减速直流电机角度控制

减速直流电机角度控制
减速直流电机角度控制

//2014年课设1100850221 欧宇

//直流减速电机角度控制

//芯片89c52

//驱动芯片L298orL293

//仅供参考,勿ctrl+a and ctrl+c

#include //c51,c52头文件均可

#include

#define NOP _nop_()

#define uchar unsigned char

#define uint unsigned int

#define ulong unsigned long

#define LCD_COM 0

#define LCD_DAT 1

sbit LcdRS=P2^7;//1602用IO口衣初始化而定

sbit LcdRW=P2^6;

sbit LcdEN=P2^5;

sbit CA = P3^2;//控制程序用IO口

sbit CB = P2^1;

sbit IN1=P2^2;

sbit IN2=P2^3;

sbit ENA=P3^7;

sbit mark=P3^6;//电机停止标志占空比可调精度过高否者难以判断电机真正停止uint tjd,a,c=6000;//c=可为1500以上100000以下任意数值

int post=0,s,real=0,tpd;

void FreqA() interrupt 0

{

if(CB) {post--;real--;}//post可用于参加计算,r

else {post++;real++;}//real禁止用于别处,

} //real直接显示,防止角度产生错误?

void timer0() interrupt 1 using 1

{

ENA=~ENA; //周期为100000um 25khz更好,本人用c52实现会出现时序问题所以将就着点?

a=10000-c;//10000个单位占空比,?

if(!ENA){TH0=(65536-c)/256;//精度超高

TL0=(65536-c)%256;}

else {TH0=(65536-a)/256;

TL0=(65536-a)%256;}

}

void timer1() interrupt 3 using 2 //校正方法为线性差值减缩小法得到结果是tpd=post*0.18 {

s=(tpd-post*0.18)*60;//设置角度-实际角度60为MALAB计算得出较优比例

if(s>3000) s=3000;//限制最大速?否者电机输出脉冲过快引起误差

if(s<-3000) s=-3000;//负号表翻转

if(s>0) {IN1=0; IN2=1;TR0=1;TR1=1;mark=0;}//正反转

if(s<0) {IN1=1; IN2=0;TR0=1;TR1=1;mark=0;}

if(s>-10.8&&s<10.8){IN1=1; IN2=1;TR0=0;TR1=0;mark=1;}//10.8=0.18*60 if(s>-10.8&&s<10.8){IN1=1;IN2=1;TR0=0;mark=1;}不关T1,可监控扰动

if(s<0) s=-s;

if (s<2000) s=1500;//限制最小速度否者电机不转

c=10000-s; //PWM周期为10UM //s值越大,速度越快

//测试推荐1500

}

///////1602初始化///

void time(unsigned int t)//模块化1602 初始,百度很多

{

uint i;

for(i=0;i

}

void LCD_WRITE(unsigned char x,bit WS)

{

P1=x;

LcdRW=0; LcdRS=WS;

LcdEN=1; time(50); LcdEN=0;

}

void LCD_Initial()

{

LCD_WRITE(0x38,LCD_COM); time(600);

LCD_WRITE(0x38,LCD_COM); time(600);

LCD_WRITE(0x01,LCD_COM); time(600);

LCD_WRITE(0x06,LCD_COM); time(600);

LCD_WRITE(0x0c,LCD_COM); time(600);

}

void GotoXY(unsigned char x,unsigned char y)

{

unsigned char code table[4]={0x00,0x40,0x10,0x50};

LCD_WRITE(0x80+table[x]+y, LCD_COM);

}

void PutCh(uchar m)

{

LCD_WRITE(m,LCD_DAT);

}

void Print(unsigned char *str)

{

while(*str!='\0')

{

PutCh(*str);

str++;

}

}

/////////1602初始化///

void Delay1ms(uint count)

{

uint i,j;

for(i=0;i

for(j=0;j<120;j++);

}

//////键盘扫描///////

uchar getbit(uchar x)

{

if(x==0x0e) return 0;

if(x==0x0d) return 1;

if(x==0x0b) return 2;

if(x==0x07) return 3;

return 0;

}

unsigned char Getkey()

{

uchar m,k,n;

P0=0x0f; m=P0;

P0=0xf0; k=P0>>4;

P0=0xff; //此处使用了翻转扫描法

n=getbit(k)+(3-getbit(m))*4;//此处如果用case语句更明了if(k==0x0f) n=16;

return n;

}

//////键盘扫描///////

void main()

{

int p;

uchar i=0,key,k[4];

IE=0x8f;//1000 0111

IT0=1;

TMOD=0X11;

mark=0;

LCD_Initial();

GotoXY(0,0); Print("set:");

GotoXY(1,0); Print("real:");

Delay1ms(100);

while(1) //由于时序问题,此处使用定时器键盘互换工作原理{

if(TR0==0&&TR1==0)//if(TR0==0)表示电机无扰动已经停止才开始扫描键盘

{

key=Getkey();

if(key!=16)

{

Delay1ms(100);

k[i]=key;

Delay1ms(100);

if(i<3)

{

GotoXY(0,5+i);

PutCh(k[i]+'0');//显示按键按了什么

}

i++;

}

if(i==4)

{

i=0; //xxx=0

tjd=k[0]*100+k[1]*10+k[2];//tjd=xxx*10+key,能省很多空间哦

GotoXY(0,9);

PutCh((tjd/100)%10+'0');//显示真正录入角度

PutCh((tjd/10)%10+'0');

PutCh(tjd%10+'0');

TH1=(65536-500)/256;

TL1=(65536-500)%256;

TH0=(65536-20)/256;//快速进入中断调速否者电机失控

TL0=(65536-20)%256;

if(k[3]==10)tpd=tjd;post=0;//加度数

if(k[3]==11)tpd=post*0.18-tjd;//减度数

TR0=1; TR1=1;

IN1=0;//开启电机

}

}

GotoXY(1,7);

p=real*18;

LCD_WRITE((p/10000)%10+0x30,LCD_DAT); //显示绝对脉冲角度,

LCD_WRITE((p/1000)%10+0x30,LCD_DAT);

PutCh((p/100)%10+'0');

PutCh('.');

PutCh((p/10)%10+'0');

PutCh(p%10+'0');

}

}

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

基于MATLAB的直流电机速度控制仿真

密级: 科学技术学院 NANCHANG UNIVERSITY COLLEGE OF SCIENCE AND TECHNOLOGY 学士学位论文 THESIS OF BACHELOR (2012 —2016 年) 题目基于MATLAB的直流电机速度控制仿真学科部:信息学科部 专业:电气工程及其自动化 班级:电气122班 学号:7022812072 学生姓名:谢磊 指导教师:万旻 起讫日期:2015年12月至2016年5月31日

目录 目录 (1) 摘要: ........................................................................................................................................................... I Abstract:............................................................................................................................................................ II 第一章绪论 (1) 1.1 课题来源及意义 (1) 1.2 国内外发展现状 (1) 1.3研究目标及内容 (1) 1.3.1研究目标 (1) 1.3.2研究内容 (1) 第二章MATLAB介绍 (2) 2.1 MATLAB简介 (2) 2.2 MATLAB所蜕变的历史经过 (2) 2.3 MATLAB的特点 (2) 2.4 控制系统仿真中常用的函数介绍 (2) 2.5 Simulink的基本介绍 (3) 第三章直流电机速度控制系统的建模和仿真 (4) 3.1 直流电机的工作原理 (4) 3.3直流电机速度控制仿真研究原理 (5) 第四章直流电机速度控制仿真介绍 (6) 4.1 直流电机H桥关于H桥的驱动的设计 (6) 4.1.1、H桥驱动电路 (6) 4.1.2 使能控制和方向逻辑 (7) 4.2直流电机速度控制仿真图 (9) 4.3仿真的模拟 (9) 4.4 仿真的分析 (12) 第五章总结与展望 (13) 参考文献 (14) 致谢 (15)

直流电机转速控制

直流电机转速控制公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

直流电机转速控制 课程设计 姓名: 学号: 班级:

目录 1.直流电机转速控制方案设计 (2) 设计要求 (2) 设计框图 (2) 2.直流电机转速控制硬件设计 (3) 主要器件功能 (3) 硬件原理图 (6) 3.直流电机转速控制软件设计 (7) 4.调试 (8) 硬件测试 (8) 软件调试……………………………………………………………(11

1.直流电机转速控制方案设计 设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。 1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 设计框图 本课题中测量控制电路组成框图如下所示:

图1 2.直流电机转速控制硬件设计 主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电源正端为VCC,电源地为GND。 2、ZLG7290的核心是一块ZLG7290B芯片,它采用I2C接口,能直接驱动8位共阴式数码管,同时可扫描管理多达64只按键,实现人机对话的功能资源十分丰富。除具有自动消除抖动功能外,它还具有段闪烁、段点亮、段熄灭、功

基于Matlab的直流电机速度控制

基于Matlab的直流电机速度控制

系统仿真 课程设计报告 设计题目:基于Matlab的直流电机速度控制 专业:自动化 学生姓名: 班级学号: 指导教师: 开课日期2013年 7 月 1 日至2013年 7 月 13 日南京邮电大学自动化学院

一、课程设计题目 控制系统的执行机构常用直流电机来驱动,电路和原理示意图如下所示 其开环传递函 数 为 ()()0001 .0)15.0)(1.001.0(01 .02+++= +++= s s K R Ls b Js K V θ ,请用时域分析方法设计PID 控制器,使系统满足下列性能指标要求:当仿真输入是单位阶跃信号时,电机输出转速调整时间小于2秒,超调小于5%,稳态误差小于1%。 要求给出详细的设计步骤,matlab 源码及仿真曲线。 二、实验原理 本报告首先介绍了直流电动机的物理模型,并测量计算了它的具体参数。然后根据牛顿第二定律和回路电压法分别列写运动平衡方程式和电机电枢回路方程式,从而通过一些数学变换抽象出了以电压为输入、转速为输出、电流和转速为状态变量的数学模型。借助MATLAB 设计simulink 模块调整PID 模块的各项系数,使系统的阶跃响应达到了设计指标。 1、建立该系统的时域数学模型 由克希霍夫定律得: V=R*i+L +e 直流电机转矩和电枢电流关系为 T=Kt*I 电枢旋转产生反电动势与旋转运动角速度的关系为 e=

由牛顿定律,转子力矩平衡关系为 其中,T:负载转矩,:负载电流 V(s)=R*I(s)+L*sI(s)+E(s) 拉式变换:E=Ke(s) 划去中间变量得: 开环传递函数为: 2、PID控制器的功能 比例环节:Kp增大等价于系统的开环增益增加,会引起系统响应速度加快,稳态误差减少,超调量增加。当Kp过大时,会使闭环系 统不稳定; 积分环节:相当于增加系统积分环节个数,主要作用是消除系统的稳态误差。积分环节作用的强弱取决于积分时间常数Ti,Ti增大, 系统超调量变小,响应速度变慢; 微分环节:主要作用是提高系统的响应速度,同时减少系统超调量,抵消系统惯性环节的相位滞后不良作用,使系统稳定性明显改善。 Td偏大或偏小,都会使超调量增大,调整时间加长。由于该环节所产 生的控制量与信号变化速率有关,故对于信号无变化或变化缓慢的系 统微分环节不起作用。 三、设计步骤 方法1: 搭建simulink模块,利用经验调节法整定PID参数,使整个系统满足调节时间小于2秒,超调小于5%,稳态误差小于1%。 1、搭建的simulink模块图如下:

直流电机控制电路集锦

直流电机控制电路集锦 直流电机的类型 按:直流电机在家用电器、电子仪器设备、电子玩具、录相机及各种自动控制中都有广泛的应用。但对它的使用和控制,很多读者还不熟悉,而且其技术资料亦难于查找。直流电机控制电路集锦,将使读者“得来全不费功夫”! 在现代电子产品中,自动控制系统,电子仪器设备、家用电器、电子玩具等等方面,直流电机都得到了广泛的应用。大家熟悉的录音机、电唱机、录相机、电子计算机等,都不能缺少直流电机。所以直流电机的控制是一门很实用的技术。本文将详细介绍各种直流电机的控制技术。 站长的几句说明:本文内容比较详实完整,但遗憾的是原稿的印刷质量和绘图的确很差,尽管采取了很多措施,有些图仍可能看不太清楚。 直流电机,大体上可分为四类: 第一类为有几相绕组的步进电机。这些步进电机,外加适当的序列脉冲,可使主轴转动一个精密的角度(通常在1.8°--7.5°之间)。只要施加合适的脉冲序列,电机可以按照人们的预定的速度或方向进行连续的转动。 步进电机用微处理器或专用步进电机驱动集成电路,很容易实现控制。例如常用的SAAl027或SAAl024专用步进电机控制电路。 步进电机广泛用于需要角度转动精确计量的地方。例如:机器人手臂的运动,高级字轮的字符选择,计算机驱动器的磁头控制,打印机的字头控制等,都要用到步进电机。 第二类为永磁式换流器直流电机,它的设计很简单,但使用极为广泛。当外加额定直流电压时,转速几乎相等。这类电机用于录音机、录相机、唱机或激光唱机等固定转速的机器或设备中。也用于变速范围很宽的驱动装置,例如:小型电钻、模型火车、电子玩具等。在这些应用中,它借助于电子控制电路的作用,使电机功能大大加强。 第三类是所谓的伺服电机,伺服电机是自动装置中的执行元件,它的最大特点是可控。在有控制信号时,伺服电机就转动,且转速大小正比于控制电压的大小,除去控制信号电压后,伺服电机就立即停止转动。伺服电机应用甚广,几乎所有的自动控制系统中都需要用到。例如测速电机,它的输出正比于电机的速度;或者齿轮盒驱动电位器机构,它的输出正比于电位器移动的位置.当这类电机与适当的功率控制反馈环配合时,它的速度可以与外部振荡器频率精确锁定,或与外部位移控制旋钮进行锁定。 唱机或激光唱机的转盘常用伺服电机。天线转动系统,遥控模型飞机和舰船也都要用到伺服电机。 最后一类为两相低电压交流电机。这类电机通常是直流电源供给一个低频振荡器,然后再用低频低压的交流去驱动电机。这类电机偶尔也用在转盘驱动机构中。 步进电机的基本工作原理

直流电机控制

编号: 单片机 实训 (论文)说明书 题目:直流电机控制 院(系): 专业: 学生姓名: 学号: 指导教师: 2012 年12月27 日

目录 0.前言 (3) 1.用单片机控制直流电机转速的基本理论 (3) 1.1 直流电机调速原理 (3) 1.2 PWM基本原理及设计方案 (4) 2.硬件电路的设计 (5) 2.1 系统分析与硬件设计模块 (5) 2.2 设计该系统所需部分器件 (7) 2.3 直流电机的功能简介 (7) 2.4 直流电机调速控制系统模块 (7) 2.5 显示设计模块 (8) 2.6电机驱动设计模块 3.系统软件的设计 (11) 4.系统调试和结果分析 (13) 4.1仿真图形 (13) 5.结论和总结 (15) 参考文献 (15) 附录........................................... 错误!未定义书签。

摘要:本文介绍了基于单片机的直流电机PWM 调速的基本方法,直流电机调速的相关知识以及PWM 调速的基本原理和实现方法。重点介绍了基于MCS-51单片机的用软件生产PWM 信号以及信号占空比调节的方法。对于直流电机速度控制系统的实现提供了一个有效的途径。 本次实训设计主要任务是以四位共阳数码管显示电机速度,它能间接直观的观察到电机速度的变化,用独立键盘来手动控制电机的转速,其中控制核心部分是单片机,单片机输出微弱的电流信号经过L298N 驱动芯片放大从而使电机满足转速的要求。 关键字:四位共阳数码管;STC89C52单片机;PWM ;直流电机调速 0.前言 随着社会的发展,各种智能化的产品日益走入寻常百姓家。为了实现产品的便携性、低成品以及对电源的限制,小型直流电机应用相当广泛。对直流电机的速度调节,我们可以采用多种办法,本文在给出直流电机调整和PWM 实现方法的基础上,提供一种用单片机软件实现PWM 调速的方法。对基于MCS-51系列单片机实现直流电机调速系统进行研究和设计,能够在不同的按钮作用下分别实现直流电机的停止、加速、减速、正转、反转控制;能够实现基于MCS-51系列单片机的直流电机PWM 的调速设计。 本文研究的是基于MCS-51系列单片机的直流电机PWM 调速系统属于微机控制领域,通过对单片机的学习和研究对自己以后从事硬件产品的开发有一定的实际指导意义。 1.用单片机控制直流电机转速的基本理论 1.1 直流电机调速原理 根据励磁方式不同,直流电机分为自励和他励两种类型。不同励磁方式的直流电机机械特性曲线有所不同。对于直流电机来说,人为机械特性方程式为: 2 N ad a e N e t N U R R n T n n K K K φφ+= -=-? ( 1-1) 式中N U ,N φ—— 额定电枢电压、额定磁通量; e K ,t K --与电机有关的常数;

直流电机PID控制与仿真

长春大学 课程设计说明书 题目名称直流电机速度PID控制与仿真 院(系)电子信息工程学院 专业(班级)自动化13403 学生姓名张华挺 指导教师曹福成 起止日期2016.10.24——2016.11.04

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 直流电机速度PID控制与仿真 摘要:在本次课程设计中重点研究直流电机的工作原理以及直流电机的各种调速方法。在调速控制中,我们包含两个大的部分,一个是直流电机的开环控制,另一个是直流电机的闭环控制,在直流电机的闭环控制中,又分别介绍转速闭环控制和PID闭环控制,并且对直流电机的每个模型进行建模并仿真,观察其动态性能,分析研究直流电机的各个控制的优缺点。 关键词:直流电动机;转速控制;PID控制;Matlab仿真

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ DC Motor Speed PID Control and Simulation Abstract: In this curriculum design, the work principle of DC motor and DC motor speed control methods are studied. In speed control, we include two parts, one is the open loop control of DC motor, the other is a closed loop DC motor control in DC motor closed-loop control, and introduces the speed closed-loop control and PID control, and each model of the DC motor for modeling and simulation to observe the dynamic performance analysis of DC motor control and the advantages and disadvantages of each. Keywords: DC motor; speed control; PID control; Matlab simulation

直流电机控制

(1)直流电机选择 由于本次毕业设计采用的是飞思卡尔公司提供的伺服电机,伺服电机内部的转子是永磁铁,驱动器控制的U/V/W 三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数),而且伺服电机一般是功率小,运行精确,能高速制动,惯量小,适合闭环控制,也就是能检测到实际位置和理论位置的误差,并消除。 (2)直流电机的控制 PWM控制 脉宽调制的全称为:Pulse Width Modulator,简称PWM。由于它的特殊性能,常被用作直流回路中灯具调光或直流电动机调速。这里将要介绍的就是利用脉宽调制(PWM)原理制作的马达控制器。该装置可用于12v或24v直流电路中,两者间只需稍做变动。它主要是通过改变输出方波的占空比,使得负载上的平均接通时间从0-100%变化,以达到调整负载亮度/速度的目的。PWM信号一般可有微控制器产生。如图1

图1 微控制器产生的PWM控制信号 (3)直流电机的反馈与控制 旋转编码器 旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。编码器若以信号原理来分,有增量型编码器,绝对型编码器。增量型编码器(旋转型)由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z

直流电机控制

直流电机控制电路 永磁式换向器直流电机,是应用很广泛的一种。只要在它上面加适当电压。电机就转动。图9是这种电机的符号和简化等效电路。 工作原理 这种电机由定子、转子、换向器(又称整流子)、电刷等组成,定子用作产生磁场。转于是在定子磁场作用下,得到转矩而旋转起来。换向器及时改变了电流方向,使转子能连续旋转下去。也就是说,直流电压加在电刷上,经换向器加到转子线圈,流过电流而产生磁场,这磁场与定子的固定磁场作用,转子被强迫转动起来。当它转动时,由于磁场的相互作用,也将产生反电动势,它的大小正比于转子的速度,方向和所加的直流电压相反。图9(b)给出了等效电路。Rw代表转子绕组的总电阻,E代表与速度相关的反电动势。 永磁式换流器电机的特点 ·当电机负载固定时,电机转速正比于所加的电源电压。 ·当电机直流电源固定时,电机的工作电流正比于转予负载的大小。 ·加于电机的有效电压,等于外加直流电压减去反电动势。因此当用固定电压驱动电机时,电机的速度趋向于自稳定。因为负载增加时,转子有慢下来的倾向,于是反电动势减少,而使有效电压增加,反过来又将使转子有快起来的倾向,所以总的效果使速度稳定。 ·当转子静止时,反电动势为零,电机电流最大。其最大值等于V/Rw(这儿V是电源电压)。最大·电流出现在刚起动的条件。 ·转子转动的方向,可由电机上所加电压的极性来控制。 ·体积小,重量轻。起动转矩大。 由于具备上述的那些特点,所以在医疗器械、小型机床、电子仪器、计算机、气象探空仪、探矿测井、电动工具、家用电器及电子玩具等各个方面,都得到广泛的应用。 对这种永磁式电机的控制,主要有电机的起停控制、方向控制、可变速度控制和速度的稳定控制。 1、电机的起/停控制 电机的起/停控制,最简单最原始的方法是在电机与电源之间,加一机械开关。或者用继电器的触点控制。大家都比较熟悉,故不举例。 现在比较流行的方法,是用开关晶体管来代替机械开关,无触点、无火花干扰,速度快。电路如图10(a)所示。当输入端为低电平时,开关晶体管Q1截止,电机无电流而处于停止状态。如果输入端为高电平时,Q1饱和导通,电机中有电流,因此电机起动运转。图中二极管D1和D2是保护二极管,防止反电动势损

直流电机速度控制

目录 摘要.................................................. II 第1章绪论. (1) 第2章系统论述 (3) 2.1 总体方案 (3) 2.2 基本原理 (3) 2.3 原理框图 (3) 第3章系统的硬件设计 (5) 3.1 单片机最小系统的设计 (5) 3.2 电源电路设计 (6) 3.3 直流电机驱动电路设计 (7) 3.4 显示模块设计 (8) 3.5 按钮电路设计 (8) 3.6 元件参数选择 (9) 第4章系统的软件设计 (11) 4.1 总体方案 (11) 4.2 相关软件介绍 (12) 4.3 应用软件的编制、调试 (13) 第5章仿真结果与分析 (14) 5.1仿真电路图 (14) 5.2 仿真结果 (14) 第6章总结 (17) 参考文献 (18) 附录A:系统整体硬件电路图 (19) 附录B:程序代码 (20)

摘要 当今,计算机控制系统已经在各行各业中得到了广泛的应用和发展,而直流驱动控制作为电器传动的主流在现代化生产中起着主导作用。由于生产过程的不同要求,需要电动机进行不同转速的运转。为此,研究并制造高性能、高可靠性的直流电动机控制系统有着十分重要的显示意义。 本设计主要运用AT89C51单片机为核心硬件,对直流电动机进行速度控制。并且辅助以硬件部分的驱动、复位、LED显示等电路,软件部分对AT89C51进行模块化程序的输入,通过按钮控制,实现对直流电动机的正转、反转、加速、减速和停止等控制功能。同时,由LED与电动机转速显示控制效果。利用AT89C51芯片进行低成本直流电动机控制系统设计,简化系统构成、提高系统性能,满足了生产要求。 关键词:计算机控制 AT89C51单片机直流电动机

基于51单片机控制直流电机的设计

可以实现的功能是: 按下左转键则开始向左转动 按下右转键则向右转动 按下停止键则开始逐渐停止转动 按下调速键一次则会加速一档 按下调速键二次则会加速二档 按下调速键三次则会加速三档 按下调速键四次则会加速四档 按下调速键五次则会回到最初速度重新记档位 设计思路: 直流电机只要能提供一定的直流就可以转动,改变电压极性可以改变转动方向,可以通过给直流电机提供脉冲信号来驱动它,脉冲信号的占空比可以影响到直流电机的平均速度,因此可以通过调整占空比从而能实现调速的目的。直流电机的驱动电路要有过流保护作用,图中的二极管就直到这个作用,另外电机的驱动电流是比较大的所以需要用三极管来放大电流。程序的关键就是如何实现占空比的调整,这个可以通过对51单片机定时器重装初值进行改变,从而改变时间。用51实现PWM信号的输出,相对麻烦点,要是AVR就可以方便地实现PWM信号,由见51单片机的局限性与AVR单片机的优势。 原理图

详细程序: #include #define uchar unsigned char #define uint unsigned int sbit PW1=P2^0 ; sbit PW2=P2^1 ; //控制电机的两个输入 sbit accelerate=P2^2 ; //调速按键 sbit stop=P2^3 ; //停止按键 sbit left=P2^4 ; //左转按键 sbit right=P2^5 ; //右转按键 #define right_turn PW1=0;PW2=1 //顺时针转动 #define left_turn PW1=1;PW2=0 //逆向转动 #define end_turn PW1=1;PW2=1 //停转 uint t0=25000,t1=25000; //初始时占空比为50% uint a=25000; // 设置定时器装载初值 25ms 设定频率为20Hz uchar flag=1; //此标志用于选择不同的装载初值 uchar dflag; //左右转标志 uchar count; //用来标志速度档位 void keyscan(); //键盘扫描 void delay(uchar z); void time_init(); //定时器的初始化 void adjust_speed(); //通过调整占空比来调整速度 void main()

双闭环直流电机调速的matlab仿真

双闭环直流电机调速系统的设计与MATLAB 仿真 双闭环调速系统的工作原理 转速控制的要求和调速指标 生产工艺对控制系统性能的要求经量化和折算后可以表达为稳态和动态性能指标。设计任务书中给出了本系统调速指标的要求。深刻理解这些指标的含义是必要的,也有助于我们构想后面的设计思路。在以下四项中,前两项属于稳态性能指标,后两项属于动态性能指标 调速范围D 生产机械要求电动机提供的最高转速和最低转速之比叫做调速范围,即 m in m ax n n D = (1-1) 静差率s 当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落,与理想空载转速之比,称作静差率,即 %1000 ??= n n s nom (1-2) 静差率是用来衡量调速系统在负载变化下转速的稳定度的。 跟随性能指标 在给定信号R (t )的作用下,系统输出量C (t )的变化情况可用跟随性能指标来描述。具体的跟随性能指标有下列各项:上升时间r t ,超调量σ,调节时间s t . 抗扰性能指标 此项指标表明控制系统抵抗扰动的能力,它由以下两项组成:动态降落%max C ?,恢复时间v t . 调速系统的两个基本方面 在理解了本设计需满足的各项指标之后,我们会发现在权衡这些基本指标,即

1) 动态稳定性与静态准确性对系统放大倍数的要求; 2) 起动快速性与防止电流的冲击对电机电流的要求。 采用转速负反馈和PI 调节器的单闭环调速系统,在保证系统稳定的条件下,实现转速无静差,解决了第一个问题。但是,如果对系统的动态性能要求较高,例如要求快速启制动,突加负载动态速降小等等,则单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流和转矩。 在电机最大电流受限的条件下,希望充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流为允许的最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳态后,又让电流立即降低下来,使转速马上与负载相平衡,从而转入稳态运行。在单闭环调速系统中,只有电流截止负反馈环节是专门用来控制电流的,但它只是在超过临界电流I dcr 值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。带电流截止负反馈的单闭环调速系统起动时的电流和转速波形如图1-1a 所示。 a) b) 图1-1 调速系统启动过程的电流和转速波形 a) 带电流截止负反馈的单闭环调速系统的启动过程 b) 理想快速启动过程 当电流从最大值降低下来以后,电机转矩也随之减小,因而加速过程必然拖 I d t 0 I 0 t

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

直流电动机的基本原理:

一、直流电动机的基本原理: 下面电机原理部分的内容主要摘自谢明琛教授编著的《电机学》: 图示为一个最简单的直流电机模型,定子上有固定的永久磁铁做磁极,转子为圆柱型的铁芯,上面嵌有线圈(图中导体ab和cd连成一个线圈),线圈的首末端分别连接在两片彼此绝缘的圆弧型换向片上,换向片固定在转轴上,换向片构成的整体称为换向器,整个转动部分成为电枢,为了把电枢和外电路接通,在换向片上放置了两件空间位置固定的电刷A和B,当电枢转动时,电刷A只能与转到上面的换向片接触,电刷B只能与转到下面的换向片接触。 当这个原理样机作为直流发电机运行时,用原动机拖动电枢,使之以恒速n沿逆时针方向旋转,若导体的有效长度为l ,线速度为v,导体所在位置的磁通密度为 ,则在每根导体中感应出电势为 = v l e.. B δ

导体感应电势的方向用右手定则确定,在图示的瞬间,ab导体处在N极下,其电动势的方向由b—a,而导体cd处·在S极下,其电动势方向由d—c,整个线圈的电动势为2e,方向由d—a,如果线圈转过180度,则ab导体和cd导体的电动势方向均发生改变,故线圈电动势为交变电动势。 但通过测量,我们却发现在电刷A/B间的电动势却是单向的,这是为什么呢?这是因为电刷A只与N极下的导体接触,当ab导体在N极下时,电动势方向为b—a—A,电刷A的极性为+,在另一个时刻,导体cd转到N极下时,电动势的方向为c—d—A,电刷A的极性仍为+,可见电刷A的极性永远为+,同理,电刷B的极性就永远为-,故电刷A/B间的电动势为直流电动势。 若把上述电机模型用做电动机运行,在电刷A/B间施加直流电压,使电流从正极电刷A流入,通过线圈abcd,经负极电刷B流出,由于电流始终从N极下的导体流入,S极下的导体流出,根据电磁力定律可知,上下两根导体受到的电磁力方向始终为逆时针方向,它们产生的电磁力矩的方向也始终是逆时针方向,使电机按逆时针方向旋转,从上面的分析可以看出,在直流电机的绕组里,电枢线圈里的电流方向是交变的,但产生的电磁转距的方向却是单向的,这也是由于有换向器的原因。 以上是直流电机运行的基本原理,而对直流电机的基本结构,相信大家已经非常熟悉,我就不再浪费大家的时间,下面,就首先从电动机的额定参数的定义开始给大家开始介绍电机的运行方程及特点。

直流电机原理与控制方法

专业资料 电机简要学习手册 2015-2-3

一、直流电机原理与控制方法 1直流电机简介 直流电机(DM)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能 (直流发电机)的旋转电机。 它是能实现直流电能和机械 能互相转换的电机。当它作电 动机运行时是直流电动机,将 电能转换为机械能;作发电机 运行时是直流发电机,将机械 能转换为电能。 直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。 2 直流电动机基本结构与工作原理 2.1 直流电机结构

如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。定子按照励磁可分为直励,他励,复励。电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。 2.2 直流电机工作原理 如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和 cd收到电磁力的作用, 其方向可由左手定则判 定,两段导体受到的力 形成了一个转矩,使得 转子逆时针转动。如果 转子转到如上图(b)所 示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定

基于Matlab的直流电机速度控制

系统仿真 课程设计报告 设计题目:基于Matlab的直流电机速度控制 专业:自动化 学生姓名: 班级学号: 指导教师: 开课日期2013年 7 月 1 日至2013年 7 月 13 日南京邮电大学自动化学院

一、课程设计题目 控制系统的执行机构常用直流电机来驱动,电路和原理示意图如下所示 其开环传递函数为 ()()0001 .0)15.0)(1.001.0(01 .02 +++=+++= s s K R Ls b Js K V θ ,请用时域分析方法设计PID 控制器,使系统满足下列性能指标要求:当仿真输入是单位阶跃信号时,电机输出转速调整时间小于2秒,超调小于5%,稳态误差小于1%。 要求给出详细的设计步骤,matlab 源码及仿真曲线。 二、实验原理 本报告首先介绍了直流电动机的物理模型,并测量计算了它的具体参数。然后根据牛顿第二定律和回路电压法分别列写运动平衡方程式和电机电枢回路方程式,从而通过一些数学变换抽象出了以电压为输入、转速为输出、电流和转速为状态变量的数学模型。借助MATLAB 设计simulink 模块调整PID 模块的各项系数,使系统的阶跃响应达到了设计指标。 1、建立该系统的时域数学模型 由克希霍夫定律得:

V=R*i+L+e 直流电机转矩和电枢电流关系为 T=Kt*I 电枢旋转产生反电动势与旋转运动角速度的关系为 e= 由牛顿定律,转子力矩平衡关系为 其中,T:负载转矩, :负载电流 V(s)=R*I(s)+L*sI(s)+E(s) 拉式变换:E=Ke(s) 划去中间变量得: 开环传递函数为: 2、PID控制器的功能 比例环节:Kp增大等价于系统的开环增益增加,会引起系统响应速度加快,稳态误差减少,超调量增加。当Kp过大时,会使闭环系统不稳定; 积分环节:相当于增加系统积分环节个数,主要作用是消除系统的稳

基于STC89C52单片机的直流电机角位移控制(自动控制课程设计)

苏州大学电子信息学院 自动控制原理 项目设计报告 项目名称:直流电机控制的角位移控制系统 班级: 姓名: 指导老师: 学号: 日期: 联系方式:

目录 一、设计题目 (5) 1.1 设计要求 (5) 1.2 项目分析 (5) 二、系统方案 (6) 2.1方案选择 (6) 三、系统硬件选择 (7) 3.1 直流电机 (7) 3.2主控制芯片方案的选择 (8) 3.3显示模块的选择 (8) 3.4电机的驱动模块的选择 (9) 3.5稳压模块的选择 (9) 3.6光栅 (10) 3.7光电传感器 (10) 四、算法设计 (10) 4.1 PID与PWM算法 (10) 4.2 数字PID参数的确定 (13) 五、硬件电路设计与实现 (14) 5.1单片机最小系统 (14) 5.2系统显示模块 (15) 5.3 直流电机驱动模块和稳压模块 (15) 5.4 直流电机测速模块 (16) 5.5总体电路设计 (16) 六、系统软件设计 (16) 6.1 软件流程图 (16) 6.2 软件(见附录) (18) 七、性能指标 (18) 7.1误差分析 (18) 八、心得体会 (19) 九、附录 (19)

摘要 自动控制技术是20世纪发展最快、影响最大的技术之一,也是21世纪最重要的高技术之一。今天,技术、生产、军事、管理、生活等各个领域,都离不开自动控制技术。就定义而言,自动控制技术是控制论的技术实现应用,是通过具有一定控制功能的自动控制系统,来完成某种控制任务,保证某个过程按照预想进行,或者实现某个预设的目标。随着计算机技术的发展,控制技术走向了自动化的方向。随着计算机技术的日渐成熟,自动化控制技术与计算机的结合已经成为必然。 本次实验是基于STC89C52单片机的直流减速电机角度控制系统,运用PWM(脉冲宽度调制)方法控制电机,采用增量式光电编码器将转动角度转化为脉冲数进行角度测量,并反馈到单片机,单片机根据反馈信息利用PID算法发出控制命令。 关键词:STC89C52、直流减速电机、光电编码器、PID算法、角位移 Abstract Automatic control technology is the fastest development in twentieth Century, one of the largest technologies, is the most important one of the high technology in twenty-first Century. Today, all fields of technology, production, management, military and life, all cannot do without the automatic control

直流电机工作原理图解

直流电机工作原理图解 一.直流电机的物理模型图解释。 这是分析直流电机的物理模型图。其中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。转动部分有环形铁心和绕在环形铁心上的绕组。(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的) 上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。定子与转子之间有一气隙。在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。换向片之间互相绝缘,由换向片构成的整体称为换向器。换向器固定在转轴上,换向片与转轴之间亦

互相绝缘。在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。 二.直流发电机的工作原理 直流发电机是机械能转换为直流电能的电气设备。 如何转换?分以下步骤说明: 设原动机拖动转子以每分转n转转动; 电机内部的固定部分要有磁场。这个磁场可以是如图示的磁铁也可以是磁极铁心上绕套线圈,再通过直流电产生磁场。其中 If 称之为励磁电流。这种线圈每个磁极上有一个,也就是,电机有几个磁极就有几个励磁线圈,这几个线圈串联(或并联)起来就构成了励磁绕组。这里要注意各线圈通过电流的方向不可出错。在以上条件下环外导体将感应电势,其大小与磁通密度 B 、导体的有效长度 l 和导体切割磁场速度 v 三者的乘积成正比,其方向用右手定则判断。 但是要注意某一根转子导体的电势性质是交流电。而经电刷输出的电动势确是直流电了。这便是直流发电机的工作原理。如下动画演示: 三.直流电动机的工作原理

直流电机原理与控制方法

电机简要学习手册 2015-2-3

一、直流电机原理与控制方法 1直流电机简介 直流电机(DM)是指能将 直流电能转换成机械能(直流 电动机)或将机械能转换成直 流电能(直流发电机)的旋转 电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。 直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。

2 直流电动机基本结构与工作原理 2.1 直流电机结构 如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。定子按照励磁可分为直励,他励,复励。电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。 2.2 直流电机工作原理 如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和 cd收到电磁力的作用, 其方向可由左手定则判 定,两段导体受到的力 形成了一个转矩,使得 转子逆时针转动。如果 转子转到如上图(b)所

示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。这就是直流电动机的工作原理。外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。 发电机的原理则是电机的逆过程:原动机提供转矩,利用法拉第电磁感应产生直流电流。 如下图,比较清晰的说明了直流电动机的原理。 3直流电机重要特性 如下图,更加清晰的揭示了直流电机电流电压与转速转矩之间的关系。 我们可以得到直流电机的四个基本方程:

相关文档
最新文档