ) =3cos(x -π6)=-1.题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为( ) A. 2 B.22 C.12D.32(2)(2015·重庆)若tan α=2tan π5,则cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5等于( )A.1B.2C.3D.4 答案 (1)B (2)C解析 (1)原式=sin(65°-x )cos(x -20°)+cos(65°-x )cos [90°-(x -20°)] =sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)= sin [(65°-x )+(x -20°)]=sin 45°=22.故选B. (2)cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5=sin ⎝⎛⎭⎫π2+α-3π10sin ⎝⎛⎭⎫α-π5=sin ⎝⎛⎭⎫α+π5sin ⎝⎛⎭⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=tan αtan π5+1tan αtan π5-1=2+12-1=3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为( )A.π4B.π3C.π2D.3π4(2)函数f (x )=2sin 2(π4+x )-3cos 2x 的最大值为( )A.2B.3C.2+ 3D.2- 3答案 (1)A (2)B解析 (1)由题意知:sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C =-1=-tan A ,所以A =π4.(2)f (x )=1-cos 2(π4+x )-3cos 2x =sin 2x -3cos 2x +1=2sin ⎝⎛⎭⎫2x -π3+1,可得f (x )的最大值是3. 题型三 角的变换问题例3 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255C.2525或255D.55或525(2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是 .答案 (1)A (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453,∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45.思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等. 若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2等于( ) A.33B.-33C.539D.-69答案 C解析 cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2 =cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2, ∵0<α<π2,∴π4<π4+α<3π4,∴sin ⎝⎛⎭⎫π4+α=223.又-π2<β<0,则π4<π4-β2<π2,∴sin ⎝⎛⎭⎫π4-β2=63. 故cos ⎝⎛⎭⎫α+β2=13×33+223×63=539.6.三角函数求值忽视角的范围致误典例 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,则cos(α+β)的值为 . (2)已知在△ABC 中,sin(A +B )=23,cos B =-34,则cos A = .易错分析 (1)角α2-β,α-β2的范围没有确定准确,导致开方时符号错误.(2)对三角形中角的范围挖掘不够,忽视隐含条件,B 为钝角. 解析 (1)∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,∴cos ⎝⎛⎭⎫α2-β= 1-sin 2⎝⎛⎭⎫α2-β=53, sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2=459,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1 =2×49×5729-1=-239729.(2)在△ABC 中,∵cos B =-34,∴π2<B <π,sin B =1-cos 2B =74. ∵π2<B <A +B <π,sin(A +B )=23, ∴cos(A +B )=-1-sin 2(A +B )=-53, ∴cos A =cos [(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B =⎝⎛⎭⎫-53×⎝⎛⎭⎫-34+23×74=35+2712.答案 (1)-239729 (2)35+2712温馨提醒 在解决三角函数式的求值问题时,要注意题目中角的范围的限制,特别是进行开方运算时一定要注意所求三角函数值的符号.另外,对题目隐含条件的挖掘也是容易忽视的问题,解题时要加强对审题深度的要求与训练,以防出错.[方法与技巧] 1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. [失误与防范]1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的范围.A 组 专项基础训练 (时间:35分钟)1.cos 85°+sin 25°cos 30°cos 25°等于( )A.-32 B.22 C.12D.1 答案 C解析 原式=sin 5°+32sin 25°cos 25°=sin (30°-25°)+32sin 25°cos 25°=12cos 25°cos 25°=12.2.若θ∈[π4,π2],sin 2θ=378,则sin θ等于( )A.35B.45C.74D.34 答案 D解析 由sin 2θ=378和sin 2θ+cos 2θ=1,得(sin θ+cos θ)2=378+1=(3+74)2,又θ∈[π4,π2],∴sin θ+cos θ=3+74.同理,sin θ-cos θ=3-74,∴sin θ=34.3.若tan θ=3,则sin 2θ1+cos 2θ等于( )A. 3B.- 3C.33D.-33答案 A 解析sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ= 3.4.已知α为第二象限角,sin α+cos α=33,则cos 2α等于( ) A.-53B.-59C.59 D.53答案 A解析 由sin α+cos α=33两边平方得1+2sin αcos α=13, ∴2sin αcos α=-23.∵α为第二象限角,∴sin α>0,cos α<0, ∴sin α-cos α=(sin α-cos α)2 =1-2sin αcos α=153. ∴cos 2α=(cos α+sin α)(cos α-sin α) =33×⎝⎛⎭⎫-153=-53. 5.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4等于( )A.1318B.1322C.322D.16答案 C解析 因为α+π4+β-π4=α+β, 所以α+π4=(α+β)-⎝⎛⎭⎫β-π4, 所以tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322. 6.sin 250°1+sin 10°= . 答案 12解析 sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12. 7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α= . 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.函数f (x )=2cos x sin ⎝⎛⎭⎫x -π3的最大值为 . 答案 1-32解析 ∵f (x )=2cos x sin ⎝⎛⎭⎫x -π3 =2cos x ⎝⎛⎭⎫12sin x -32cos x =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, ∴f (x )的最大值为1-32. 9.已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值;(2)求tan α-1tan α的值. 解 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3 ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62,两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32. (2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35 =-43+310. B 组 专项能力提升(时间:25分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)等于( ) A.-255B.-3510C.-31010D.255答案 A 解析 由tan(α+π4)=tan α+11-tan α=12,得tan α=-13. 又-π2<α<0,所以sin α=-1010. 故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α =-255. 12.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于( ) A.22 B.33 C. 2 D. 3 答案 D解析 ∵α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,∴sin 2α+cos 2α-sin 2α=14, ∴cos 2α=14, ∴cos α=12或-12(舍去), ∴α=π3,∴tan α= 3. 13.已知cos 4α-sin 4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3= . 答案 2-156解析 ∵cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α) =cos 2α=23, 又α∈⎝⎛⎭⎫0,π2, ∴2α∈(0,π),∴sin 2α=1-cos 22α=53, ∴cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 14.设f (x )=1+cos 2x 2sin ⎝⎛⎭⎫π2-x +sin x +a 2sin ⎝⎛⎭⎫x +π4的最大值为2+3,则常数a = . 答案 ±3解析 f (x )=1+2cos 2x -12cos x+sin x +a 2sin ⎝⎛⎭⎫x +π4 =cos x +sin x +a 2sin ⎝⎛⎭⎫x +π4 =2sin ⎝⎛⎭⎫x +π4+a 2sin ⎝⎛⎭⎫x +π4 =(2+a 2)sin ⎝⎛⎭⎫x +π4. 依题意有2+a 2=2+3,∴a =±3.15.已知函数f (x )=sin x 2sin ⎝⎛⎭⎫π2+x 2. (1)求函数f (x )在[-π,0]上的单调区间;(2)已知角α满足α∈⎝⎛⎭⎫0,π2,2f (2α)+4f ⎝⎛⎭⎫π2-2α=1,求f (α)的值.解 f (x )=sin x 2sin ⎝⎛⎭⎫π2+x 2 =sin x 2cos x 2=12sin x . (1)函数f (x )的单调递减区间为⎣⎡⎦⎤-π,-π2,单调递增区间为⎣⎡⎦⎤-π2,0. (2)2f (2α)+4f ⎝⎛⎭⎫π2-2α=1⇒sin 2α+2sin ⎝⎛⎭⎫π2-2α=1⇒2sin αcos α+2(cos 2α-sin 2α)=1 ⇒cos 2α+2sin αcos α-3sin 2α=0 ⇒(cos α+3sin α)(cos α-sin α)=0.∵α∈⎝⎛⎭⎫0,π2, ∴cos α-sin α=0⇒tan α=1得α=π4, ∴f (α)=12sin π4=24.。
三角函数的换算公式
三角函数转换公式1、诱导公式:sin(-α) = -sinα;cos(-α) = cosα;sin(π/2-α) = cosα;cos(π/2-α) = sinα;sin(π/2+α) = cosα;cos(π/2+α) = -sinα;sin(π-α) = sinα;cos(π-α) = -cosα;sin(π+α) = -sinα;cos(π+α) = -cosα;tanA= sinA/cosA;tan(π/2+α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π+α)=tanα2、两角和差公式:sin(A±B) = sinAcos±BcosAsinBcos(A±B) = cosAcosB sinAsinBtan(A±B) = (tanA±tanB)/(1 tanAtanB)cot(A±B) = (cotAcotB 1)/(cotB±cotA)3、倍角公式sin2A=2s inA•cosAcos2A=cosA2-sinA2=1-2sinA2=2cosA2-1tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1)4、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))5、和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)6、积化和差sinαsinβ = -1/2*[cos(α-β)-cos(α+β)]cosαcosβ = 1/2*[cos(α+β)+cos(α-β)]sinαcosβ = 1/2*[sin(α+β)+sin(α-β)]cosαsinβ = 1/2*[sin(α+β)-sin(α-β)]7、万能公式2tan 12tan 2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222α-α=αα+α-=αα+α=α2010年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分.线性代数.概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分56%线性代数22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值.最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。
初中三角函数倍角公式及推导
初中三角函数倍角公式及推导初中三角函数倍角公式是什么半倍角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))二倍角公式Sin2A=2SinA*CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)三倍角公式sin3α=3sinα-4sin3αcos3α=4cos3α-3cosαtan3α=(3tanα-tan3α)/(1-3tan2α)四倍角公式sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)初中倍角公式推导过程在二角和的公式中令两个角相等(B=A),就得到二倍角公式.sin(A+B)=sinAcosB+cosAsinB--->sin2A=2sinAcosAcos(A+B)=cosAcosB-sinAsinB--->cos2A=(cosA)^2-(sinA)^2=(1-(sinA)^2-(sinA)^2=1-2(sinA)^2=2(cosA)^2-1.tan(A+B)=(tanA+tanB)/(1-tanAtanB)--->tan2A=2tanA/[1-(tanA)^2]在余弦的二倍角公式中,解方程就得到半角公式.cosx=1-2[sin(x/2)]^2--->sin(x/2)=+'-√[(1-cosx)/2]符号由(x/2)的象限决定,下同.cosx=2[cos(x/2)]^2--->cos(x/2)=+'-√[1+cosx)/2]两式的的两边分别相除,得到tan(x/2)=+'-√[(1-cosx)/(1+cosx)].又tan(x/2)=sin(x/2)/cos(x/2)=2[sin(x/2)]^2/[2sin(x/2)cos(x/2)]=(1-cosx)/sinx=.........=sinx/(1+cosx).。
两角和与差及倍角公式
两角和与差及倍角公式一、知识梳理 和差公式: 1.cos(α-β)=,此公式对任意α、β都成立. 2.两角和的余弦公式为. 这个公式对任意α、β都成立. 3.两角差的正弦公式为.这个公式对任意α、β都成立.4.两角和的正弦公式为这个公式对任意α、β都成立.5.公式T α-β是它成立的条件是6.公式T α+β是它成立的条件是7.公式T α-β和T α+β的变形,如: tan(α+β)=tan α+tan β1-tan αtan β 变形为tan(α-β)=tan α-tan β1+tan αtan β 变形为倍角公式:1.在S α+β中,令 ,可得到,简记为S2α.2.在C α+β中,令,可得到,简记为C2α3.在T α+β中,令,可得到tan 2α=,简记为T2α.4.在C2α中,考虑sin2α+cos2α=1,可以将C2α变形为cos 2α==,简记为C ′2α.5.cos α=2cos 2α2-1=1-2sin 2α2,将公式变形可得(1)升幂公式: 1+cos α=,1-cos α=(2)降幂公式:cos 2α2=,sin 2α2=.二、例题分析例1:求值:(1)sin 40(tan10︒︒;(2.分析:切化弦,通分.解:(1)原式=sin10sin 40(cos10︒︒︒=sin 402sin(1060)sin 40cos10︒-︒=︒⋅︒2cos 40sin 40cos10︒=-︒⋅︒sin801cos10-︒==-︒.(2)cos102sin 4011cos10cos10︒︒︒+︒=+==︒︒,=︒.原式2sin 402sin 50sin80︒︒+︒⋅=2==.点评:给角求值,注意寻找所给角与特殊角的联系,如互余,互补等,利用诱导公式,和与差公式,二倍角公式进行转换. 例2:设4c o s ()5αβ-=-,12cos()13αβ+=,且(,)2παβπ-∈,3(,2)2παβπ+∈,求c o s 2α,cos 2β. 分析:2()()ααβαβ=-++, 2()()βαβαβ=+--.解:由4cos()5αβ-=-,(,)2παβπ-∈,得3sin()5αβ-=,同理,可得5sin()13αβ+=- 33cos 2cos[()()]65ααβαβ∴=-++=-,同理,得63cos 265β=-.点评:寻求“已知角”与“未知角”之间的联系,如:2()()ααβαβ=-++,2()()βαβαβ=+--等.例3:若3cos()45x π+=,177124x ππ<<,求2sin 22sin 1tan x x x +-的值. 分析一:()44x x ππ=+-.解法一:177124x ππ<< ,5234x πππ∴<+<,又3cos()45x π+=,4sin()45x π∴+=-,4tan()43x π+=-.cos cos[()]44x x ππ=+-=,sin x ∴=,tan 7x =.所以,原式=22((2(281010101775⨯⨯+⨯=--.分析二:22()42x x ππ=+-.解法二:原式=sin 2sin 2tan 1tan x x x x +⋅-sin 2(1tan )sin 2tan()1tan 4x x x x x π+==⋅+-又27sin 2sin[2()]cos 2()[2cos ()1]424425x x x x ππππ=+-=-+=--+-=,所以,原式7428()25375=⋅-=-.点评:观察“角”之间的联系以寻找解题思路. 例4:已知0,1413)cos(,71cos 且=β-α=α<β<α<2π.(Ⅰ)求α2tan 的值;(Ⅱ)求β. 分析:()βααβ=--.解:(Ⅰ)由1cos ,072παα=<<,得sin α===∴sin 7tan cos 1ααα===22tan tan 21tan 1ααα===-- (Ⅱ)由02παβ<<<,得02παβ<-<又∵()13cos 14αβ-=,∴()sin αβ-===由()βααβ=--得:()cos cos βααβ=--⎡⎤⎣⎦()()cos cos sin sin ααβααβ=-+-11317142=⨯= 所以3πβ=.点评:求角一般先求角的某一三角函数值以此来确定角,但根据三角函数值定角往往不唯一,要注意利用三角函数值来缩小角的范围. 三、巩固练习1.设)2,0(πα∈,若3sin 5α=,则)4cos(2πα+=__________. 2.已知tan 2α=2,则tanα的值为_______,tan ()4πα+的值为___________ .3.若316sin =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫⎝⎛+απ232cos =___________. 4.若13cos(),cos()55αβαβ+=-=,则tan tan αβ= .5.求值:(1+tan 1°)(1+tan 44°)= 2.tan 20°+tan 40°+3tan 20°tan 40° .51 43- 17- 97- 12求值:11sin 20tan 40-=︒︒.6.已知βα,⎪⎭⎫ ⎝⎛∈ππ,43,sin(βα+)=-,53 sin ,13124=⎪⎭⎫ ⎝⎛-πβ则cos 4πα⎛⎫+ ⎪⎝⎭=__________. 7.设α为第四象限的角,若513sin 3sin =a a ,则tan 2α=______.8.若1cos 7α=,11cos()14αβ+=-,(0,)2πα∈,(,)2παβπ+∈,则β=________. 9.已知tan 2θ=-2πθπ<<,则22cos sin 12)4θθπθ--=+ 10.已知232,534cos παππα<≤=⎪⎭⎫⎝⎛+.求⎪⎭⎫ ⎝⎛+42cos πα的值解:().2sin 2cos 224sin 2sin 4cos 2cos 42cos ααπαπαπα-=-=⎪⎭⎫⎝⎛+又3cos 0,224πππαα⎛⎫≤<+> ⎪⎝⎭且,47443ππαπ<+≤ 54cos 14sin 2-=⎪⎭⎫ ⎝⎛+--=⎪⎭⎫ ⎝⎛+∴παπα从而25244cos 4sin 222sin 2cos -=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+=παπαπαα, 254cos 2122cos 2sin 2=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-=παπαα 5023125725242242cos -=⎪⎭⎫ ⎝⎛--⨯=⎪⎭⎫ ⎝⎛+∴πα11.已知3110,tan 4tan 3παπαα<<+=-. (Ⅰ)求tan α的值;(Ⅱ)求225sin 8sincos11cos 822222ααααπα++-⎛⎫- ⎪⎝⎭的值.解:(Ⅰ)由110tan tan 3αα+=-得23tan 10tan 30αα++=,即1tan 3tan 3αα=-=-或,5665-43- 3π3+又34παπ<<,所以1tan 3α=-为所求.(Ⅱ)225sin 8sincos11cos 822222ααααπα++-⎛⎫- ⎪⎝⎭1-cos 1+cos 54sin 118ααα++-==. 12.已知在△ABC 中,sin A (sin B +cos B )-sin C =0,sin B +cos2C =0,求角A ,B ,C 的大小. 解法一: 由0sin )cos (sin sin =-+C B B A 得.0)sin(cos sin sin sin =+-+B A B A B A 所以.0sin cos cos sin cos sin sin sin =--+B A B A B A B A 即.0)cos (sin sin =-A A B 因为),,0(π∈B 所以0sin ≠B ,从而.sin cos A A =由),,0(π∈A 知.4π=A 从而π43=+C B . 由.0)43(2cos sin 02cos sin =-+=+B B C B π得即.0cos sin 2sin .02sin sin =-=-B B B B B 亦即由此得.125,3,21cos ππ===C B B 所以,4π=A .125,3ππ==C B 解法二:由).223sin(2cos sin 02cos sin C C B C B -=-==+π得由B <0,C π<,所以.22223ππ-=-=C B C B 或即.22232ππ=-=+B C C B 或 由0sin )cos (sin sin =-+C B B A 得 .0)sin(cos sin sin sin =+-+B A B A B A 所以.0sin cos cos sin cos sin sin sin =--+B A B A B A B A 即.0)cos (sin sin =-A A B 因为0sin ≠B ,所以.sin cos A A =由.4),,0(ππ=∈A A 知从而π43=+C B ,知B+2C=23π不合要求.再由π212=-B C ,得.125,3ππ==C B 所以,4π=A .125,3ππ==C B。
三角函数的积化和差与倍角公式
三角函数的积化和差与倍角公式三角函数是数学中的重要概念,广泛应用于几何、物理、工程等领域。
在三角函数的学习中,积化和差以及倍角公式是常见的工具,用于简化计算,并在解题过程中起到关键的作用。
一、积化和差公式积化和差公式是指将两个三角函数的乘积表达为和差的形式,或将两个三角函数的和差表达为乘积的形式。
下面将介绍三角函数的积化和差公式:1. 余弦的积化和差公式余弦的积化和差公式可以表示为:cos(A ± B) = cosAcosB ∓ sinAsinB其中,A和B是任意角度。
这个公式可以帮助我们在计算两个角度的余弦和差时,将其转化为与cosA和cosB、sinA和sinB的关系,从而简化计算。
2. 正弦的积化和差公式正弦的积化和差公式可以表示为:sin(A ± B) = sinAcosB ± cosAsinB同样地,这个公式帮助我们在计算两个角度的正弦和差时,将其转化为与sinA和cosA、cosB和sinB的关系,从而简化计算。
二、倍角公式倍角公式是指将一个角度的两倍表达为另一个角度的函数形式。
在三角函数的学习中,倍角公式是非常有用的工具。
下面将介绍几个常见的倍角公式:1. 余弦的倍角公式余弦的倍角公式可以表示为:cos2A = cos^2A - sin^2A这个公式将一个角度的两倍表示为同一角度的余弦平方与正弦平方的差。
2. 正弦的倍角公式正弦的倍角公式可以表示为:sin2A = 2sinAcosA这个公式将一个角度的两倍表示为sinA与cosA的乘积的两倍。
3. 正切的倍角公式正切的倍角公式可以表示为:tan2A = (2tanA) / (1 - tan^2A)这个公式将一个角度的两倍表示为原角度的正切的两倍与1减去正切平方的商。
倍角公式可以帮助我们在解决与角度相关的问题时,将一个角度的两倍转换为与该角度的三角函数相关的表达式,从而简化计算和推导的过程。
总结:三角函数的积化和差以及倍角公式是三角函数学习中的重要工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.三角函数恒等变形公式 (1)两角和与差公式
(2)二倍角公式 (3)三倍角公式 (4)半角公式
(5)万能公式 , , (6)积化和差
, , ,
(7)和差化积 , , , 2.基础知识疑点 (1)正弦、余弦的和差角公式能否统一成一个三角公式?
实际上,正弦、余弦的和角公式包括它们的差角公式,因为在和角公式中,是一个任意角,可正可负。另外,公式虽然形式不同,结构不同,但本质相同:
。 (2)怎样正确理解正切的和差角公式? 正确理解正切的和差角公式需要把握以下三点:
①推导正切和角公式的关键步骤是把公式,右边的“分子”、“分母”都除以,从而“化弦为切”,导出了。 ②公式都适用于为任意角,但运用公式时,必须限定,
都不等于。 ③用代替,可把转化为,其限制条件同②。 (3)正弦、余弦、正切的和差角公式有哪些应用? ①不用计算器或查表,只通过笔算求得某些特殊角(例如15°,75°,105°角等)的三角函数值。
②能由两个单角的三角函数值,求得它们和差角的三角函数值;能由两个单角的三角函数值与这两个角的范围,求得两角和的大小(注意这两个条件缺一不可)。 ③能运用这些和(差)角公式以及其它有关公式证明三角恒等式或条件等式,化简三角函数式,要注意公式可以正用,逆用和变用。运用这些公式可求得简单三角函数式的最大值或最小值。 (4)利用单角的三角函数表示半角的三角函数时应注意什么?
先用二倍角公式导出,再把两式的左边、右边分别相除,得到,由此得到的三个公式:, ,分别叫做正弦、余弦、正切的半角公式。公式中根号前的符号,由所在的象限来确定,如果没有给出限制符号的条件,根号前面应保持正、负两个符号。另外,容易证明 。 3.三角函数变换的方法总结 (1)变换函数名 对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。
【例1】已知θ同时满足和,且a、b均不为0,求a、b的关系。 解析:已知 显然有: 由①×cos2θ+②×cosθ,得:2acos2θ+2bcosθ=0 即有:acosθ+b=0 又 a≠0 所以,cosθ=-b/a ③ 将③代入①得:a(-a/b)2-b(-b/a)=2a 即a4+b4=2a2b2 ∴ (a2-b2)2=0即|a|=|b| 点评:本例是“化弦”方法在解有关问题时的具体运用,主要利用切割弦之间的基本关系式。
(2)变换角的形式 对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。
【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。 解析:设θ+15°=α,则
原式=sin(α+60°)+cos(α+30°)-cosα =(sinαcos60°+cosαsin60° )+(cosαcos30°-sinαsin30°)-cosα
=sinα+cosα+cosα-sinα-cosα =0 点评:本例选择一个适当的角为“基本量”,将其余的角变成某特殊角与这个“基本量”的和差关系,这也是角的拆变技巧之一。
【例3】已知sinα=Asin(α+β) (其中cosβ≠A),试证明:tan(α+β)= 证明:已知条件可变为:sin[(α+β)-β]=Asin(α+β) 所以有:sin(α+β) cosβ-cos(α+β) sinβ=Asin(α+β) ∴ sin(α+β)( cosβ-A)=cos(α+β) sinβ
∴ tan(α+β)= 点评:在变换中通常用到视“复角”为“单角”的整体思想方法,它往往是寻找解题突破的关键。 (3)以式代值 利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。这其中以“1”的变换为最常见且最灵活。“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x-cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。 【例4】化简: 解析:原式= = = = 点评:1=“”的正用、逆用在三角变换中应用十分广泛。
(4)和积互化 积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。这往往用到倍、半角公式。 【例5】解三角方程:sin2x+sin22x=sin23x 解析:原方程变形为:
(1-cos2x)+(1-cos4x)=(1-cos6x) 即: 1+cos6x=cos2x+cos4x 2cos23x=2cos3x cosx 得: cos3x sin2x sinx=0
解得: x=+ 或 x= () ∴ 原方程的解集为{x| x=+ 或 x=,} 点评:题中先降次后升幂,这种交错使用的方法在解三角方程中时有出现,其目的是为了提取公因式。
(5)添补法 与代数恒等变换一样,在三角变换中有时应用添补法对原式作一定的添项裂项会使某些问题很便利地得以解决。将原式“配”上一个因子,同时除以这个式子也是添补法的一种特殊情形。
【例6】求证:= 证明:左边= = = = ==右边 ∴ 原式成立。 点评:本例中采用“加一项再减去一项”,“乘一项再除以一项”的方法,其技巧性较强,目的都是为了便于分解因式进行约分化简。
(6)代数方法 三角问题有时稍作置换,用各种代数方法对三角函数式作因式分解、等量置换等的变形,从而将三角问题转换成代数问题来解,而且更加简捷。这其中有设元转化、利用不等式等方法。
【例7】锐角α、β满足条件,则下列结论中正确的是( ) A.α+β≠ B.α+β< C.α+β> D.α+β= 解析:令sin,则有 整理得: (a-b)2=0 即a=b 即: sin2α=cos2β (α,β同为锐角) ∴ sinα=cosβ
∴ α+β=,故应选D。 点评:本例用设元转化法将三角问题转化为代数问题。换元法这种数学思想应用十分广泛,往往能收到简捷解题的效果.
(7)数形结合 有的三角变换问题蕴含着丰富的几何直观,此时若能以数思形,数形渗透,两者交融,则可开辟解题捷径。利用单位圆,构造三角形,利用直线、曲线的方程等方法都是数形结合的思想。
【例9】已知:,,求的值。 解析:∵点A,B均在单位圆上。 由已知条件知:AB的中点坐标为C(1/6,1/8),即直线AB过 定点C 如下图所示 ∠xOC=∴ ∴据万能公式得: 点评:本题用和差化积公式也不难求得,但在三角问题中利用单位圆是常见的研究方法。数形结合方法在三角变换中应用类型颇多,篇幅所限,仅举一例,本文不赘。从六、七两种方法可以看出,将代数、几何与三角有机联系起来,综合运用,在解三角变换题中,不仅构思精巧,过程简易,趣味横生,而且还沟通数学知识的纵横关系,也有利于多向探求,广泛渗透,提高和发展学生的创造性思维能力。 以上探讨了三角变换中的七种变换思想和解题方法,在实际解题中这些方法是交织在一起的,混合于同一问题中灵活使用。掌握这些变换方法的前提是熟悉公式,善于公式的变形运用,同时注意纵横联系数学知识用发散性的思维考虑问题。 【典型例题】
例1.化简cos(π+α)+cos(π-α),其中k∈Z。 解析:解法一:
原式=cos[kπ+(+α)]+cos[kπ-(+α)]=coskπcos(+α)-sinkπsin(+α)+coskπcos(+α)+sinkπsin(+α)=2coskπcos(+α),(k∈Z) 当k为偶数时,原式=2cos(+α)=cosα-sinα 当k为奇数时,原式=-2cos(+α)=sinα-cosα 总之,原式=(-1)k(cosα-sinα),k∈Z
解法二:由(kπ++α)+(kπ--α)=2kπ,知 cos(kπ--α)=cos[2kπ-(+α+kπ)]=cos[-(kπ++α)]=cos(kπ++α) ∴原式=2cos(kπ++α)=2×(-1)kcos(+α)=(-1)k(cosα-sinα),其中k∈Z
点评:原式=cos(kπ++α)+cos(kπ--α)=cos[kπ+(+α)]+cos[kπ-(+α)]这就启发我们用余弦的和(差)角公式。 例2.已知sin(α+β)=,cos(α-β)=,求的值。 解析:解法一:由已知条件及正弦的和(差)角公式,
解法二:(设未知数)令x= 解之得 例3.在中,求的值和的面积。
解析:解法一:解方程组得,故 。
。 解法二:由及得 ,可得 因为,所以,故,即