河南省2017届九年级数学第二次模拟试题
2017年河南省中考数学试题(解析版)

2017年河南省中考数学试卷满分:120分 版本:人教一、选择题(每小题3分,共10小题,合计30分)1.(2017河南,1,3分)下列各数中比1大的数是( )A . 2B .0C .-1D .-3答案:A ,解析:∵-1,-3是负数,根据“正数大于一切负数”和“正数都大于0”知-3<-1<0<1,故可排除B 、C 、D ,又∵1<2,所以应选A.2.(2017河南,2,3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示为( )A . 74.4×1012B .7.44×1012C .74.4×1013D .7.44×1014答案:C ,解析:先把74.4万亿元变成744 000 000 000 00后,再把化为a ×10n 的形式. 解:74.4万亿=744 000 000 000 00=7.44×1013 ,故选择B .3.(2017河南,3,3分)某几何体的左视图如下图所示,则该几何体不可能是( )A. B. C. D.答案:D ,解析:从左视图可以看到几何体有几列,每列的最高层数是多少,选A 、B 、C 从左面去看都只能看到2列,并且第一列的最高层数为2,第二列只有一层,和题中给出的左视图吻合,只有选项D 的左视图应该可以看到有3列,第一列有2层,第2、3列均有1层,不符合题意,故应选D .4.(2017河南,4,3分)解分式方程x x -=--13211,去分母得( ) A .()3121-=--x B .()3121=--xC .3221-=--xD .3221=+-x答案:A ,解析:∵()11--=-x x ,∴原方程可变形为13211--=--x x ,方程左右两边同时乘以最简公分母()1-x ,得:()3121-=--x ,故选择A .5.(2017河南,5,3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A .95分,95分B .95分,90分C . 90分,95分D .95分,85分答案:A ,解析:∵在这组数据中,80分、85分、100分各出现了1次,95分出现了3次,∴这组数据的众数为95分;∵将这组数据首尾逐一划掉2个数,最中间的2个数是95分、95分,∴这组数据的中位数为(95+95)÷2=95(分),故选择A .6.(2017河南,6,3分)一元二次方程2x 2-5x -2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 答案:B ,解析:∵2=a ,5-=b ,2-=c ,∴∆=()()04116252245422>=+=-⨯⨯--=-ac b ,∴一元二次方程2x 2-5x -2=0有两个不相等的实数根,故选择B .7.(2017河南,7,3分)如图,在□ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定□ABCD 是菱形的只有( )A . AC ⊥BDB .AB=BC C .AC=BD D .∠1=∠2 答案:C ,解析:选项A ,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵AC ⊥BD ,∴□ABCD 是菱形(对角线互相垂直且平分的平行四边形是菱形);选项B ,∵四边形ABCD 是平行四边形,AB=BC ,∴□ABCD 是菱形(一组邻边相等的平行四边形是菱形);选项C ,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵AC=BD ,∴□ABCD 是矩形(对角线相等且平分的平行四边形是矩形);选项D ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠1=∠ACB ,∵∠1=∠2,∴∠ACB=∠2,∴AB=BC ,∴□ABCD 是菱形(一组邻边相等的平行四边形是菱形),故答案为C .8.(2017河南,8,3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数学—1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .81B .61C .41D .21答案:C ,解析:先用列表法将所有等可能的出现的结果列举出来:字都是正数的概率是41164=,故选择C . 9.(2017河南,9,3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D'处,则点C 的对应点C'的坐标为( )A .(3,1)B .(2,1)C . (1,3)D .(2,3) 答案:D ,解析:过点C'作C'E ⊥x 轴,垂足为E 点,∵AB=2,O 是AB 的中点,∴OA=0B=1,在Rt ∆AOD'中,∵AD'=2,∴∠AD'O =30゜,∴∠D'AO =60゜,∵AD'∥BC',∴∠D'AO =∠C'BE=60゜,∴∠BC'E =30゜,∵BC'=2,∴BE=1,CE=3,∴EO=2,∴C'的坐标为(2,3),故应选D .10.(2017河南,10,3分)如图,将半径为2,圆心角为120゜的扇形OAB 绕点A 逆时针旋转60,点O ,B 的对应点分别为O',B',连接BB',则图中阴影部分的面积是( )A .32πB .332π-C .3232π-D .3234π-答案C ,解析:如图,连结OO ',O ′B 由旋转性质知:∠OAO'=60゜,∵OA =OO',∴∆AOO'是等边三角形,∴∠ AOO'=60゜,∵∠AOB =120゜,∴∠BOO'=60゜, ∵OB =OO',∴∆BOO'是等边三角形,∴∠BO'O =∠OBO'=60゜,∴OB =OO'=O'B= 2,∵∠AO'B'=120゜,∴∠OO'B'=120゜+60゜=180゜,∴O 、O'、B'三点共线,∵O'B'=O'B =OB ,∴∠O'BB'=∠O'B'B =30゜,∴∠OBB'=30゜+60゜=90゜,∴BB'=324222=+,∴S 阴影= 3232360*********ππ-=︒⨯⋅︒-⨯⨯. 二、填空题:(每小题3分,共5小题,合计15分)11.(2017河南,11,3分)计算:423-=答案:6,解析:∵822223=⨯⨯=,24=,∴423-=6. 12.(2017河南,12,3分)不等式组⎪⎩⎪⎨⎧<-≤-x x x 2102的解集是 答案:21≤<-x ,解析:解不等式①,得:2≤x ;解不等式②,得:1->x ,∴不等式组的解集是21≤<-x .13.(2017河南,13,3分)已知点A (1,m ),B (2,n )在反比例函数xy 2-=的图象上,则m 与n 的大小关系为 .答案:n m <,解析:法一:∵02<-=k ,∴y 随x 的增大而增大,∵1<2,∴n m <; 法二:将点A (1,m ),B (2,n )代入反比例函数xy 2-=的解析式中,得2-=m ,1-=n ,∴n m <. 14.(2017河南,14,3分)如图1,点P 从∆ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则∆ABC 的面积是 .答案:12,解析:观察图象,可以获得以下信息:∵①点P 在由B →C 的过程中,BP 的长度y 随时间x 变化的关系为正比例函数,表现在图象上应该是一段线段;②点P 在由C →A的过程中,BP 的长度y 随时间x 变化的关系为二次函数,表现在图象上应该是抛物线的一部分;③且当BP ⊥AC 时,BP 的长度最短,反映在图象上应为抛物线的最低点;④当P 到达A 点时,此时BP=5,∴AB=AC=5,AC 边上的高BP=4,此时,由勾股定理可得:AP=CP=34522=-,∴AC=6,S ∆ABC 126421=⨯⨯.15.(2017河南,15,3分)如图,在直角∆ABC 中,∠A=90゜,AB=AC ,BC=12+,点M 、N 分别是边BC 、AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B'始终落在边AC 上,若∆MB'C 为直角三角形,则BM 的长为 .答案:1或212+,解析:∵∠A=90゜,AB=AC ,BC=12+,∴AB =122+, ①当∠MB'C =90゜时,∵∠B =45゜,∴∠MB'N =45゜,∵∠MB'A =90゜,∴∠A B'N =45゜,∵∠A =90゜,∴∠B'NA =45゜,∴AN =AB',设BN=x ,则NB'=x ,AN =122+—x ,在Rt △ANB' 中,122+—x =22x ,∴x =1,∴CB'=122+—22=1,∴CM=21122=+,∴BM=12+—2=1; ②当∠B'MC =90゜时,∴∠B'MB =90゜,∴∠BMN =∠B'MN =45゜,∵∠B =45゜,∴MN ⊥AB ,NB =NB',∴B'与A 点重合,∴BM =AM ,∵∠C =45゜,∠B'MC =90゜,∴AM =CM ,∴BM = CM ,∵BC=12+,∴BM =212+.三、解答题:(本大题共8个小题,满分75分)16.(2017河南,16,8分)先化简,再求值:()()()()y x x y x y x y x --+-++522,其中12+=x ,12-=y思路分析:①利用完全平方公式对式子()22y x +进行展开运算;②式子()()y x y x +-符合平方差公式特征,可以利用平方差公式对其进行展开运算;③按照单项式乘以多项式的运算法则计算式子()y x x --5,上述运算过程中一定要注意符号别弄错,且不要有漏乘的项.解:()()()()y x x y x y x y x --+-++522xy x y x y xy x 554422222+--+++=xy xy y y x x 54552222++-+-=xy 9= 当12+=x ,12-=y 时,原式=()()91912129=⨯=-+⨯. 17.(2017河南,17,9分)为了了解同学们每月零花钱的数量,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下两个尚不完整的统计图表.请根据以上图表,解答下列问题:(1)填空:这次调查的同学共有 人,a +b = ,m = ;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x 在12060<≤x 范围的人数.调查结果统计表调查结果扇形统计图思路分析:(1)由两个统计图可知,B 组学生人数有16人,占32%,∴参与调查的学生人数为16÷32%=50人,∵D 组占16%,∴D 组学生人数有:50×16%=8人,C 组学生人数有50—4—16—8—2=20人,∴a +b =28;∵A 组学生人数有4人,总人数为50人,∴4÷50=8%;(2)∵C 组学生人数有20人,总人数为50人,∴ 360°×5020=144°; (3)∵每月零花钱的数额x 在12060<≤x 范围的人数为28人,总人数为50人,∴估计每月零花钱的数额x 在12060<≤x 范围的人数为1000×5028=560(人). 解:(1)50,28,8;(2)1-32%-8%-4%-16%=40%,360゜×40%=144゜;(3)1000×5028=560(人),答:每月零花钱的数额x 在12060<≤x 范围的人数为560人. 18.(2017河南,18,9分)如图,在∆ABC 中,AB=AC ,以AB 为直径的⊙O 交AC 边于点D ,过点C 作CF ∥AB ,与过点B 的切线交于点F ,连接BD.(1)求证:BD=BF ;(2)若AB=10,CD=4,求BC 的长.思路分析:(1)利用“等边对等角”及“两直线平行,内错角相等”易证得∠ACB =∠BCF ;再利用“直径所对圆周角等于90゜”和切线的性质、“两直线平行,同旁内角互补”推理出∠BDC =∠F =90゜,由“AAS ”可得∆BDC 与∆BFC 全等,由“全等三角形对应边相等”可得出结论;(2)先求出AD 的长,在Rt ∆ABD 中,由勾股定理可计算出BD 的长,在Rt ∆CBD 中再次利用勾股定理即可求得BC 的长.解:(1)证明:∵AB =AC ,∴∠ABC =∠ACB ,∵AB ∥CF ,∴∠ABC =∠BCF ,∴∠ACB =∠BCF ,又∵AB 为直径,∴∠ADB =∠BDC =90゜,∵BF 是⊙O 切线,∴AB ⊥BF ,∵AB ∥CF ,∴∠F =90゜,∴∆BDC ≌∆BFC ,∴BD=BF ;(2)解:∵AB=10,AC=4,∴AD=6,∴BD=8,∴BC=54.19.(2017河南,19,9分)如图所示,我国两艘海监船A ,B 在南海海域巡航.某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45゜方向,B 船测得渔船C 在其南偏东53゜方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:5453sin ≈︒,5353cos ≈︒,3453tan ≈︒,414.12=)思路分析:①过点C 作CD ⊥AB 于点D ,由∠A=45゜,用含BD 的式子表示AD ;②在Rt △∠BCD 中,利用∠CBD 的正切函数列出比例式计算出BD 的长度;③在Rt △∠ACD 、Rt △∠BCD 中分别利用勾股定理求出BC 、AC 的长度;④运用“时间=路程÷速度”,分别计算海监船A ,B 到达渔船C 所需的时间,经比较后即可得到渔船C 等待救援的最少时间.解:如图,过点C 作CD ⊥AB 于点D ,设BD 为x ,在Rt △∠ACD 中,∠A=45゜,∴AD=DC=x+5,在Rt △BCD 中,由BD CD =︒53tan ,得345=+x x , ∴x =15,则BC=25201522=+,AC =220202022=+, ∴A 到C 用时为:()h 94.030220≈,B 到C 用时为:()h 12525=, ∵194.0<,∴至少要等94.0小时.20.(2017河南,20,9分)如图,一次函数b x y +-=与反比例函数()0>=x x k y 的图象交于点A (m ,3)和B (3,1).(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;(2)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,连接OP ,若∆POD 的面积为S ,求S 的取值范围.思路分析:(1)先把点B 的坐标代入反比例函数解析式,确定出k 的值,再将利用反比例函数关系式求出点A 的坐标,再把点A 、B 的坐标代入一次函数可得一次函数的解析式;(2)由于一次函数经过P 点,所以可设P 点的坐标为(a ,4+-a ),则根据三角形面积计算公式可用含a 的式子表示出S ,利用二次函数性质判断出S 的最大值,由A 、B 两点的横坐标求得a 的取值范围,进而可得S 的最小值,于是可得S 的取值范围.解:(1)4+-=x y ,xy 3=; (2)解:由(1)得33=m ,∴m =1,则A 点的坐标为(1,3),设P 点的坐标为(a ,4+-a )(31≤≤a ),则PD OD S ⋅=21=()()22214212+--=+-⋅a a a , ∵021<-,∴当a =2时,S 有最大值2,当a =1或3时,S 有最小值为()23221212=+-⨯-=S , ∴223≤≤S . 21.(2017河南,21,10分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A 、B 两种魔方共100个(其中A 种魔方不超过50个),某商店有两种优惠活动,如图所示;请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.思路分析:①找出题目中的等量关系:2个A 种魔方的金额+6个B 种魔方的金额=130,3个A 种魔方的金额=4个B 种魔方的金额,把设出的未知数代入数量关系可列得方程组;②根据购买A ,B 两种魔方的数量不同,运用分类讨论思想,经过计算、比较,确定出合适的购买方案.解:(1)设A 型魔方的单价为a 元,B 型魔方单价为b 元,则由题意,得:⎩⎨⎧==+b a b a 4313062,解方程,得:⎩⎨⎧==1520b a , 答:A 型魔方的单价为20元,B 型魔方单价为15元.(2)设A 型魔方的数量为x 个,B 型魔方数量为(100—x )个,设总费用为W 元,活动一:W 1=0.8×20x +0.4×15(100—x )=10x +60;活动二:W 2=20x +15 [(100—x )—x ]=—10x +1500;当W 1<W 2时,即10x +60<—10x +1500,解得x <45,∴当0<x <45时,活动一方案更优惠; 当W 1=W 2时,即10x +60=—10x +1500,解得x =45,∴当x =45时,活动一和活动二均可; 当W 1>W 2时,即10x +60>—10x +1500,解得x >45,又∵50≤x ,∴当45<x ≤50时,活动二方案更优惠;综上所述,当0<x <45时,活动一方案更优惠;当x =45时,活动一和活动二均可;当45<x ≤50时,活动二方案更优惠.22.(2017河南,22,10分)如图1,在Rt ∆ABC 中,AB=AC ,点D 、E 分别在边AB ,AC 上,AD=AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把∆ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断∆PMN 的形状,试说明理由;(3)拓展延伸:把∆ADE 绕点A 在平面内自由旋转,若AD=4,AB=10,请直接写出∆PMN 面积的最大值.思路分析:(1)①由AB=AC ,AD=AE 可推出BD=CE ,又因点M ,P ,N 分别为DE ,DC ,BC 的中点,所以PM ∥CE 且PM =21CE ,同理,PN ∥BD 且PN =21BD ,于是可推得PM =PN ,∠B =∠PNC ,∠MPD =∠ACD ,∴∠MPN =∠MPD +∠DPN =∠ACD +∠PCN +∠PNC=∠ACB +∠B =90゜,于是可得PM ⊥PN ;(2)由旋转性质得出∠BAD =∠CAE ,又因AB =AC ,AD =AE ,可证得∆BAD 与∆CAE 全等,参考(1)中的解题思路即可证出PM=PN ,PM ⊥PN ,从而推出∆PMN 为等腰直角三角形;(3)在旋转的过程中,由(2)中的结论知∆PMN 为等腰直角三角形,S ∆PMN =228121BD PN =,当S ∆PMN 有最大值时,须有BD 的值最大,由三角形三边关系可推断出当B 、A 、D 三点共线时,BD 的值最大,其最大值为14,此时S ∆PMN =249141481812122=⨯⨯==BD PN . 解:(1)PM=PN ;PM ⊥PN ;(2)∆PMN 为等腰直角三角形,理由如下:由题可知:∆ABC 和∆ADE 均为等腰直角三角形,∴ AB =AC ,AD =AE ,∠BAC =∠DAE =90゜,∴∠BAD +∠DAC =∠CAE +∠DAC ,∴∠BAD =∠CAE ,∴∆BAD ≌∆CAE ,∴∠ABD =∠ACE ,BD =CE ,又∵M 、P 、N 分别是DE 、CD 、BC 的中点,∴PM 是∆CDE 的中位线,∴PM ∥CE 且PM =21CE ,∠MPD =∠ECD =∠ACD +∠ACE ; 同理,PN ∥BD 且PN =21BD ,∠DBC =∠PNC , 又∵BD =CE ,∠ABD =∠ACE ,∴PM =PN ,∴∠MPN =∠MPD +∠DPN =∠ECD +∠DCN +∠CNP=∠ACD +∠ACE +∠DCN +∠CBD=∠ACD +∠DCN +∠ABD +∠CBD=∠ACB +∠ABC =90゜,∴PM ⊥PN ,∴∆PMN 为等腰直角三角形;(3)249 23.(2017河南,23,11分)如图,直线c x y +-=32与x 轴交于点A (3,0),与y 轴交于点B ,抛物线c bx x y ++-=234经过点A ,B .(1)求B 点的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与∆APM 相似,求点M 的坐标; ②点M 在x 轴上自由运动,若三个点M 、P 、N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M 、P 、N 三点成为“共谐点”的 m 的值.思路分析:(1)将A 点坐标代入一次函数解析式求出c 的值,可得到B 坐标为(0,2),将A 、B 两点坐标代入二次函数解析式即可得到答案;(2)①将(m ,0)分别代入一次函数解析式和二次函数解析式,可得N ,P 点的坐标,然后分∆APM ∽∆BPN 、∆APM ∽∆NPB 两种情况利用平行于x 轴的坐标特征及相关角的正切函数值列出比例方程可求得M 点的坐标;②分M 是PN 的中点、N 是MP 的中点、P 是MN 的中点三种情况分别计算出m 的值.解:(1)∵直线c x y +-=32过A (3,0), ∴0332=+⨯-c ,解得:c =2, ∴直线AB 的表达式为:232+-=x y ,∴点B 坐标为(0,2). ∵抛物线过A (3,0),B (0,2), ∴⎪⎩⎪⎨⎧==++⨯-203932c c b , ∴2310342++-=x x y , (2)依题可知:M (m ,0), ∵M N ⊥x 轴交直线232+-=x y 于点P ,交抛物线2310342++-=x x y 于点N , ∴N (m ,2310342++-m m ),P (m ,232+-m ),∵∆APM 相似于∆BPN ,①∆APM ∽∆BPN ,则∠AMP =∠BNP =90゜,∴BN ∥y 轴,∴B ,N 的纵坐标相同为2, ∴2310342++-m m =2,解得:m 1=0,m 2=25, ∵m =0时,B 与N 重合,∆BPN 不存在. ∴m =25,此时M (25,0); ②∆APM ∽∆NPB ,则∠BNP =∠MAP ,过点作BH ⊥MN ,则H (m ,2),∵∠MAP =∠BNP ,∴tan ∠MAP = tan ∠BNP , ∴32==OA OB NH BH , ∴3222310322=-++-m m m ,解得:m 1=0(舍去),m 2=811, ∴m =811,此时M (811,0); (3)21或41-或—1.。
江阴初级中学2017届九年级第二次模拟考试数学试题(含答案)

江阴初级中学初三年级中考模拟考试数学试题一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内. 1.-3的倒数是 ( ▲ )A .13B .3C .±3D .-13.2.使x-2 有意义的x 的取值范围是 ( ▲ ) A .x >12 B .x >2 C .x ≥2 D .x ≥12.3.下列事件中最适合使用普查方式收集数据的是 ( ▲ ) A .了解某班同学的体重情况 B .了解我省初中学生的兴趣爱好情况 C .了解一批电灯泡的使用寿命 D .了解我省农民工的年收入情况. 4.如左图是由几个相同的小正方体搭成的一个几何体,它的左视图是( ▲ )5.方程2x -1=3x +2的解为 ( ▲ )A .x =1B .x =-1C .x =3D .x =-3.6.如图A ,D 是⊙O 上两点,BC 是直径.若∠D =35︒,则∠OAB 的度数是 ( ▲ )A .35︒B .55︒C .65︒D .70︒.7.下列图形中,是轴对称图形但不是中心对称图形的是 ( ▲ )A .等边三角形B .平行四边形C .矩形D .圆.8.如图,直线a ∥b ,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果∠1=55°,那么∠2等于 ( ▲ ) A. 65° B .55° C .45° D. 35°.9.如图,将正方形ABCD 的一角折向边CD ,使点A 与CB 上一点E 重合,若BE =1,CE =2,则折痕FG 的长度为( ▲ )A. 10B. 2 2 C .3 D .4. 10.经过点(2,-1)作一条直线和反比例函数xy 2=相交,当他们有且只有一个公共点时,这样的A .B .C .D . a b12DO CBA第6题图第8题图第9题图AF BD G D /C直线存在 ( ▲ ) A .2条 B.3条 C.4条 D.无数条.二、填空题(本大题共8小题,每小题2分,共16分,不需要写出解答过程,请把答案填写在答题卡的相应位置的横线上)11.2017年我市参加中考的人数大约有11000人,将11000用科学记数法表示为 ▲ . 12.因式分解:ab 2-9a = ▲ .13.当x = ▲ 时,分式1x +2无意义. 14.若反比例函数y=kx的图像经过点A (2,5)和点B (1,n ),则n = ▲ .15.已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是 ▲ cm .16.居民用电计费实行“一户一表”政策,以年为周期执行阶梯电价,即:一户居民全年不超过2880度的电量,执行第一档电价标准为元/度;全年用电量在2880度到4800度之间(含4800),超过2880度的部分,执行第二档电价标准为元/度;全年用电量超过4800度,超过4800度的部分,执行第三档电价标准为元/度.小敏家2017年用电量为3000度,则2017年小敏家电费为 ▲ 元. 17.在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC=45°,则BD 的长为 ▲ . 18.在平面直角坐标系中,已知平行四边形ABCD 的点A (0,-2)、点B(3m ,4m +1)(m ≠-1),点C (6,2),则对角线BD 的最小值是▲ .三、解答题(本大题共10小题,共84分.请在答题卡题目下方空白处.......作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)计算:(1)tan30º-(-2)2-. (2)(2x -1)2+(x -2)(x +2) .20.(本题满分8分)(1)解方程: 1x -3 = 2+x3-x . (2) 解不等式组:⎩⎪⎨⎪⎧x -3(x -2)≤4,1+2x 3>x -1.21.(本题满分6分)如图,正方形AEFG 的顶点E 、G 在正方形ABCD 的边AB 、AD 上,连接BF 、DF . (1)求证:BF =DF ;(2)连接CF ,请直接写出CF BE的值为▲ (不必写出计算过程).AD C 第17题CB EF22.(本题满分6分)某校组织学生书法比赛,对参赛作品按A 、B 、C 、D 四个等级进行了评定.现随机取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题: (1)求这次抽取的样本的容量; (2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B 级以上(即A 级和B 级)有多少份23.(本题满分8分)甲、乙两人用手指玩游戏,规则如下:(1)每次游戏时,两人同时随机地各伸出一根手指;(2)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率(请用“画树状图”或“列表”等方法写出分析过程); (2)求乙取胜的概率.分析结果的扇形统计图图②3040 60A BC D人数2448分析结果的条形统计图图①D 级 B 级A 级20%C 级30%24.(本题满分8分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tan C.第24题25、(本题满分10分)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元,已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次采购的数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.为出口需要,所有采购的大蒜必须在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半.为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?26.(本题满分10分)在平面直角坐标系xOy中,抛物线y=mx2+6mx+n(m>0)与x轴交于A,B 两点(点A在点B左侧),顶点为C,抛物线与y轴交于点D,直线BC交y轴于E,且△ABC与△AEC 这两个三角形的面积之比为2∶3.(1)求点A的坐标;(2)将△ACO 绕点C 顺时针旋转一定角度后,点A 与B 重合,此时点O 恰好也在y 轴上,求抛物线的解析式.27.(本题满分10分)已知,如图,在边长为10的菱形ABCD 中,cos ∠B =103,点E 为BC 边上的中点,点F 为边AB 边上一点,连接EF ,过点B 作EF 的对称点B ’,(1)在图(1)中,用无刻度的直尺和圆规作出点B ’(不写作法,保留痕迹); (2)当△EFB ’为等腰三角形时,求折痕EF 的长度. (3)当B ’落在AD 边的中垂线上时,求BF 的长度.A B C D F E 图1 备用图 备用图A B C D F E A B C DFE28.(本题满分10分)【缘起】苏教版九下P 56,“如图1,在Rt △ABC 中,∠ACB =90°,CD 是△ABC 的高,则△ACD 与△CBD 相似吗?”于是,学生甲发现CD 2=AD ·BD 也成立. 问题1:请你证明CD 2=AD ·BD ;学生乙从CD 2=AD ·BD 中得出:可以画出两条已知线段的比例中项.问题2:已知两条线段AB 、BC 在x 轴上,如图2:请你用直尺(无刻度)和圆规作出这两条线段的比例中项.要求保留作图痕迹,不要写作法,最后指出所要作的线段.学生丙也从CD 2=AD ·BD 中悟出了矩形与正方形的等积作法.问题3:如图3,已知矩形ABCD ,请你用直尺(无刻度)和圆规作出一个正方形BMNP ,使得S 正方形BMNP =S 矩形ABCD .要求:保留作图痕迹;简要写出作图每个步骤的要点.B 图1图3九年级数学模拟试卷参考答案与评分标准 2017.5一、选择题:1.D 2.C 3.A 4.B 5.D 6.B 7.A 8.D 9.A 10.C 二、填空题: 11. 1.1×104 12.a (b +3)(b -3)13.x =-2 14.1015.30π16.144617.4118.6三、解答题: 19.解:(1)原式=32-4-33+……(3分)(2)原式=4x 2-4x +1+(x 2-4) =6-334(4分)=4x 2-4x +1+x 2-4 …(3分)=5x 2-4x -3. ……(4分)20.解:(1)1=2(x -3)-x …(2分) (2)第1个不等式解得:x ≥1∴x =7 …(3分) 第1个不等式解得:x <4 …(2分)经检验x=7是原方程的解.…(4分) ∴原不等式组的解集为1≤x <4 …(4分) 21.(1)略…………………………(4分)(2) 2 ………………………(6分) 22.(1)120 ……(2分) (2)图略,C :40;D :12 每个1分(4分)(3)750×1202448+=450(份)................(6分) 23.解:(1)画树状图或列表略 (25)1……(6分)画树状图或列表正确,得5分,结论正确1分 (2)51……………(8分) 24.试题解析:(1)证明:连接OD ,∵OB =OD , ∴∠B =∠ODB ,……………(1分) ∵AB =AC , ∴∠B =∠C ,∴∠ODB =∠C , ∴OD ∥AC , ………………(2分)∵DF ⊥AC , ∴OD ⊥DF , ………(3分) ∴DF 是⊙O 的切线; ………(4分) (2)解:连接BE , ∵AB 是直径, ∴∠AEB =90°,………………………………(5分) ∵AB =AC ,AC =3AE ,∴AB =3AE ,CE =4AE ,∴BE =AB 2-AE 2 =2 2 AE ,………(6分)在Rt △BEC 中,tan C =BE AE =22AE 4AE =22 ………………………………………(8分) 25.解:(1)设去年每吨大蒜的平均价格是x 元, 由题意得,5006000002500400000-=⨯+x x ………………………………………(2分) 解得:x =3500, ……………………………………… (3分)经检验:x =3500是原分式方程的解,且符合题意,………………………(4分) 答:去年每吨大蒜的平均价格是3500元;………………………………(5分) (2)由(1)得,今年的大蒜数为:30034000400000=⨯(吨)…………(6分)设应将m 吨大蒜加工成蒜粉,则应将(300﹣m )吨加工成蒜片, 由题意得,……………………………………………(7分)解得:100≤m ≤120, ……………………(8分) 总利润为:1000m +600(300﹣m )=400m +180000,………………………(9分) 当m =120时,利润最大,为228000元.答:应将120吨大蒜加工成蒜粉,最大利润为228000元.……… (10分) ①当S △ABC :S △AEC =2∶3时,BC :CE =2:3,∴CB :BE =2:1∵OF=3,∴OB=1,即B (-1,0)∴A (-5,0),B (-1,0), ……(2分) ②当S △ABC :S △AEC =3∶2时, BC :CE =3:2,∴CD :BD =2:1 ∴A (-215,0),B (23,0), ………………………………………………(3分) (2)①当A (-5,0),B (-1,0)时,把B (-1,0)代人y =mx 2+6mx +n 得,n =5m ………………………(3分)m =46,n =465. ……………………………………(5分) ∴y =46x 2+263x +465. ………………………………(6分) ②当A (-215,0),B (23,0)时, 把B (23,0)代人y =mx 2+6mx +n 得,n =445-m ………………(7分) m =2752,n =655-. ………………………………(9分)∴y =2752x 2+954x 655-. …………………(10分) 27.解:(1)尺规作图略. ……………………………(2分)(2)① 当B ’E =EF 时,EF =5, ……………(3分)②当B ’E =B ’F 时,EF =35, ……………(4分) ③当EF =B ’F 时,EF = 325……………(5分) 综上: EF =5,35,325……………(6分)(3)512-912 ……………(10分) 28.解:(1)证明略 ………(2分)(2)CD 为所要画的线段………(4分)(3)①延长AB 至E ,使得BE =BC ;②以AE 为直径,画半圆O ,与BC 的延长线相交于M③以BM 为边做正方形BMNP ……………(7分)……………(10分)。
河南省郑州市2017届高考数学二模试卷(理科)含答案解析

2017年河南省郑州市、平顶山市、濮阳市高考数学二模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数f(n)=i n(n∈N*),则集合{z|z=f(n)}中元素的个数是()A.4 B.3 C.2 D.无数2.设x=30.5,y=log32,z=cos2,则()A.z<y<x B.z<x<y C.y<z<x D.x<z<y3.要计算1+++…+的结果,如图程序框图中的判断框内可以填()A.n<2017 B.n≤2017 C.n>2017 D.n≥20174.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.B.C.D.5.下列命题是真命题的是()A.∀φ∈R,函数f(x)=sin(2x+φ)都不是偶函数B.∃α,β∈R,使cos(α+β)=cosα+cosβC.向量=(2,1),=(﹣1,0),则在方向上的投影为2D.“|x|≤1”是“x≤1”的既不充分又不必要条件6.在区间[1,e]上任取实数a,在区间[0,2]上任取实数b,使函数f(x)=ax2+x+b 有两个相异零点的概率是()A. B. C. D.7.已知数列{a n}满足a n+1=a n﹣a n﹣1(n≥2),a1=m,a2=n,S n为数列{a n}的前n项和,则S2017的值为()A.2017n﹣m B.n﹣2017m C.m D.n8.已知实数x,y满足,则z=2|x﹣2|+|y|的最小值是()A.6 B.5 C.4 D.39.已知空间四边形ABCD,满足||=3,||=7,||=11,||=9,则•的值()A.﹣1 B.0 C.D.10.将数字“124467”重新排列后得到不同的偶数个数为()A.72 B.120 C.192 D.24011.已知P为双曲线﹣x2=1上任一点,过P点向双曲线的两条渐近线分别作垂线,垂足分别为A,B,则|PA|•|PB|的值为()A.4 B.5C.D.与点P的位置有关12.已知函数f(x)=,如果当x>0时,若函数f(x)的图象恒在直线y=kx的下方,则k的取值范围是()A.[,]B.[,+∞)C.[,+∞)D.[﹣,]二、填空题(本大题共4小题,每小题5分,共20分)13.正方体的8个顶点中,有4个恰是正四面体的顶点,则正方体与正四面体的表面积之比为.14.已知幂函数y=x a的图象过点(3,9),则的展开式中x的系数为.15.过点P(﹣1,0)作直线与抛物线y2=8x相交于A,B两点,且2|PA|=|AB|,则点B到该抛物线焦点的距离为.16.等腰△ABC中,AB=AC,BD为AC边上的中线,且BD=3,则△ABC的面积最大值为.三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(12分)已知数列{a n}前n项和为S n,a1=﹣2,且满足S n=a n+n+1(n∈+1N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=log3(﹣a n+1),求数列{}前n项和为T n,求证T n<.18.(12分)如图,三棱柱ABC﹣A1B1C1中,各棱长均相等,D,E,F分别为棱AB,BC,A1C1的中点.(Ⅰ)证明EF∥平面A1CD;(Ⅱ)若三棱柱ABC﹣A1B1C1为直棱柱,求直线BC与平面A1CD所成角的正弦值.19.(12分)某食品公司研发生产一种新的零售食品,从产品中抽取100件作为样本,测量这些产品的一项质量指标值,由测量结果得到如图频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z服从正态分布N (200,12.22),试计算数据落在(187.8,212.2)上的频率;参考数据若Z~N(μ,δ2),则P(μ﹣δ<Z<μ+δ)=0.6826,P(μ﹣2δ<Z<μ+2δ)=0.9544.(Ⅲ)设生产成本为y,质量指标为x,生产成本与质量指标之间满足函数关系y=,假设同组中的每个数据用该组区间的右端点值代替,试计算生产该食品的平均成本.20.(12分)已知椭圆x2+2y2=m(m>0),以椭圆内一点M(2,1)为中点作弦AB,设线段AB的中垂线与椭圆相交于C,D两点.(Ⅰ)求椭圆的离心率;(Ⅱ)试判断是否存在这样的m,使得A,B,C,D在同一个圆上,并说明理由.21.(12分)已知函数f(x)=xlnx﹣x,g(x)=x2﹣ax(a∈R).(Ⅰ)若f(x)和g(x)在(0,+∞)有相同的单调区间,求a的取值范围;(Ⅱ)令h(x)=f(x)﹣g(x)﹣ax(a∈R),若h(x)在定义域内有两个不同的极值点.(i)求a的取值范围;(ii)设两个极值点分别为x1,x2,证明:x1•x2>e2.四、请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.选修4-4:坐标系与参数方程22.(10分)已知直线l的极坐标方程是ρsin(θ﹣)=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,曲线C的参数方程是(α为参数).(Ⅰ)求直线l被曲线C截得的弦长;(Ⅱ)从极点作曲线C的弦,求各弦中点轨迹的极坐标方程.选修4-5:不等式选讲23.已知函数f(x)=|2x+1|,g(x)=|x|+a(Ⅰ)当a=0时,解不等式f(x)≥g(x);(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.2017年河南省郑州市、平顶山市、濮阳市高考数学二模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数f(n)=i n(n∈N*),则集合{z|z=f(n)}中元素的个数是()A.4 B.3 C.2 D.无数【考点】虚数单位i及其性质;集合中元素个数的最值.【分析】直接利用复数的幂运算,化简求解即可.【解答】解:复数f(n)=i n(n∈N*),可得f(n)=,k∈Z.集合{z|z=f(n)}中元素的个数是4个.故选:A.【点评】本题考查复数单位的幂运算,基本知识的考查.2.设x=30.5,y=log32,z=cos2,则()A.z<y<x B.z<x<y C.y<z<x D.x<z<y【考点】对数值大小的比较.【分析】利用指数函数、对数函数、三角函数的性质求解.【解答】解:∵x=30.5=>1,0=log31<y=log32<log33=1,z=cos2<0,∴z<y<x.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要注意指数函数、对数函数、三角函数的性质的合理运用.3.要计算1+++…+的结果,如图程序框图中的判断框内可以填()A.n<2017 B.n≤2017 C.n>2017 D.n≥2017【考点】程序框图.【分析】通过观察程序框图,分析为填判断框内判断条件,n的值在执行运算之后还需加1,故判断框内数字应减1,按照题意填入判断框即可.【解答】解:通过分析,本程序框图为“当型“循环结构,判断框内为满足循环的条件,第1次循环,S=1,n=1+1=2,第2次循环,S=1+,n=2+1=3,…当n=2018时,由题意,此时,应该不满足条件,退出循环,输出S的值.所以,判断框内的条件应为:n≤2017.故选:B.【点评】本题考查程序框图,通过对程序框图的分析对判断框进行判断,属于基础题.4.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】根据三视图判断几何体是圆锥的一部分,再根据俯视图与左视图的数据可求得底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,把数据代入圆锥的体积公式计算.【解答】解:由三视图知几何体是圆锥的一部分,由俯视图与左视图可得:底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,∴几何体的体积V=××π×22×4=.故选:D.【点评】本题考查了由三视图求几何体的体积,解答的关键是判断几何体的形状及三视图的数据所对应的几何量.5.下列命题是真命题的是()A.∀φ∈R,函数f(x)=sin(2x+φ)都不是偶函数B.∃α,β∈R,使cos(α+β)=cosα+cosβC.向量=(2,1),=(﹣1,0),则在方向上的投影为2D.“|x|≤1”是“x≤1”的既不充分又不必要条件【考点】命题的真假判断与应用.【分析】举出反例φ=,可判断A;举出正例α=,β=﹣,可判断B;求出向量的投影,可判断C;根据充要条件的定义,可判断D.【解答】解:当φ=时,函数f(x)=sin(2x+φ)=cos2x是偶函数,故A为假命题;∃α=,β=﹣∈R,使cos(α+β)=cosα+cosβ=1,故B为真命题;向量=(2,1),=(﹣1,0),则在方向上的投影为﹣2,故C为假命题;“|x|≤1”⇔“﹣1≤x≤1”是“x≤1”的充分不必要条件,故D为假命题,故选:B【点评】本题以命题的真假判断与应用为载体,考查奇数的奇偶性,特称命题,向量的投影,充要条件等知识点,难度中档.6.在区间[1,e]上任取实数a,在区间[0,2]上任取实数b,使函数f(x)=ax2+x+b 有两个相异零点的概率是()A. B. C. D.【考点】几何概型.【分析】设所求的事件为A,由方程ax2+x+b=0有两个相异根,即△=1﹣ab>0求出ab范围,判断出是一个几何概型后,在坐标系中画出所有的实验结果和事件A构成的区域,再用定积分求出事件A构成的区域的面积,代入几何概型的概率公式求解.【解答】解:设事件A={使函数f(x)=ax2+x+b有两个相异零点},方程ax2+x+b=0有两个相异根,即△=1﹣ab>0,解得ab<1,∵在[1,e]上任取实数a,在[0,2]上任取实数b,∴这是一个几何概型,所有的实验结果Ω={(a,b)|1≤a≤e且0≤b≤2},面积为2(e﹣1);事件A={(a,b)|ab<1,1≤a≤e且0≤b≤2},面积S==1,∴事件A的概率P(A)=.故选A.【点评】本题考查了几何概型下事件的概率的求法,用一元二次方程根的个数求出ab的范围,用定积分求不规则图形的面积,考查了学生综合运用知识的能力.7.已知数列{a n}满足a n+1=a n﹣a n﹣1(n≥2),a1=m,a2=n,S n为数列{a n}的前n项和,则S2017的值为()A.2017n﹣m B.n﹣2017m C.m D.n 【考点】数列递推式.【分析】a n+1=a n﹣a n﹣1(n≥2),a1=m,a2=n,可得a n+6=a n.即可得出.【解答】解:∵a n+1=a n﹣a n﹣1(n≥2),a1=m,a2=n,∴a3=n﹣m,a4=﹣m,a5=﹣n,a6=m﹣n,a7=m,a8=n,…,∴a n+6=a n.则S2017=S336×6+1=336×(a1+a2+…+a6)+a1=336×0+m=m,故选:C.【点评】本题考查了数列递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.8.已知实数x,y满足,则z=2|x﹣2|+|y|的最小值是()A.6 B.5 C.4 D.3【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(2,4),z=2|x﹣2|+|y|=﹣2x+y+4,化为y=2x+z﹣4.由图可知,当直线y=2x+z﹣4过A时,直线在y轴上的截距最小,z有最大值为4.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.9.已知空间四边形ABCD,满足||=3,||=7,||=11,||=9,则•的值()A.﹣1 B.0 C.D.【考点】平面向量数量积的运算.【分析】可画出图形,代入=,同样方法,代入,,进一步化简即可求出的值.【解答】解:如图,========0.故选B.【点评】考查向量加法和减法的几何意义,向量的数量积的运算.10.将数字“124467”重新排列后得到不同的偶数个数为()A.72 B.120 C.192 D.240【考点】排列、组合的实际应用.【分析】由题意,末尾是2或6,不同的偶数个数为=120;末尾是4,不同的偶数个数为=120,即可得出结论.【解答】解:由题意,末尾是2或6,不同的偶数个数为=120;末尾是4,不同的偶数个数为=120,故共有120+120=240个,故选D.【点评】本题考查排列、组合知识的运用,考查学生的计算能力,属于中档题.11.已知P为双曲线﹣x2=1上任一点,过P点向双曲线的两条渐近线分别作垂线,垂足分别为A,B,则|PA|•|PB|的值为()A.4 B.5C.D.与点P的位置有关【考点】双曲线的简单性质.【分析】设P(m,n),则﹣n2=1,即m2﹣4n2=4,求出渐近线方程,求得交点A,B,再求向量PA,PB的坐标,由向量的模,计算即可得到.【解答】解:设P(m,n),则﹣m2=1,即n2﹣4m2=4,由双曲线﹣x2=1的渐近线方程为y=±2x,则由,解得交点A(,);由,解得交点B(,).=(,),=(,),则有|PA|•|PB|===.故选:C.【点评】本题考查双曲线的方程和性质,考查渐近线方程的运用,考查联立方程组求交点的方法,考查向量的模求法,考查运算能力,属于中档题.12.已知函数f(x)=,如果当x>0时,若函数f(x)的图象恒在直线y=kx的下方,则k的取值范围是()A.[,]B.[,+∞)C.[,+∞)D.[﹣,]【考点】利用导数研究曲线上某点切线方程.【分析】由于f(x)的图象和y=kx的图象都过原点,当直线y=kx为y=f(x)的切线时,切点为(0,0),求出f(x)的导数,可得切线的斜率,即可得到切线的方程,结合图象,可得k的范围.【解答】解:函数f(x)的图象恒在直线y=kx的下方,由于f(x)的图象和y=kx的图象都过原点,当直线y=kx为y=f(x)的切线时,切点为(0,0),由f(x)的导数f′(x)==,可得切线的斜率为=,可得切线的方程为y=x,结合图象,可得k≥.故选:B.【点评】本题考查导数的运用:求切线的方程,正确求导和确定原点为切点,结合图象是解题的关键,考查运算能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.正方体的8个顶点中,有4个恰是正四面体的顶点,则正方体与正四面体的表面积之比为:1.【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】作图分析.【解答】解:如图:设正方体的棱长为a,则正方体的表面积为S=6a2;正四面体的边长为则其表面积为4•sin60°=2a2;则面积比为6a2:2a2=:1.故答案为::1.【点评】考查了学生的空间想象力.14.已知幂函数y=x a的图象过点(3,9),则的展开式中x的系数为112.【考点】二项式系数的性质;幂函数的概念、解析式、定义域、值域.【分析】直接利用幂函数求出a的值,然后求出二项式展开式中所求项的系数.【解答】解:幂函数y=x a的图象过点(3,9),∴3a=9,∴a=2,=(﹣1)r C8r28﹣r x,∴=(﹣)8的通项为T r+1令r﹣8=1,解得r=6,展开式中x的系数为(﹣1)6C8628﹣6=112,故答案为:112.【点评】本题考查二项式定理的应用,幂函数的应用,考查计算能力.15.过点P(﹣1,0)作直线与抛物线y2=8x相交于A,B两点,且2|PA|=|AB|,则点B到该抛物线焦点的距离为5.【考点】直线与抛物线的位置关系.【分析】利用过P(﹣1,0)作直线与抛物线y2=8x相交于A,B两点,且2|PA|=|AB|,求出B的横坐标,即可求出点B到抛物线的焦点的距离.【解答】解:设A(x1,y1),B(x2,y2),设A,B在直线x=﹣1的射影分别为D,E.∵2|PA|=|AB|,∴3(x1+1)=x2+1即3x1+2=x2,3y1=y2,∵A.B两点在抛物线y2=8x上∴3=,解得x1=,x2=3,∴点B到抛物线的焦点的距离为BF=3+2=5.故答案为5【点评】本题考查抛物线的定义,考查学生的计算能力,解题的关键是利用抛物线的定义确定B的横坐标.16.等腰△ABC中,AB=AC,BD为AC边上的中线,且BD=3,则△ABC的面积最大值为6.【考点】正弦定理.【分析】设AB=AC=2x,三角形的顶角θ,则由余弦定理求得cosθ的表达式,进而根据同角三角函数基本关系求得sinθ,最后根据三角形面积公式表示出三角形面积的表达式,根据一元二次函数的性质求得面积的最大值.【解答】解:设AB=AC=2x,AD=x.设三角形的顶角θ,则由余弦定理得cosθ==,∴sinθ====,∴根据公式三角形面积S=absinθ=×2x•2x•=,∴当x2=5时,三角形面积有最大值6.故答案为:6.【点评】本题主要考查函数最值的应用,根据条件设出变量,根据三角形的面积公式以及三角函数的关系是解决本题的关键,利用二次函数的性质即可求出函数的最值,考查学生的运算能力.运算量较大.三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(12分)(2017•濮阳二模)已知数列{a n}前n项和为S n,a1=﹣2,且满足S n=a n+n+1(n∈N*).+1(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若b n =log 3(﹣a n +1),求数列{}前n 项和为T n ,求证T n <.【考点】数列的求和;数列递推式.【分析】(I )S n =a n +1+n +1(n ∈N *).n ≥2时,a n =S n ﹣S n ﹣1=a n +1+n +1﹣,化为:a n +1=3a n ﹣2,可得:a n +1﹣1=3(a n ﹣1),利用等比数列的通项公式即可得出.(II )b n =log 3(﹣a n +1)=n ,可得=.再利用“裂项求和”方法与数列的单调性即可证明.【解答】(I )解:∵S n =a n +1+n +1(n ∈N *).∴n=1时,﹣2=a 2+2,解得a 2=﹣8.n ≥2时,a n =S n ﹣S n ﹣1=a n +1+n +1﹣, 化为:a n +1=3a n ﹣2,可得:a n +1﹣1=3(a n ﹣1), n=1时,a 2﹣1=3(a 1﹣1)=﹣9,∴数列{a n ﹣1}是等比数列,首项为﹣3,公比为3. ∴a n ﹣1=﹣3n ,即a n =1﹣3n . (II )证明:b n =log 3(﹣a n +1)=n ,∴=.∴数列{}前n项和为T n =++…++=<.∴T n <.【点评】本题考查了“裂项求和”方法、等比数列的通项公式、数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.18.(12分)(2017•濮阳二模)如图,三棱柱ABC ﹣A 1B 1C 1中,各棱长均相等,D,E,F分别为棱AB,BC,A1C1的中点.(Ⅰ)证明EF∥平面A1CD;(Ⅱ)若三棱柱ABC﹣A1B1C1为直棱柱,求直线BC与平面A1CD所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(I)连接DE,通过证明四边形A1DEF是平行四边形得出EF∥A1D,从而EF∥平面A1CD;(II)过B作BM⊥A1D交延长线于M,连接CM,则可证BM⊥平面A1CD,即∠BCM为所求线面角,设三棱柱棱长为1,利用三角形相似求出BM即可得出sin∠BCM=.【解答】证明:(I)连接DE,∵D,E分别是AB,BC的中点,∴DE AC,∵F是A1C1的中点,∴A1F=A1C1,又AC A1C1,∴A1F DE,∴四边形A1DEF是平行四边形,∴EF∥A1D,又EF⊄平面A1CD,A1D⊂平面A1CD,∴EF∥平面A1CD.(II)过B作BM⊥A1D交延长线于M,连接CM,∵ABC是等边三角形,∴CD⊥AB,又A1A⊥平面ABC,CD⊂平面ABC,∴A1A⊥CD,∴CD⊥平面ABCD,又BM⊂平面ABCD,∴CD⊥BM,又CD⊂平面A1CD,A1D⊂平面A1CD,CD∩A1D=D,∴BM⊥平面A1CD,∴∠BCM为直线BC与平面A1CD所成的角,设直三棱柱棱长为1,则BM=,∴sin∠BCM==.【点评】本题考查了线面平行的判定,线面角的计算,属于中档题.19.(12分)(2017•濮阳二模)某食品公司研发生产一种新的零售食品,从产品中抽取100件作为样本,测量这些产品的一项质量指标值,由测量结果得到如图频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z服从正态分布N (200,12.22),试计算数据落在(187.8,212.2)上的频率;参考数据若Z~N(μ,δ2),则P(μ﹣δ<Z<μ+δ)=0.6826,P(μ﹣2δ<Z<μ+2δ)=0.9544.(Ⅲ)设生产成本为y,质量指标为x,生产成本与质量指标之间满足函数关系y=,假设同组中的每个数据用该组区间的右端点值代替,试计算生产该食品的平均成本.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】(Ⅰ)根据频率分布直方图即可求出a的值,(Ⅱ)根据正态分布的定义即可求出答案,(Ⅲ)根据分段函数的关系式代值计算即可.【解答】解:(Ⅰ)a=0.1﹣(0.002+0.009+0.022+0.024+0.008+0.002)=0.033,(Ⅱ)S2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.08=150所以为质量指标值Z服从正态分布N(200,150),所以P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826,故p(187.8,212.2)上的频率为0.6826;(Ⅲ)设生产成本为y,质量指标为x,生产成本与质量指标之间满足函数关系y=,则y=0.4(175+185+195+205)+0.8×215﹣80+0.8×225﹣80﹣0.8×235﹣80=604【点评】本题考查了频率分布直方图和正态分布以及分段函数的问题,属于基础题.20.(12分)(2017•濮阳二模)已知椭圆x2+2y2=m(m>0),以椭圆内一点M(2,1)为中点作弦AB,设线段AB的中垂线与椭圆相交于C,D两点.(Ⅰ)求椭圆的离心率;(Ⅱ)试判断是否存在这样的m,使得A,B,C,D在同一个圆上,并说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)由题意,a=,b=,c=,即可求椭圆的离心率;(Ⅱ)CD的中点为M,证明|MA|2=|MB|2=d2+=,即可得出结论.【解答】解:(Ⅰ)由题意,a=,b=,c=,∴=;(Ⅱ)设A(x1,y1),B(x2,y2),代入作差,整理可得(x1﹣x2)(x1+x2)+2(y1+y2)(y1﹣y2)=0.依题意,M(2,1)是AB的中点,∴x1+x2=4,y1+y2=2,从而k AB=﹣1.直线AB的方程为y﹣1=﹣(x﹣2),即x+y﹣3=0.与椭圆方程联立,可得3x2﹣12x+18﹣m=0,∴|AB|=•|x1﹣x2|=.①∵CD垂直平分AB∴直线CD的方程为y﹣1=x﹣2,即x﹣y﹣1=0代入椭圆方程,整理得3x2﹣4x+2﹣m=0.又设C(x3,y3),D(x4,y4),CD的中点为M(x0,y0),则x3,x4是方程③的两根,∴x3+x4=,∴M(,﹣)于是由弦长公式可得|CD|=•|x3﹣x4|=.②点M到直线AB的距离为d==.③于是,由①②③式及勾股定理可得|MA|2=|MB|2=d2+=,此时|AB|<|CD|故A、B、C、D四点均在以M为圆心,||为半径的圆上.【点评】本题综合考查直线和椭圆的位置关系,难度较大,解题时要仔细审题,注意公式的灵活运用.21.(12分)(2017•濮阳二模)已知函数f(x)=xlnx﹣x,g(x)=x2﹣ax(a ∈R).(Ⅰ)若f(x)和g(x)在(0,+∞)有相同的单调区间,求a的取值范围;(Ⅱ)令h(x)=f(x)﹣g(x)﹣ax(a∈R),若h(x)在定义域内有两个不同的极值点.(i)求a的取值范围;(ii)设两个极值点分别为x1,x2,证明:x1•x2>e2.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求导,求得f(x)的单调区间,由二次函数的性质即可求得a 的取值范围;(Ⅱ)(i)求导h′(x)=lnx﹣ax,由方程lnx﹣ax=0在(0,+∞)有两个不同根,方法一:根据函数图象直线y=ax与y=lnx有两个交点,求得y=lnx的切点,即可求得a的取值范围;方法二:构造函数g(x)=lnx﹣ax,求导,根据函数的单调性,即可求得a的取值范围;(ii)由题意可知:x1,x2,分别是方程lnx﹣ax=0的两个根,则只需证明lnt>,t>1,构造辅助函数,根据函数的单调性,求得g(t)>g(1)=0,即可证明lnt>,成立,则x1•x2>e2.【解答】解:(Ⅰ)f(x)=xlnx﹣x,x>0,求导f′(x)=lnx,令f′(x)=0,解得:x=1,则当f′(x)>0,解得:x>1,当f′(x)<0时,解得:0<x<1,∴f(x)单调递增区间为(1,+∞),单调递减区间为(0,1),由g(x)=x2﹣ax(a∈R)在(1,+∞)单调递增,在(0,1)单调递减,则g(x)开口向上,对称轴x=1,则a>0,∴a的取值范围(0,+∞);(Ⅱ)(ⅰ)依题意,函数h(x)=f(x)﹣g(x)﹣ax=xlnx﹣x﹣x2的定义域为(0,+∞),求导h′(x)=lnx﹣ax,则方程h′(x)=0在(0,+∞)有两个不同根,即方程lnx﹣ax=0在(0,+∞)有两个不同根.(解法一)转化为,函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点,如图.可见,若令过原点且切于函数y=lnx图象的直线斜率为k,只须0<a<k.…6分令切点A(x0,lnx0),则k=y′=,又k=,=,解得,x0=1,于是k=,∴0<a<;…8分解法二:令g(x)=lnx﹣ax,从而转化为函数g(x)有两个不同零点,求导g′(x)=﹣ax=(x>0)若a≤0,可见g′(x)在(0,+∞)上恒成立,g(x)在(0,+∞)单调增,此时g(x)不可能有两个不同零点.…5分若a>0,在0<x<时,g′(x)>0,在x>时,g′(x)<0,∴g(x)在(0,)上单调增,在(,+∞)上单调减,()=ln﹣1,…6分从而g(x)的极大值,g(x)极大值=g又在x→0时,g(x)→﹣∞,在x→+∞时,g(x)→﹣∞,于是只须:g(x)极大值>0,即ln﹣1>0,∴0<a<,…7分综上所述,0<a<;…8分(ⅱ)证明:由(i)可知x1,x2,分别是方程lnx﹣ax=0的两个根,即lnx1=ax1,lnx2=ax2,不妨设x1>x2,作差得,ln=a(x1﹣x2),即a=,原不等式x1•x2>e2等价于lnx1+lnx2>2,则a(x1+x2)>2,ln>,令=t,则t>1,ln>,则lnt>,…10分设g(t)=lnt﹣,t>1,g′(t)=>0,∴函数g(t)在(0,+∞)上单调递增,∴g(t)>g(1)=0,即不等式lnt>,成立,故所证不等式x1•x2>e2成立.【点评】本题考查导数的综合应用,考查导数与函数单调性的关系,利用导数求函数的最值,考查转化思想,分析法证明不等式成立,属于中档题.四、请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.选修4-4:坐标系与参数方程22.(10分)(2017•濮阳二模)已知直线l的极坐标方程是ρsin(θ﹣)=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,曲线C的参数方程是(α为参数).(Ⅰ)求直线l被曲线C截得的弦长;(Ⅱ)从极点作曲线C的弦,求各弦中点轨迹的极坐标方程.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)直线l的极坐标方程是ρsin(θ﹣)=0,展开可得:=0,化为直角坐标方程.曲线C的参数方程是(α为参数),利用平方关系消去参数α可得普通方程,求出圆心C到直线l的距离d,可得直线l被曲线C截得的弦长=2.(II)设Q圆C上的任意一点,P(x,y)为线段OQ的中点,则Q(2x,2y),代入圆C的方程可得各弦中点轨迹的直角坐标方程,再化为极坐标方程即可.【解答】解:(I)直线l的极坐标方程是ρsin(θ﹣)=0,展开可得:=0,化为:y﹣x=0.曲线C的参数方程是(α为参数),消去参数α可得:x2+(y﹣2)2=4,圆心C(0,2),半径r=2.∴圆心C到直线l的距离d==1,∴直线l被曲线C截得的弦长=2=2=2.(II)设Q圆C上的任意一点,P(x,y)为线段OQ的中点,则Q(2x,2y),代入圆C的方程可得:(2x)2+(2y﹣2)2=4,化为:x2+y2﹣2y﹣3=0,可得ρ2﹣2ρcosθ﹣3=0,即为各弦中点轨迹的极坐标方程.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆相交弦长问题、点到直线的距离公式、弦长公式、中点坐标公式,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲23.(2017•濮阳二模)已知函数f(x)=|2x+1|,g(x)=|x|+a(Ⅰ)当a=0时,解不等式f(x)≥g(x);(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.【考点】绝对值不等式的解法;带绝对值的函数.【分析】(Ⅰ)当a=0时,由不等式可得|2x+1|≥|x|,两边平方整理得3x2+4x+1≥0,解此一元二次不等式求得原不等式的解集.(Ⅱ)由f(x)≤g(x)得a≥|2x+1|﹣|x|,令h(x)=|2x+1|﹣|x|,则h(x)=,求得h(x)的最小值,即可得到从而所求实数a的范围.【解答】解:(Ⅰ)当a=0时,由f(x)≥g(x)得|2x+1|≥|x|,两边平方整理得3x2+4x+1≥0,解得x≤﹣1 或x≥﹣,∴原不等式的解集为(﹣∞,﹣1]∪[﹣,+∞).(Ⅱ)由f(x)≤g(x)得a≥|2x+1|﹣|x|,令h(x)=|2x+1|﹣|x|,即h(x)=,故h(x)min=h(﹣)=﹣,故可得到所求实数a的范围为[﹣,+∞).【点评】本题主要考查带有绝对值的函数,绝对值不等式的解法,求函数的最值,属于中档题.。
江阴初级中学2017届九年级第二次模拟考试数学试题含答案

江阴初级中学初三年级中考模拟考试数学试题一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内. 1.-3的倒数是 ( ▲ )A .13B .3C .±3D .-13 .2.使x-2 有意义的x 的取值范围是 ( ▲ ) A .x >12 B .x >2 C .x ≥2 D .x ≥12.3.下列事件中最适合使用普查方式收集数据的是 ( ▲ ) A .了解某班同学的体重情况 B .了解我省初中学生的兴趣爱好情况 C .了解一批电灯泡的使用寿命 D .了解我省农民工的年收入情况. 4.如左图是由几个相同的小正方体搭成的一个几何体,它的左视图是( ▲ )5.方程2x -1=3x +2的解为 ( ▲ )A .x =1B .x =-1C .x =3D .x =-3. 6.如图A ,D 是⊙O 上两点,BC 是直径.若∠D =35︒,则∠OAB 的度数是 ( ▲ ) A .35︒ B .55︒ C .65︒ D .70︒.7.下列图形中,是轴对称图形但不是中心对称图形的是 ( ▲ )A .等边三角形B .平行四边形C .矩形D .圆.8.如图,直线a ∥b ,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果∠1=55°,那么∠2等于 ( ▲ ) A. 65° B .55° C .45° D. 35°.9.如图,将正方形ABCD 的一角折向边CD ,使点A 与CB 上一点E 重合,若BE =1,CE =2,则折痕FG 的长度为( ▲ )A. 10B. 2 2 C .3 D .4.A .B .C .D .D A/10.经过点(2,-1)作一条直线和反比例函数xy 2=相交,当他们有且只有一个公共点时,这样的直线存在 ( ▲ ) A .2条 B.3条 C.4条 D.无数条.二、填空题(本大题共8小题,每小题2分,共16分,不需要写出解答过程,请把答案填写在答题卡的相应位置的横线上)11.2017年我市参加中考的人数大约有11000人,将11000用科学记数法表示为 ▲ . 12.因式分解:ab 2-9a = ▲ .13.当x = ▲ 时,分式1x +2无意义. 14.若反比例函数y=kx的图像经过点A (2,5)和点B (1,n ),则n = ▲ .15.已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是 ▲ cm .16.居民用电计费实行“一户一表”政策,以年为周期执行阶梯电价,即:一户居民全年不超过2880度的电量,执行第一档电价标准为0.48元/度;全年用电量在2880度到4800度之间(含4800),超过2880度的部分,执行第二档电价标准为0.53元/度;全年用电量超过4800度,超过4800度的部分,执行第三档电价标准为0.78元/度.小敏家2017年用电量为3000度,则2017年小敏家电费为 ▲ 元.17.在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则BD 的长为 ▲ .18.在平面直角坐标系中,已知平行四边形ABCD 的点A (0,-2)、点B (3m ,4m +1)(m ≠-1),点C (6,2),则对角线BD 的最小值是 ▲ .三、解答题(本大题共10小题,共84分.请在答题卡题目下方空白处.......作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)计算:(1)tan30º-(-2)2-. (2)(2x -1)2+(x -2)(x +2) .20.(本题满分8分)(1)解方程: 1x -3 = 2+x3-x . (2) 解不等式组:⎩⎪⎨⎪⎧x -3(x -2)≤4,1+2x 3>x -1.第17题21.(本题满分6分)如图,正方形AEFG 的顶点E 、G 在正方形ABCD 的边AB 、AD 上,连接BF 、DF . (1)求证:BF =DF ;(2)连接CF ,请直接写出CF BE的值为▲ (不必写出计算过程).22.(本题满分6分)某校组织学生书法比赛,对参赛作品按A 、B 、C 、D 四个等级进行了评定.现随机取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题: (1)求这次抽取的样本的容量; (2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B 级以上(即A级和B 级)有多少份?23.(本题满分8分)甲、乙两人用手指玩游戏,规则如下:(1)每次游戏时,两人同时随机地各伸出一根手指;(2)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,分析结果的扇形统计图图②A BCD人数 等级分析结果的条形统计图图①D 级 B 级A 级20%C 级30%DGC(1)求甲伸出小拇指取胜的概率(请用“画树状图”或“列表”等方法写出分析过程); (2)求乙取胜的概率.24.(本题满分8分)如图,△ABC 中,AB =AC ,以AB 为直径的⊙O 与BC 相交于点D ,与CA 的延长线相交于点E ,过点D 作DF ⊥AC 于点F . (1)试说明DF 是⊙O 的切线; (2)若AC =3AE ,求tan C .25、(本题满分10分)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元,已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次采购的数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.为出口需要,所有采购的大蒜必须在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半.为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?26.(本题满分10分)在平面直角坐标系xOy 中,抛物线y =mx 2+6mx +n (m >0)与 x 轴交于A ,B 两点(点A 在点B 左侧),顶点为C ,抛物线与y 轴交于点D ,直线BC 交y 轴于E ,且△ABC 与△AEC 这两个三角形的面积之比为2∶3. (1)求点A 的坐标; (2)将△ACO 绕点C 顺时针旋转一定角度后,点A 与B 重合,此时点O 恰好也在y 轴上,求抛物线的解析式.第24题27.(本题满分10分)已知,如图,在边长为10的菱形ABCD 中,cos ∠B =103,点E 为BC 边上的中点,点F 为边AB 边上一点,连接EF ,过点B 作EF 的对称点B ’, (1)在图(1)中,用无刻度的直尺和圆规作出点B ’(不写作法,保留痕迹); (2)当△EFB ’为等腰三角形时,求折痕EF 的长度. (3)当B ’落在AD 边的中垂线上时,求BF 的长度.28.(本题满分10分)【缘起】苏教版九下P 56,“如图1,在Rt △ABC 中,∠ACB =90°,CD 是△ABC 的高,则△ACD 与△CBD 相似吗?”于是,学生甲发现CD 2=AD ·BD 也成立. 问题1:请你证明CD 2=AD ·BD ;学生乙从CD 2=AD ·BD 中得出:可以画出两条已知线段的比例中项.问题2:已知两条线段AB 、BC 在x 轴上,如图2:请你用直尺(无刻度)和圆规作出这两条线段的比例中项.要求保留作图痕迹,不要写作法,最后指出所要作的线段.图1图1 备用图 备用图学生丙也从CD2=AD·BD中悟出了矩形与正方形的等积作法.问题3:如图3,已知矩形ABCD,请你用直尺(无刻度)和圆规作出一个正方形BMNP,使得S正方形BMNP=S矩形ABCD.要求:保留作图痕迹;简要写出作图每个步骤的要点.图3九年级数学模拟试卷参考答案与评分标准 2017.5一、选择题:1.D 2.C 3.A 4.B 5.D 6.B 7.A 8.D 9.A 10.C 二、填空题: 11.1.1×10412.a (b +3)(b -3)13.x =-2 14.1015.30π16.144617.4118.6三、解答题: 19.解:(1)原式=32-4-33+……(3分)(2)原式=4x 2-4x +1+(x 2-4)=6-334(4分)=4x 2-4x +1+x 2-4 …(3分)=5x 2-4x -3. ……(4分)20.解:(1)1=2(x -3)-x …(2分) (2)第1个不等式解得:x ≥1∴x =7 …(3分) 第1个不等式解得:x <4 …(2分)经检验x=7是原方程的解.…(4分) ∴原不等式组的解集为1≤x <4 …(4分) 21.(1)略…………………………(4分) (2) 2 ………………………(6分) 22.(1)120 ……(2分) (2)图略,C :40;D :12 每个1分(4分)(3)750×1202448+=450(份)................(6分) 23.解:(1)画树状图或列表略 (25)1……(6分)画树状图或列表正确,得5分,结论正确1分 (2)51……………(8分)24.试题解析:(1)证明:连接OD ,∵OB =OD , ∴∠B =∠ODB ,……………(1分) ∵AB =AC , ∴∠B =∠C ,∴∠ODB =∠C , ∴OD ∥AC , ………………(2分)∵DF ⊥AC , ∴OD ⊥DF , ………(3分)∴DF 是⊙O 的切线; ………(4分)(2)解:连接BE , ∵AB 是直径, ∴∠AEB =90°,………………………………(5分)∵AB =AC ,AC =3AE ,∴AB =3AE ,CE =4AE ,∴BE =AB 2-AE 2=2 2 AE ,………(6分)在Rt △BEC 中,tan C =BE AE =22AE =2………………………………………(8分)由题意得①当S △ABC :S △AEC =2∶3时,BC :CE =2:3,∴CB :BE =2:1∵OF=3,∴OB=1,即B (-1,0)∴A (-5,0),B (-1,0), ……(2分) ②当S △ABC :S △AEC =3∶2时, BC :CE =3:2,∴CD :BD =2:1 ∴A (-215,0),B (23,0), ………………………………………………(3分) (2)①当A (-5,0),B (-1,0)时,把B (-1,0)代人y =mx 2+6mx +n 得,n =5m ………………………(3分)m =46,n =465. ……………………………………(5分) ∴y =46x 2+263x +465. ………………………………(6分) ②当A (-215,0),B (23,0)时, 把B (23,0)代人y =mx 2+6mx +n 得,n =445-m ………………(7分)m =2752,n =655-. ………………………………(9分)∴y =2752x 2+954x 655-. …………………(10分) 27.解:(1)尺规作图略. ……………………………(2分)(2)① 当B ’E =EF 时,EF =5, ……………(3分)②当B ’E =B ’F 时,EF =35, ……………(4分) ③当EF =B ’F 时,EF = 325……………(5分) 综上: EF =5,35, 325……………(6分) (3)512-912 ……………(10分) 28.解:(1)证明略 ………(2分)(2)CD 为所要画的线段………(4分)(3)①延长AB 至E ,使得BE =BC ;②以AE 为直径,画半圆O ,与BC 的延长线相交于M③以BM 为边做正方形BMNP ……………(7分)……………(10分)。
河南省焦作市2017届高三下学期第二次模拟考试数学(文)试题 Word版含答案

焦作市2017届高三第二次模拟考试数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集*U N =,集合{}1,2,3,5A =,{}2,4,6B =,则图中的阴影部分表示的集合为( )A .{}2B .{}4,6C .{}1,3,5D .{}2,4,62.已知i 是虚数单位,复数z 满足(1)i z i -=,则z 的虚部是( ) A .12B .12i -C .12i D .12-3.若cos()23πα-=,则cos(2)πα-=( ) A .29 B .59 C .29-D .59-4.“1()13x <”是“11x>”的( )A .必要且不充分条件B .充分且不必要条件C .充要条件D .既非充分也非必要条件5.在区间[]0,1上任选两个数x 和y ,则y ≥ ) A .6π B .4π C .16π-D .14π-6.将函数cos(2)6y x π=+图象上的点(,)4P t π向右平移m (0m >)个单位长度得到点'P ,若'P 位于函数cos 2y x =的图象上,则( )A .t =m 的最小值为6πB .t =m 的最小值为12πC .12t =-,m 的最小值为6π D .12t =-,m 的最小值为12π7.执行如图所示的程序框图,若输入4m =,3t =,则输出y =( )A .183B .62C .61D .1848.函数2()||af x x x =+(其中a R ∈)的图象不可能是( )9.已知M 是抛物线C :22(0)y px p =>上一点,F 是抛物线C 的焦点,若||MF p =,K是抛物线C 的准线与x 轴的交点,则MKF ∠=( ) A .60︒B .45︒C .30︒D .15︒10.已知P 为矩形ABCD 所在平面内一点,4AB =,3AD =,PA =PC =则PB PD ⋅=( )A .5-B .5-或0C .0D .511.某棱锥的三视图如图所示,则该棱锥的外接球的表面积为( )A .3πB .2πC .πD .4π12.已知函数2,0,()1,0,x e x f x x ax x ⎧≤⎪=⎨++>⎪⎩()()1F x f x x =--,且函数()F x 有2个零点,则实数a 的取值范围为( ) A .(,0]-∞B .(,1)-∞C .[1,)+∞D .(0,)+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.双曲线22221x y a b-=(0a >,0b >)的一条渐进线与直线30x y -+=平行,则此双曲线的离心率为 .14.若实数x ,y 满足10,0,2,x y x y -+≤⎧⎪>⎨⎪≤⎩,则221y x +的最小值是 .15.《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖,周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能装多少斛米.”则该圆柱形容器能装米 斛.(古制1丈10=尺,1斛 1.62=立方尺,圆周率3π≈)16.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且a b >,a c >.ABC ∆的外接圆半径为1,a =若边BC 上一点D 满足2BD DC =,且90BAD ∠=︒,则ABC ∆的面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{}n a 的前n 项和为n S ,且满足21n n a S =+(*n N ∈). (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若(21)n n b n a =-⋅,求数列{}n b 的前n 项和n T .18.某市为了制定合理的节电方案,供电局对居民用电进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:度),将数据按照[0,100),[100,200),[200,300),[300,400),[400,500),[500,600),[600,700),[700,800),[]800,900分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中m 的值并估计居民月均用电量的中位数;(Ⅱ)现从第8组和第9组的居民中任选取2户居民进行访问,则两组中各有一户被选中的概率.19.如图,在四棱锥A BCDE -中,CD ⊥平面ABC ,//BE CD ,AB BC CD ==,AB BC ⊥,M 为AD 上一点,EM ⊥平面ACD .(Ⅰ)证明://EM 平面ABC ;(Ⅱ)若2CD =,求四棱锥A BCDE -的体积.20.已知圆O :221x y +=过椭圆C :22221x y a b+=(0a b >>)的短轴端点,P ,Q 分别是圆O 与椭圆C 上任意两点,且线段PQ 长度的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点(0,)t 作圆O 的一条切线交椭圆C 于M ,N 两点,求OMN ∆的面积的最大值. 21.已知函数2()ln 2a f x x x =-的图象在点11(,())22f 处的切线斜率为0. (Ⅰ)讨论函数()f x 的单调性; (Ⅱ)若1()()2g x f x mx =+在区间(1,)+∞上没有零点,求实数m 的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为1212x t y ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为2sin ρθ=. (Ⅰ)判断直线l 与圆C 的交点个数;(Ⅱ)若圆C 与直线l 交于A ,B 两点,求线段AB 的长度. 23.选修4-5:不等式选讲已知函数()|2||2|f x x x m =+--+(m R ∈). (Ⅰ)若1m =,求不等式()0f x ≥的解集;(Ⅱ)若方程()f x x =有三个实根,求实数m 的取值范围.焦作市2017届高三第二次模拟考试数学(文科)答案一、选择题1-5:BDDAD 6-10:CACBC 11、12:AB二、填空题43 15.2700 16.4三、解答题17.解:(Ⅰ)当1n =时,1112121a S a =+=+,解得11a =-.当2n ≥时,21n n a S =+,1121n n a S --=+,两式相减得12n n n a a a --=,化简得1n n a a -=-,所以数列{}n a 是首项为1-,公比为1-的等比数列,可得(1)n n a =-. (Ⅱ)由(Ⅰ)得(21)(1)n n b n =-⋅-, 当n 为偶数时,12n n b b -+=,22n nT n =⨯=; 当n 为奇数时,1n +为偶数,11(1)(21)n n n T T b n n n ++=-=+-+=-. 所以数列{}n b 的前n 项和(1)n n T n =-⋅. 18.解:(Ⅰ)1100(0.00040.00080.00210.00250.00060.00040.0002)2100m -⨯++++++=⨯,∴0.0015m =.设中位数是x 度,前5组的频率之和为0.040.080.150.210.250.730.5++++=>, 而前4组的频率之和为0.040.080.150.210.480.5+++=<, 所以400500x <<,0.50.484001000.25x --=⨯,故408x =,即居民月均用电量的中位数为408度.(Ⅱ)第8组的户数为0.00041001004⨯⨯=,分别设为1A ,2A ,3A ,4A ,第9组的户数为0.00021001002⨯⨯=,分别设为1B ,2B ,则从中任选出2户的基本事件为12(,)A A ,13(,)A A ,14(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,24(,)A A ,21(,)A B ,22(,)A B ,34(,)A A ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B 共15种.其中两组中各有一户被选中的基本事件为11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B 共8种.所以第8,9组各有一户被选中的概率815P =. 19.(Ⅰ)证明:取线段AC 的中点F ,连接BF . 因为AB BC =,所以BF AC ⊥,因为CD ⊥平面ABC ,所以CD BF ⊥,又AC CD C = ,所以BF ⊥平面ACD , 因为EM ⊥平面ACD ,所以//EM BF ,又EM ⊄平面ABC ,BF ⊂平面ABC , 所以//EM 平面AB C.(Ⅱ)解:连接MF ,因为//BE CD ,BE ⊄平面ACD ,CD ⊂平面ACD ,所以//BE 平面ACD ,又平面BEMF 平面ACD MF =,所以//BE MF ,由(Ⅰ)知//EM BF ,所以四边形BEMF 为平行四边形,所以BE MF =. 因为F 是AC 的中点,所以M 是AD 的中点, 所以112BE MF CD ===. 因为CD ⊥平面ABC ,所以CD AB ⊥, 又BC AB ⊥,所以AB ⊥平面BCDE , 所以四棱锥A BCDE -的体积11(12)22232A BCDE BCDE V S AB -=⋅⨯⨯+⨯⨯=1=3.20.解:(Ⅰ)∵圆O 过椭圆C 的短轴端点,∴1b =,又∵线段PQ 长度的最大值为3, ∴13a +=,即2a =,∴椭圆C 的标准方程为2214y x +=. (Ⅱ)由题意可设切线MN 的方程为y kx t =+,即0kx y t -+=1=,得221k t =-.①联立得方程组22,14y kx t y x =+⎧⎪⎨+=⎪⎩,消去y 整理得222(4)240k x ktx t +++-=. 其中222(2)4(4)(4)kt k t ∆=-+-22161664480t k =-++=>,设11(,)M x y ,22(,)N x y ,则12224kt x x k -+=+,212244t x x k -=+,则||MN =.②将①代入②得2|||3t MN t =+,∴21|1||23OMNt S MN t ∆=⨯⨯=+,而2|133||||t t t t =≤++,等号成立当且仅当3||||t t =,即t = 综上可知:max ()1OMN S ∆=.21.解:(Ⅰ)2()ln 2a f x x x =-的定义域为(0,)+∞,'()22a f x x x=-. 因为1'()102f a =-=,所以1a =,21()ln 2f x x x =-,1(21)(21)'()222x x f x x x x-+=-=.令'()0f x >,得12x >,令'()0f x <,得102x <<,故函数()f x 的单调递增区间是1(,)2+∞,单调递减区间是1(0,)2.(Ⅱ)211()ln 22g x x x mx =-+,由2141'()20222m x mx g x x x x+-=-+==,得x =,设0x =,所以()g x 在0(0,]x 上是减函数,在0[,)x +∞上为增函数.因为()g x 在区间(1,)+∞上没有零点,所以()0g x >在(1,)+∞上恒成立,由()0g x >,得1ln 22x m x x >-,令ln 2x y x x =-,则222ln '14x y x -=-2222ln 44x x x--=. 当1x >时,'0y <,所以ln 2xy x x =-在(1,)+∞上单调递减; 所以当1x =时,max1y =-,故112m ≥-,即[2,)m ∈-+∞.22.解:(Ⅰ)消去参数得直线l10y +-=, 由2sin ρθ=得圆C 的直角坐标方程为2220x y y +-=. 因为圆心(0,1)在直线l 上,所以直线l 与圆C 的交点个数为2.(Ⅱ)由(Ⅰ)知AB 为圆C 的直径,而圆C 的直径可求得为2,所以||2AB =. 23.解:(Ⅰ)∵1m =时,()|2||2|1f x x x =+--+. ∴当2x ≤-时,()3f x =-,不可能非负;当22x -<<时,()21f x x =+,由()0f x ≥可解得12x ≥-,于是122x -≤<; 当2x ≥时,()50f x =>恒成立. 所以不等式()0f x ≥的解集为1[,)2-+∞.(Ⅱ)由方程()f x x =可变形为|2||2|m x x x =+--+.令4,2,()|2||2|,22,4, 2.x x h x x x x x x x x +<-⎧⎪=+--+=--≤≤⎨⎪->⎩作出图象如图所示.于是由题意可得22m -<<.。
2017河南省中考数学试卷含答案

2017年河南省普通高中招生考试试卷数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、选择题(每题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.下列各数中比1大的数是()A. 2B. 0C. -1 32.2016年,我国国内生产总值达到74.4万亿元,用科学计数法表示为()A. 74.4×1012B. 7.44×1013C. 74.4×1013D. 7.44×10143.某几何体的左视图如下图所示,则该几何体不可能是()4.解分式方程,去分母得()A.1-2(1)3B.1-2(1)=3C.1-223D.1-22=35.八年级某同学6次数学小测验的成绩分别为80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B. 95分,90分C. 90分,95分D. 95分,85分6.一元二次方程2x2-52=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根判定□是菱形的只有7.如图,在□中,对角线、相交于点O,添加下列条件不能..()⊥ D.∠1=∠28.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2,若转动转盘两次,每次转盘停止后记录指针所指区域数字(当指针恰好指在分界线上时,不记,重转)则记录两个数字都是正数的概率为()A. B. C. D.9.我们知道:四边形具有不稳定性,如图,在平面直角坐标系中,边长为2的正方形边在x轴上,的中点是坐标原点O。
固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点处,则点C的对应点坐标为()A.(,3)B. (2,1)C. (1,)D. (2,)10.如图,将半径为2,圆心角为120°的扇形绕点A逆时针旋转60°,点O,B的对应点分别为,,连接B,则图中阴影部分的面积是()A.ππ C. -π D. -π第7题 第8题 第9题 第10题二、填空题(每题3分,共15分) 11.计算2312.不等式组的解集是13.已知点A (1,m ),B (2,n )在反比例函数的图像上,则m 与n 的大小关系为14.如图1,点P 从△的顶点B 出发,沿B C A 匀速运动到点A ,图2是点P 运动时,线段的长度y 随时间x 变化的关系图像,其中M 为曲线部分的最低点,则△的面积是45OAB CxyMPNBMCAB`第14题 图1 图2 第15题15.如图,在△中,∠90°,,1,点M ,N 分别是边,上的动点,沿所在直线折叠∠B ,使点B 的对应点始终..落在边上,若为直角三角形,则的长为三、解答题(本大题共8个小题,满分75分) 16.(8分)先化简,再求值: (2)2+()()-5x (),其中1,117.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下两个尚不完整的统计图表.调查结果统计表请根据以上图表,解答下列问题:(1)填空:这次被调查的学生共有人,,;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△中,,以为直径的⊙O交边于点D,过点C作∥,与过点B的切线交于点F,连接.(1)求证:;(2)若10,4,求的长.C19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C.此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:53°≈, 53°≈,53°≈,≈1.41)20.(9分)如图,一次函数与反比例函数(x>0)的图像交于点A(m,3)和B(3,1),(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段上一点,过点P作⊥x轴于点D,连接,若△的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A 种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求两种魔方的单价;(2)结合社员们的要求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如右图所示,请根据以上信息,说明选择哪种活动购买魔方更实惠.22.(10分)如图1,在△中,∠90°,,点D,E分别在边,上,,连接,点M,P,N分别为、、的中点.(1)观察猜想图1中,线段与的数量关系是,位置关系是;(2)探究证明把△绕点A逆时针方向旋转到图2的位置,连接,,,判断△的形状,并说明理由;(3)拓展延伸把△绕点A在平面内自由旋转,若4,10,请直接写出△面积的最大值.23.(11分)如图,直线与x轴交于点A(3,0),与y轴交于点B,抛物线经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)点M(m,0)为x轴上一点,过点M且垂直于x轴的直线与直线与抛物线交于点P,N.①点M在线段上运动,若以B、P、N为顶点的三角形与△相似,求点M坐标;②点M在x轴上自由移动,若三个点M、P、N中恰有一个点是其它两线段中点(三点重合除外),则称M、N、P三点为“共谐点”,请直接写出使得M、N、P三点成为“共谐点”的m值.2017年河南省普通高中招生考试数学试题答案;。
长泰县2017届九年级上第二次(12月)月考数学试卷含答案
二、填空题(共 6 小题,每小题 4 分,满分 24 分.)
11.当 x
时, 2 在实数范围内有意义。 2x 3
12. 两个相似三角形的面积比为 1:9,那么它们的对应中线的比为
25.(12 分)如图,在平面直角坐标系中,点 A 的坐标为 (0,2) ,点 P(t,0) 在 x 轴
B
PA 的中点.将线段 PB 绕着点 P 顺时针方向旋转90 ,得到线段
OA′B′C′的面积等于矩形 OABC 面积的 1,那么点 B′的坐标是(
)
4
A.(3,2)
B.(-2,-3)
C.(2,3)或(-2,-3) D.(3,2)或(-3,-2)
7.如图,梯形 ABCD 的对角线 AC、BD 相交于 O,G 是 BD 的中点.
若 AD = 3,BC = 9,则 GO : BG =( ).
D.
10、如图,小李晚上由路灯 A 下的 B 处走到 C 处时,测得影子 CD的长为 1 米,继续往前走 3 米到 达 E 处时,测得影子 EF的长为 2 米,已知小李的身 高 CM是 1.5米,那么路灯 A 的高度 AB等于( )
(A)4.5米 (B)6米 (C) 7.2米 (D)8米
A
M
N
B
C DE F
上, 是线段
PC ,连结 OB,AC
(1)(3分)判断PBC 的形状,并简要说明理由; (2)(4分)当 t 0 时,试问:以 P 、 O 、 B 、 C 为顶点的四边形能否为平行四
t 边形?若能,求出相应的 的值?若不能,请说明理由; (3)(5分)当 t 为何值时, AOP 与 APC 相似?
1
5.如果关于 x 的一元二次方程 k 2x2 (2k 1)x 1 0 有两个不相等的实数根,那
河南省郑州、平顶山、濮阳市2017届高三第二次质量预测(二模)数学(理)试题 Word版含答案
2017年高中毕业年级第二次质量预测数学(理科)试题卷 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知复数()()n f n i n N *=∈,则集合(){}|z z f n =的元素个数为A. 4B. 3C. 2D.无数 2.设0.533,log 2,cos2x y z ===,则A. z x y <<B. y z x <<C. z y x <<D.x z y <<3.要计算1111232017++++ 的结果,下面的程序框图中的判断框内可以填入的是 A. 2017n < B. 2017n ≤ C. 2017n > D.2017n ≥4.某几何体的三视图如图所示,其中俯视图是扇形,则该几何体的体积为 A.163π B. 3π C. 29π D. 169π5.下列命题是真命题的是A. x R ∀∈,函数()()sin 2f x x ϕ=+都不是偶函数B.,R αβ∃∈,使得()cos cos cos αβαβ+=+C. 向量()()2,1,1,0a b ==-,则a 在b 方向上的投影是2D.“1x ≤”是“1x ≤”的既不充分也不必要条件6.在区间[]1,e 上任取实数a ,在区间[]0,2上任取实数b ,使函数()214f x ax x b =++有两个相异零点的概率为 A.()121e - B. ()141e - C. ()181e - D.()1161e -7.已知数列{}n a 满足()11122,,,n n n n a a a n a m a n S +-=-≥==为数列{}n a 的前n 项和,则2017S 的值为A. 2017n m -B. 2017n m -C.mD.n8.已知实数,x y 满足261y x x y x ≥+⎧⎪+≤⎨⎪≥⎩,则22z x y =-+的最小值是A. 6B. 5C. 4D.39.已知空间四边形ABCD 满足3,7,11,9AB BC CD DA ====,则AC BD ⋅ 的值为A. -1B. 0C.212 D.33210.将数字124467重新排列后得到不同的偶数的个数为A. 72B. 120C. 192D.24011.已知P 为双曲线2214y x -=上任意一点,过P 点向双曲线的两条渐近线分别作垂线,垂足分别为A,B 则PA PB 的值为A. 4B.5C.45 D.与点P 的位置有关 12.已知函数()sin 2cos xf x x=+,如果当0x >时,若函数()f x 的图象恒在直线y kx =的下方,则k 的取值范围是A. 13⎡⎢⎣⎦B.1,3⎡⎫+∞⎪⎢⎣⎭C. ⎫+∞⎪⎪⎣⎭D. ⎡⎢⎣⎦第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.正方体的八个顶点中,有四个恰好为一个正四面体的顶点,则正方体的表面积与正四面体的表面积之比为 .14.已知幂函数y x α=的图象过点()3,9,则8a x ⎛ ⎝的展开式中x 的系数为 .15.过点()1,0P -作直线与抛物线28y x =相交于A,B 两点,且2PA AB =,则点B 到该抛物线焦点的距离为 .16.等腰ABC ∆中,,AB AC BD =为边AC 上的中线,且3BD =,则ABC ∆的面积的最大值为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分12分)已知数列{}n a 的前n 项和为n S ,12a =,且满足()111.2n n S a n n N *+=++∈ (1)求数列{}n a 的通项公式; (2)若()3log 1n n b a =-,设数列21n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为nT ,求证:3.4n T <18.(本题满分12分)如图,三棱柱111ABC A B C -中,各棱长均相等,,,D E F 分别是棱11,,AB BC AC 的中点. (1)求证://EF 平面1ACD ; (2)若三棱柱111ABC A B C -为直三棱柱,求直线BC 与平面1ACD 所成角的正弦值.19.(本题满分12分)某公司研发生产一种新的零售食品,从产品中抽取100件作为样本,测量这些产品的一项质量指标,有测量结果得到如下所示的频率分布直方图:(1)求直方图中a 的值;(2)偶频率分布直方图可以认为,这种产品的质量指标Z 服从正态分布()2200,12.2N ,试计算数据落在()187.8,212.2上的概率;(3)设生产成本为y ,质量指标为x ,生产成本与质量指标之间满足函数关系0.4,2050.880,205x x y x x ≤⎧=⎨->⎩,假设同组中的每个数据用该组区间的右端点值代替,试求生产成本的平均值.20.(本题满分12分)已知椭圆()2220x y m m +=>,以椭圆内一点()2,1M 为中点作弦AB,设线段AB 的中垂线与椭圆相交于C,D 两点; (1)求椭圆的离心率;(2)试判断是否存在这样的m,使得A,B,C,D 在同一圆上,并说明理由.21.(本题满分12分)已知函数()()()2ln ,.2a f x x x x g x x ax a R =-=-∈ (1)若()f x 和()g x 在()0,+∞上有相同的单调区间,求a 的取值范围;(2)令()()()()h x f x g x ax a R =--∈,若()h x 在定义域内有两个不同的极值点. (Ⅰ)求a 的取值范围;(Ⅱ)设两个极值点分别为12,x x ,证明:212x x e ⋅>.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
(完整版)2017年河南省中考数学试卷(含答案解析版)
2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是( )A .2B .0C .﹣1D .﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示( )A .74.4×1012B .7.44×1013C .74.4×1013D .7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是( )A.B.C.D.4.(3分)解分式方程﹣2=,去分母得( )1x ‒131‒x A .1﹣2(x ﹣1)=﹣3B .1﹣2(x ﹣1)=3C .1﹣2x ﹣2=﹣3D .1﹣2x +2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A .95分,95分B .95分,90分C .90分,95分D .95分,85分6.(3分)一元二次方程2x 2﹣5x ﹣2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根7.(3分)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定▱ABCD 是菱形的只有( )sA .AC ⊥BDB .AB=BC C .AC=BD D .∠1=∠28.(3分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .B .C .D .181614129.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为( )A .(,1)B .(2,1)C .(1,)D .(2,)33310.(3分)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )an l l n beA .B .2﹣C .2﹣D .4﹣2π33π332π332π3二、填空题(每小题3分,共15分)11.(3分)计算:23﹣= .412.(3分)不等式组的解集是 .{x ‒2≤0x ‒12<x 13.(3分)已知点A (1,m ),B (2,n )在反比例函数y=﹣的图象上,则m2x 与n 的大小关系为 .14.(3分)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是 .15.(3分)如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=+1,点M ,N 分别2是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为 .三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y ),其中x=+1,y=﹣1.2217.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x <304B 30≤x <6016C 60≤x <90a D 90≤x <120b Ex ≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 人,a +b= ,m= ;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x 在60≤x <120范围的人数.18.(9分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交AC 边于点D ,过点C 作CF ∥AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD=BF ;(2)若AB=10,CD=4,求BC 的长.g o19.(9分)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°45≈,tan53°≈,≈1.41)3543220.(9分)如图,一次函数y=﹣x +b 与反比例函数y=(x >0)的图象交于点kx A (m ,3)和B (3,1).(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;(2)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,连接OP ,若△POD 的面积为S ,求S 的取值范围.g21.(10分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt △ABC 中,∠A=90°,AB=AC ,点D ,E 分别在边AB ,AC 上,AD=AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想 图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x +c 与x 轴交于点A (3,0),与y 轴交于点B ,抛23物线y=﹣x 2+bx +c 经过点A ,B .43(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是( )A.2B.0C.﹣1D.﹣3【考点】18:有理数大小比较.【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示( )A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是( rA.B.C.D.【考点】U3:由三视图判断几何体.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D 不符合,故选D .【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大. 4.(3分)(2017•河南)解分式方程﹣2=,去分母得( )1x ‒131‒x A .1﹣2(x ﹣1)=﹣3B .1﹣2(x ﹣1)=3C .1﹣2x ﹣2=﹣3D .1﹣2x +2=3【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】分式方程变形后,两边乘以最简公分母x ﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,1x ‒13x ‒1去分母得:1﹣2(x ﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A.95分,95分B.95分,90分C.90分,95分D.95分,85分【考点】W5:众数;W4:中位数.【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】AA:根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定▱ABCD是菱形的只有( )A .AC ⊥BDB .AB=BCC .AC=BD D .∠1=∠2【考点】L9:菱形的判定;L5:平行四边形的性质.【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A 、正确.对角线相等是平行四边形的菱形.B 、正确.邻边相等的平行四边形是菱形.C 、错误.对角线相等的平行四边形是矩形,不一定是菱形.D 、正确.可以证明平行四边形ABCD 的邻边相等,即可判定是菱形.故选C .【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .B .C .D .18161412【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.41614故选:C .【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比. 9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为( )A .(,1)B .(2,1)C .(1,)D .(2,)333【考点】LE :正方形的性质;D5:坐标与图形性质;L1:多边形.【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′=12=,于是得到结论.AD '2‒OA 23【解答】解:∵AD′=AD=2,AO=AB=1,12∴OD′==,AD '2‒OA 23∵C′D′=2,C′D′∥AB ,∴C (2,),3故选D .【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )A .B .2﹣C .2﹣D .4﹣2π33π332π332π3【考点】MO :扇形面积的计算;R2:旋转的性质.【分析】连接OO′,BO′,根据旋转的想知道的∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B 是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.12360⋅π×2236012332π3故选C .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键. 二、填空题(每小题3分,共15分)11.(3分)(2017•河南)计算:23﹣= 6 .4【考点】22:算术平方根;1E :有理数的乘方.【分析】表示4的算术平方根,值为2.4【解答】解:23﹣=8﹣2=6,4故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单. 12.(3分)(2017•河南)不等式组的解集是 ﹣1<x ≤2 .{x ‒2≤0x ‒12<x 【考点】CB :解一元一次不等式组.【分析】先求出不等式的解集,再求出不等式组的公共部分,【解答】解:{x ‒2≤0①x ‒12<x②解不等式①0得:x ≤2,解不等式②得:x >﹣1,∴不等式组的解集是﹣1<x ≤2,故答案为﹣1<x ≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A (1,m ),B (2,n )在反比例函数y=﹣的图2x 象上,则m 与n 的大小关系为 m <n .【考点】G6:反比例函数图象上点的坐标特征.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在2x 每个象限内,y 随x 的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,2x ∴此函数的图象在二、四象限内,在每个象限内,y 随x 的增大而增大,∵0<1<2,∴A 、B 两点均在第四象限,∴m <n .故答案为m <n .【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键. 14.(3分)(2017•河南)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是 12 .【考点】E7:动点问题的函数图象.【分析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出BC 与AC 的长度.【解答】解:根据图象可知点P 在BC 上运动时,此时BP 不断增大,由图象可知:点P 从B 先A 运动时,BP 的最大值为5,即BC=5,由于M 是曲线部分的最低点,∴此时BP 最小,即BP ⊥AC ,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC 的面积为:×4×6=1212故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC 与AC 的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=+1,2点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为 +或112212.【考点】PB :翻折变换(折叠问题);KW :等腰直角三角形.【分析】①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.2【解答】解:①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,∴BM=BC=+;1212212②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC ,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,2∵沿MN 所在的直线折叠∠B ,使点B 的对应点B′,∴BM=B′M ,∴CM=BM ,2∵BC=+1,2d ∴CM +BM=BM +BM=+1,22∴BM=1,综上所述,若△MB′C 为直角三角形,则BM 的长为+或1,12212故答案为:+或1.12212【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y ),其中x=+1,y=﹣1.22【考点】4J :整式的混合运算—化简求值.【专题】11 :计算题.【分析】首先化简(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y ),然后把x=+1,y=﹣122代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y )=4x 2+4xy +y 2+x 2﹣y 2﹣5x 2+5xy=9xy22当x=+1,y=﹣1时,22原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 50 人,a+b= 28 ,m= 8 ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【考点】VB :扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B 组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b ,然后求得a 的值,m 的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A 组所占的百分比是=8%,则m=8.450a +b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C 的圆心角度数是360°×=144°;2050(3)每月零花钱的数额x 在60≤x <120范围的人数是1000×=560(人).2850【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小. 18.(9分)(2017•河南)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交AC 边于点D ,过点C 作CF ∥AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD=BF ;(2)若AB=10,CD=4,求BC 的长.【考点】MC:切线的性质;KH:等腰三角形的性质.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt △ADB 中,由勾股定理得:BD==8,102‒62在Rt △BDC 中,由勾股定理得:BC==4.82+425【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)4535432【考点】TB :解直角三角形的应用﹣方向角问题.【分析】如图作CE ⊥AB 于E .设AE=EC=x ,则BE=x ﹣5,在Rt △BCE 中,根据tan53°=,可得=,求出x ,再求出BC 、AC ,分别求出A 、B 两船到C 的EC BE 43xx ‒5时间,即可解决问题.【解答】解:如图作CE ⊥AB 于E .g在Rt △ACE 中,∵∠A=45°,∴AE=EC ,设AE=EC=x ,则BE=x ﹣5,在Rt △BCE 中,∵tan53°=,ECBE ∴=,43x x ‒5解得x=20,∴AE=EC=20,∴AC=20=28.2,2BC==25,ECsin 53°∴A 船到C 的时间≈=0.94小时,B 船到C 的时间==1小时,28.2302525∴C 船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型. 20.(9分)(2017•河南)如图,一次函数y=﹣x +b 与反比例函数y=(x >0)的kx 图象交于点A (m ,3)和B (3,1).th (1)填空:一次函数的解析式为 y=﹣x +4 ,反比例函数的解析式为 y= ;3x (2)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,连接OP ,若△POD 的面积为S ,求S的取值范围.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先将B (3,1)代入反比例函数即可求出k 的值,然后将A 代入反比例函数即可求出m 的,再根据B 两点的坐标即可求出一次函数的解析式.(2)设P 的坐标为(x ,y ),由于点P 在直线AB 上,从而可知PD=y ,OD=x ,由题意可知:1≤x ≤3,从而可求出S 的范围【解答】解:(1)将B (3,1)代入y=,k x ∴k=3,将A (m ,3)代入y=,3x ∴m=1,∴A (1,3),将A (1,3)代入代入y=﹣x +b ,∴b=4,∴y=﹣x +4(2)设P (x ,y ),由(1)可知:1≤x ≤3,∴PD=y=﹣x +4,OD=x ,∴S=x (﹣x +4),12∴由二次函数的图象可知:S 的取值范围为:≤S ≤232故答案为:(1)y=﹣x +4;y=.3x 【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【考点】9A :二元一次方程组的应用.【分析】(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据“购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B种魔方所需款数相同”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进A 种魔方m 个(0≤m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个,根据两种活动方案即可得出w 活动一、w 活动二关于m 的函数关系式,再分别令w 活动一<w 活动二、w 活动一=w 活动二和w 活动一>w 活动二,解出m 的取值范围,此题得解.【解答】解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意得:,{2x +6y =1303x =4y 解得:.{x =20y =15答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个(0≤m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个,根据题意得:w 活动一=20m ×0.8+15(100﹣m )×0.4=10m +600;w 活动二=20m +15(100﹣m ﹣m )=﹣10m +1500.当w 活动一<w 活动二时,有10m +600<﹣10m +1500,解得:m <45;当w 活动一=w 活动二时,有10m +600=﹣10m +1500,解得:m=45;当w 活动一>w 活动二时,有10m +600>﹣10m +1500,解得:45<m ≤50.综上所述:当m <45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m >45时,选择活动二购买魔方更实惠.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x 、y 的二元一次方程组;(2)根据两种活动方案找出w 活动一、w 活动二关于m的函数关系式.22.(10分)(2017•河南)如图1,在Rt △ABC 中,∠A=90°,AB=AC ,点D ,Eb分别在边AB ,AC 上,AD=AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是 PM=PN ,位置关系是 PM ⊥PN ;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【考点】RB :几何变换综合题.【分析】(1)利用三角形的中位线得出PM=CE ,PN=BD ,进而判断出1212BD=CE ,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD ≌△ACE ,得出BD=CE ,同(1)的方法得出PM=BD ,PN=BD ,即可得出PM=PN ,同(1)的方法即可得出结论;1212(3)先判断出MN 最大时,△PMN 的面积最大,进而求出AN ,AM ,即可得出MN 最大=AM +AN ,最后用面积公式即可得出结论.【解答】解:(1)∵点P ,N 是BC ,CD 的中点,∴PN ∥BD ,PN=BD ,12∵点P ,M 是CD ,DE 的中点,∴PM ∥CE ,PM=CE ,12∵AB=AC ,AD=AE ,∴BD=CE ,∴PM=PN ,∵PN ∥BD ,∴∠DPN=∠ADC ,∵PM ∥CE ,∴∠DPM=∠DCA ,∵∠BAC=90°,∴∠ADC +∠ACD=90°,∴∠MPN=∠DPM +∠DPN=∠DCA +∠ADC=90°,∴PM ⊥PN ,故答案为:PM=PN ,PM ⊥PN ,(2)由旋转知,∠BAD=∠CAE ,∵AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ),∴∠ABD=∠ACE ,BD=CE ,同(1)的方法,利用三角形的中位线得,PN=BD ,PM=CE ,1212∴PM=PN ,∴△PMN 是等腰三角形,同(1)的方法得,PM ∥CE ,∴∠DPM=∠DCE ,同(1)的方法得,PN ∥BD ,∴∠PNC=∠DBC ,∵∠DPN=∠DCB +∠PNC=∠DCB +∠DBC ,∴∠MPN=∠DPM +∠DPN=∠DCE +∠DCB +∠DBC =∠BCE +∠DBC=∠ACB +∠ACE +∠DBC =∠ACB +∠ABD +∠DBC=∠ACB +∠ABC ,∵∠BAC=90°,∴∠ACB +∠ABC=90°,∴∠MPN=90°,∴△PMN 是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN 是等腰直角三角形,∴MN 最大时,△PMN 的面积最大,∴DE ∥BC 且DE 在顶点A 上面,∴MN 最大=AM +AN ,连接AM ,AN ,在△ADE 中,AD=AE=4,∠DAE=90°,∴AM=2,2在Rt △ABC 中,AB=AC=10,AN=5,2∴MN 最大=2+5=7,222∴S △PMN 最大=PM 2=×MN 2=×(7)2=.121212142492【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE ,PN=BD ,解(2)的关键是判断出△ABD ≌△ACE ,1212解(3)的关键是判断出MN 最大时,△PMN 的面积最大,是一道基础题目. 23.(11分)(2017•河南)如图,直线y=﹣x +c 与x 轴交于点A (3,0),与y 轴23交于点B ,抛物线y=﹣x 2+bx +c 经过点A ,B .43(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.【考点】HF :二次函数综合题.【分析】(1)把A 点坐标代入直线解析式可求得c ,则可求得B 点坐标,由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2)①由M 点坐标可表示P 、N 的坐标,从而可表示出MA 、MP 、PN 、PB 的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m 的方程,可求得m 的值;②用m 可表示出M 、P 、N 的坐标,由题意可知有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,可分别得到关于m 的方程,可求得m 的值.【解答】解:(1)∵y=﹣x +c 与x 轴交于点A (3,0),与y 轴交于点B ,23∴0=﹣2+c ,解得c=2,∴B (0,2),∵抛物线y=﹣x 2+bx +c 经过点A ,B ,43∴,解得,{‒12+3b +c =0c =2{b =103c =2∴抛物线解析式为y=﹣x 2+x +2;43103(2)①由(1)可知直线解析式为y=﹣x +2,23∵M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N ,∴P (m ,﹣m +2),N (m ,﹣m 2+m +2),2343103∴PM=﹣m +2,PA=3﹣m ,PN=﹣m 2+m +2﹣(﹣m +2)=﹣m 2+4m ,23431032343∵△BPN 和△APM 相似,且∠BPN=∠APM ,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN ⊥MN ,∴BN=OM=m ,∴=,即=,解得m=0(舍去)或m=2,BN AM PN PM m3‒m ‒43m 2+4m‒23m +2∴M (2,0);当∠NBP=90°时,则有=,PN PA BPMP ∵A (3,0),B (0,2),P (m ,﹣m +2),23∴BP==m ,AP==(3﹣m ),m 2+(‒23m +2‒2)2133(m ‒3)2+(‒23m +2)2133∴=,解得m=0(舍去)或m=,‒43m 2+4m 133(3‒m )133m‒23m +2118∴M (,0);118综上可知当以B ,P ,N 为顶点的三角形与△APM 相似时,点M 的坐标为(2,0)或(,0);118②由①可知M (m ,0),P (m ,﹣m +2),N (m ,﹣m 2+m +2),2343103∵M ,P ,N 三点为“共谐点”,∴有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,当P 为线段MN 的中点时,则有2(﹣m +2)=﹣m 2+m +2,解得m=3(三点重2343103合,舍去)或m=;12当M 为线段PN 的中点时,则有﹣m +2+(﹣m 2+m +2)=0,解得m=3(舍去)2343103或m=﹣1;当N 为线段PM 的中点时,则有﹣m +2=2(﹣m 2+m +2),解得m=3(舍去)或2343103m=﹣;14综上可知当M ,P ,N 三点成为“共谐点”时m 的值为或﹣1或﹣.1214【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m 的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m 的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。
长泰县2017届九年级上第二次(12月)月考数学试卷含答案
2016-2017上学期九年级第二次月考数学测试卷(满分:150分,考试时间:120分钟)一.选择题:(共10小题,每小题4分,满分40分.每小题只有一个正确的选项.)1. 与3是同类二次根式的是( ). A .31B .9C .18D .2 2. 已知A 、B 两地的实际距离AB=5km ,画在图上的距离=2cm ,则该地图的比 例尺为 ( ) A.2:5 B.1:2500 C. 1:250000 D. 250000:13、在Rt △ABC 中,∠C=90°,BC=3,AB=5,则sinB=( )A.23 B.35 C. 45 D. 344. 方程x (x -1)=2(x -1)的根是( )A 、x=2B 、x=1C 、x 1=1,x 2=3D 、x 1=1,x 2=25.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( )A.14k >-B.14k >-且0k ≠C.14k <-D.14k ≥-且0k ≠6.如右图,在直角坐标系中,矩形OABC 的顶点O 是坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是( )A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2)AFCBENMD7.如图,梯形ABCD 的对角线AC 、BD 相交于O ,G 是BD 的中点. 若AD = 3,BC = 9,则GO : BG =( ).A .1 : 2B .1 : 3C .2 : 3D .11 : 208、已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A. 3B. 6C. 3D.95、9.如右图,在Rt △中,∠°,于点.已知,,那么( )A. B. C. D.10、如图,小李晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到 达E 处时,测得影子EF 的长为2米,已知小李的身 高CM 是1.5米,那么路灯A 的高度AB 等于( )(A)4.5米 (B)6米 (C) 7.2米 (D)8米二、填空题(共6小题,每小题4分,满分24分.) 11.当x 时,322-x 在实数范围内有意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 河南省2017届九年级数学第二次模拟试题 (时间:100分钟,满分:120分) 一、选择题: (本大题共10小题,每小题3分,共30分) 1.9的平方根是( ) A.9 B. -9 C.3 D.±3 2.某市九年级参加中考人数约有128700人,数据128700用科学记数法表示为( ) A.1. 287³103 B.1.287³104 C.1. 287³105 D. 12. 87³104 3.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是( )
4.下列运算正确的是 A.a2²a3 =a6 B. (ab)2=a2b2 C. (a3)2=a5 D. a8÷a2=a4 5.如图,在下列条件中,不能判定直线a与b平行的是( ) A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180° 6.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是( ) A.101 B.91 C.31 D.21 7.已知点P (a+l,2a+1)关于原点对称的点在第四象限,则a的取值范围在数轴上 表示正确的是( ) 2
8.如图.在△ABC中,点D,E分别是边AB, AC的中点.AF上BC,垂足为点F,∠ADE=30°
DF=4,则BF的长为( ) A.4 B.8 C.23 D.43 9.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了 统计I绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、 众数分别是( ) A. 19,20,14 B. 18.4,20,20 C. 19, 20, 20 D. 18.4,25,20
10.张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示,以下说法错误的是( ) A.加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系式是y= -8t +25 B.途中加油21升 C.汽车加油后还可行驶4小时 D.汽车到达乙地时油箱中还余油6升 二、填空题(每小题3分,共5个小题,共15分)
11.计算:0231318 . 12.如图,A,B,C,D是⊙O上的四个点,∠C=110°,则∠BOD= 度.3
13.若关于x的一元二次方程x2-4x -m=0有两个不相等的实数根,则实数m的取值范 围是 . 14.如图,在△ABC中,BC=6,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点
E.交AC于点F,点P是优弧EF⌒上的一点,且∠EPF=50°,则图中阴影部分的面积是 .
15.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B'DE(点B’在四边形ADEC内),连接AB’,则AB’的长为 . 三、解答题(本大题共8个小题,满分75分)
16. (8分)先化简,再求值:ababaaba22,其中a、b满足式子 2
32ba=0.
17.(9分)为了深化课程改革,省实验积极开展校本课程建设,计划成立“增量阅读”、 “趣味数学”、“音乐舞蹈”和“戏剧英语”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了初中部分学生选择社团的意向.并将调查结果绘制成如下统计图表(不完整): 选择意向 增量阅读 趣味数学 音乐舞蹈 戏曲英语 其他 所占百分比 a 20% b 10% 5% 4
根据统计图表的信息,解答下列问题: (l)求本次抽样调查的学生总人数及a、b的值: (2)将条形统计图补充完整; (3)若该校共有5000名学生,试估计全校选择 “音乐舞蹈”社团的学生人数.
18. (9分)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A、C重合),过点P 作PE上AB,垂足为E,射线EP交AC⌒于点F,交过点C的切线于点D. (l)求证DC=DP (2)若∠CAB=30°,当F是AC⌒的中点时,判断以A、O、C、F为顶点的四边形是什么特殊四边形?说明理由;
19. (9分)如图,在平面直角坐标系中A点的坐标为(8,y),AB⊥x轴于点B. sin∠OAB=54,反比例函数y=xk的图象的一支经过AO的中点C,且与AB交于点D. (1)求反比例函数解析式: (2)若函数y=3x与y=xk的图象的另一支交于点M,求三角形OMB与四边形OCDB的面积的比.5
20. (9分)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是 45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°. (1)求∠BPQ的度数; (2)求该电线杆PQ的高度(结果精确到1m).
(参考数据:3≈1.7,3≈1.4)
21. (10分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价均为3元,目前两家超市同时在做促销活动: A超市:所有商品均打九折(按标价的90%)销售: B超市:买一副羽毛球拍送2个羽毛球. 设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题: (l)分别写出yA和yB与x之间的关系式; (2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算? (3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.
22. (10分)如图1,我们把对角线互相垂直的四边形叫做垂美四边形. (l)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边 形吗?请说明理由. (2)性质探宄:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.6
猜想结论: (要求用文字语言叙述) 写出证明过程(先画出图形,写出已知、求证) (3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.
第22题图
23. (11分)己知抛物线C1:y=ax2+bx+23 (a≠0)经过点A(-1,0)和B(3,0). (1)求抛物线C1的解析式,并写出其顶点C的坐标; (2)如图l,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C 分别平移到点D,E处,设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的 等腰直角三角形:求点F的坐标; (3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N, 点P为线段MN的中点,当点M从点B向点C运动时:①tan∠ ENM的值如何变化?请说 明理由;②点M到达点C时,直接写出点P经过的路线长. 7
初三下学期模拟试卷(二)答案 一、选择题(每小题3分,共10个小题,共30分) 1——5、 D C D B C 6——10、 A C D B C 二、填空题(每小题3分,共5个小题,共15分)
11、8 12、140 13、 14、 6﹣π. 15、2 三、解答题 (本大题共8个小题,满分75分)
16、(8分) 解:222abaabbaa
=2()abaaab
=1ab.„„„„„„„„„„5分 由已知得2,3ab, 原式=12323.„„„„„„„„„„8分
17、(9分)解:(1)本次抽样调查的学生总人数是:20÷10%=200, a=³100%=30%, b=³100%=35%,„„„„„„„„„„3分 (2)趣味数学的人数是:200³20%=40, 条形统计图补充如下:„„„„„„„„„„6分 (3)若该校共有5000名学生,则全校选择“音乐舞蹈”社团的 学生人数是5000³35%=1750(人), 答:全校选择“音乐舞蹈”社团的学生人数是1750人.„„„„„„„„„„9分
18、(9分) 证明:(1) 如图1 连接OC, ∵CD是⊙O的切线, ∴ OC⊥CD ∴∠OCD=90º, ∴∠DCA= 90º-∠OCA . 又PE⊥AB ,点D在EP的延长线上,
4m8
∴∠DEA=90º , ∴∠DPC=∠APE=90º-∠OAC. ∵OA=OC , ∴∠OCA=∠OAC. 图1 ∴∠DCA=∠DPC , ∴DC=DP. „„„„„„„„„„5分 (2) 如图2 ,四边形AOCF是菱形. 连接CF、AF, ∵F是 的中点, ∴ ∴ AF=FC . ∵∠BAC=30º , ∴ =60º ,
又AB是⊙O的直径, ∴ =120º, ∴ = 60º , 图2 ∴∠ACF=∠FAC =30º . ∵OA=OC, ∴∠OCA=∠BAC=30º, ∴⊿OAC≌⊿FAC (ASA) , ∴AF=OA , ∴AF=FC=OC=OA , ∴四边形AOCF是菱形. „„„„„„„„„„9分
19、(9分)解:(1)∵A点的坐标为(8,y), ∴OB=8, ∵AB⊥x轴于点B,sin∠OAB=,
∴, ∴OA=10, 由勾股定理得:AB=, ∵点C是OA的中点,且在第一象限内, ∴C(3,4),
∵点C在反比例函数y=的图象上, ∴k=12, ∴反比例函数解析式为:y=;„„„„„„„„„„5分
FE
D
AOB
CP
=CF
AF
AC
FE
D
AOB
CPBC
ACB=CF
AF