高考物理考前押题 功能关系在电磁学中的应用
高考物理二轮复习 专题精讲 第5讲 功能关系在电学中的应用课件课件

• 真题体验 • 1.(2012·新课标全国,18)(多选)如图2-5
-1,平行板电容器的两个极板与水平地面 成一角度,两极板与一直流电源相连.若 一带电粒子恰能沿图中所示水平直线通过 电容器,则在此过程中,该粒子
• ( ).
图2-5-1
• A.所受重力与电场力平衡 加
B.电势能逐渐增
• C.动能逐渐增加 运动
点电荷,固定在图2-5-4中P、Q两点, MN为PQ连线的中垂线,交PQ于O点,A为 MN上的一点.一带负电的试探电荷q,从A 点由静止释放,只在静电力作用下运动,取 无限远处的电势为零,则
• ( ).
图2-5-4
• A.q由A向O的运动是匀加速直线运动 • B.q由A向O运动的过程电势能逐渐减小 • C.q运动到O点时的动能最大 • D.q运动到O点时电势能为零
• 思考3 洛伦兹力对运动电荷做功吗?安培力对 通电导线做功吗?
• 研讨:洛伦兹力对运动电荷不做功.安培力对 通电导线可做正功,可做负功,也可不做功.
• 思考4 电磁感应中功能关系及焦耳热的计算方 法是什么?
• 研讨:在电磁感应中克服安培力做多少功,就 有多少其他形式的能转化为电能:ΔE其他=ΔE电; 安培力做多少功,就有多少电能转化为其他形式 的能:ΔE电=ΔE其他,W=IUt Q=I2Rt.
(1)绝缘棒gh与金属棒ef碰前瞬间绝缘棒的速率; (2)两棒碰后,安培力对金属棒做的功以及碰后瞬间金属 棒的加速度.
• 6.(2013·浙江卷,25)为了降低潜艇噪音,提高其前
进速度,可用电磁推进器替代螺旋桨.潜艇下方有 左、右两组推进器,每组由6个相同的、用绝缘材料 制成的直线通道推进器构成,其原理示意图如图2- 5-10.在直线通道内充满电阻率ρ=0.2 Ω·m的海水, 通道中a×b×c=0.3 m×0.4 m×0.3 m的空间内,存在 由超导线圈产生的匀强磁场,其磁感应强度B=6.4 T、方向垂直通道侧面向外.磁场区域上、下方各有 a×b=0.3 m×0.4 m的金属板M、N,当其与推进器专 用直流电源相连后,在两板之间的海水中产生了从N 到M、大小恒为I=1.0×103 A的电流,设该电流只存
专题05 能量观点和动量观点在电磁学中的应用 【讲】-2023年高考物理二轮热点题型归纳(解析)

专题05能量观点和动量观点在电磁学中的应用【要点提炼】1.电磁学中的功能关系(1)电场力做功与电势能的关系:W 电=-ΔE p 电。
推广:仅电场力做功,电势能和动能之和守恒;仅电场力和重力及系统内弹力做功,电势能和机械能之和守恒。
(2)洛伦兹力不做功。
(3)电磁感应中的功能关系其他形式的能量――→克服安培力做功电能――→电流做功焦耳热或其他形式的能量2.电路中的电功和焦耳热(1)电功:W 电=UIt ;焦耳热:Q =I 2Rt 。
(2)纯电阻电路:W 电=Q =UIt =I 2Rt =U 2Rt ,U =IR 。
(3)非纯电阻电路:W 电=Q +E 其他,U >IR 。
(4)求电功或电热时用有效值。
(5)闭合电路中的能量关系电源总功率任意电路:P 总=EI =P 出+P 内纯电阻电路:P 总=I 2(R +r )=E 2R +r电源内部消耗的功率P 内=I 2r =P 总-P 出电源的输出功率任意电路:P 出=UI =P 总-P 内纯电阻电路:P 出=I 2R =E 2R(R +r )2P 出与外电阻R 的关系电源的效率任意电路:η=P出P总×100%=UE×100%纯电阻电路:η=RR+r×100%由P出与外电阻R的关系可知:①当R=r时,电源的输出功率最大为P m=E24r。
②当R>r时,随着R的增大输出功率越来越小。
③当R<r时,随着R的增大输出功率越来越大。
④当P出<P m时,每个输出功率对应两个外电阻R1和R2,且R1R2=r2。
3.动量观点在电磁感应中的应用(1)动量定理在电磁感应中的应用导体在磁场对感应电流的安培力作用下做非匀变速直线运动时,在某过程中由动量定理有:BL I1Δt1+BL I2Δt2+BL I3Δt3+…=m v-m v0通过导体横截面的电荷量q=I1Δt1+I2Δt2+I3Δt3+…得BLq=m v-m v0,在题目涉及通过电路横截面的电荷量q时,可考虑用此表达式。
专题04+功能关系的理解与应用-高考物理黄金押题+Word版含解析

【高考考纲】高考命题特点:①功和功率的计算.②利用动能定理分析简单问题.③对动能变化、重力势能变化、弹性势能变化的分析.④对机械能守恒条件的理解及机械能守恒定律的简单应用.交汇命题的主要考点有:①结合v-t、F-t等图象综合考查多过程的功和功率的计算.②结合应用动能定理、机械能守恒定律和能量守恒定律,结合动力学方法解决多运动过程问题.1.机械能守恒定律的应用为每年高考的重点,分析近几年高考试题,命题规律有以下三点:(1)判断某系统在某过程中机械能是否守恒.(2)结合物体的典型运动进行考查,如平抛运动、圆周运动、自由落体运动.(3)在综合问题的某一过程中遵守机械能守恒定律时进行考查.2.功能关系的应用为每年高考的重点和热点,在每年的高考中都会涉及,分析近几年考题,命题规律有如下特点:(1)考查做功与能量变化的对应关系.(2)涉及滑动摩擦力做功与产生内能(热量)的考查.3. 传送带是最重要的模型之一,近两年高考中虽没有出现,但解决该问题涉及的知识面较广,又能与平抛运动、圆周运动相综合,因此预计在高考中出现的可能性很大,题型为选择题或计算题.【真题感悟】例1、(多选)(2018·全国卷Ⅲ·19)地下矿井的矿石装在矿车中,用电机通过竖井运送到地面.某竖井中矿车提升的速度大小v随时间t的变化关系如图1所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等.不考虑摩擦阻力和空气阻力.对于第①次和第②次提升过程,( )图1A.矿车上升所用的时间之比为4∶5B .电机的最大牵引力之比为2∶1C .电机输出的最大功率之比为2∶1D .电机所做的功之比为4∶5答案 AC在加速上升阶段,由牛顿第二定律知,F -mg =ma ,F =m (g +a )第①次在t 0时刻,功率P 1=Fv 0,第②次在t 02时刻,功率P 2=F ·v 02, 第②次在匀速阶段F ′=mg ,P 2′=F ′·v 02=mg ·v 02<P 2, 可知,电机输出的最大功率之比P 1∶P 2=2∶1,C 项正确;由动能定理知,两个过程动能变化量相同,均为零,克服重力做功相同,故两次电机做功也相同,D 项错误.【名师点睛】1.求功思路是:根据物体的受力情况和物体的运动情况判断待求功对应的力是恒力还是变力.2.求恒力做功的方法有:用功的公式直接求解、正交分解力或位移后再求解;求变力做功的方法有:运用公式W =Pt 功率恒定、图象法、动能定理法求解.3.求功率思路是:先判断待求功率是瞬时功率还是平均功率,根据公式P = Fv cos α求解瞬时功率,根据公式P =W t求解平均功率.【变式探究】(2017·全国卷Ⅱ)如图1所示,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环.小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力( )图1A.一直不做功B.一直做正功C.始终指向大圆环圆心D.始终背离大圆环圆心答案 A例2.(2018·全国卷Ⅱ·14)如图4,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定( )图4A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功答案 A解析由题意知,W拉-W阻=ΔE k,则W拉>ΔE k,A项正确,B项错误;W阻与ΔE k的大小关系不确定,C、D 项错误.【名师点睛】1.应用动能定理解题的基本思路(1)确定研究对象和研究过程;(2)进行运动分析和受力分析,确定初、末速度和各力做功情况,利用动能定理全过程或者分过程列式.2.动能定理的应用(1)动能定理是根据恒力做功和直线运动推导出来的,但是也适用于变力做功和曲线运动.(2)在涉及位移和速度而不涉及加速度和时间问题时,常选用动能定理分析.【变式探究】(2018·全国卷Ⅲ)如图10所示,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道P A 在A 点相切,BC 为圆弧轨道的直径,O 为圆心,OA 和OB 之间的夹角为α,sin α=35.一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用.已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:图10(1)水平恒力的大小和小球到达C 点时速度的大小;(2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间.【解析】(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有F 0mg =tan α ①F 2=(mg )2+F 20 ②设小球到达C 点时的速度大小为v ,由牛顿第二定律得F =m v 2R③ 由①②③式和题给数据得F 0=34mg④ v =5gR 2. ⑤(3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有v ⊥t +12gt 2=CD ⑩v ⊥=v sin α ⑪由⑤⑦⑩⑪式和题给数据得 t =355R g. ⑫ 【答案】 (1)34mg 5gR 2 (2)m 23gR 2 (3)355R g例3. (2018·全国卷Ⅰ)如图1所示,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R ;bc 是半径为R 的四分之一圆弧,与ab 相切于b 点.一质量为m 的小球,始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动.重力加速度大小为g .小球从a 点开始运动到其轨迹最高点,机械能的增量为( )图1A .2mgRB .4mgRC.5mgR D.6mgR【答案】C【名师点睛】1.机械能守恒的判断(1)利用机械能守恒的定义判断;(2)利用做功判断;(3)利用能量转化判断;(4)对于绳突然绷紧和物体间非弹性碰撞问题,机械能往往不守恒.2.解题步骤(1)选取研究对象,分析物理过程及状态;(2)分析受力及做功情况,判断机械能是否守恒;(3)选取参考面,根据机械能守恒列式.3.应用技巧对于连接体的机械能守恒问题常常应用重力势能的减少量等于动能的增加量来分析和求解.【变式探究】(多选)如图6甲所示,在竖直平面内固定一光滑的半圆形轨道ABC,小球以一定的初速度从最低点A冲上轨道,图乙是小球在半圆形轨道上从A运动到C的过程中,其速度平方与其对应高度的关系图象.已知小球在最高点C受到轨道的作用力为1.25 N,空气阻力不计,g=10 m/s2,B点为AC轨道中点,下列说法正确的是( )图6A.小球质量为0.5 kgB.小球在B点受到轨道作用力为4.25 NC.图乙中x=25 m2/s2D.小球在A点时重力的功率为5 W答案B C例4、(2018·全国卷Ⅰ·18)如图8,abc是竖直面内的光滑固定轨道,ab水平,长度为2R;bc是半径为R 的四分之一圆弧,与ab相切于b点.一质量为m的小球,始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动.重力加速度大小为g.小球从a点开始运动到其轨迹最高点,机械能的增量为()图8A .2mgRB .4mgRC .5mgRD .6mgR答案 C【名师点睛】1.常见的与能量有关的力学综合题有单一物体多过程和多个物体多过程两大类型.2.联系前后两个过程的关键物理量是速度,前一个过程的末速度是后一个过程的初速度.3.当涉及功、能和位移时,一般选用动能定理、机械能守恒定律或能量守恒定律,题目中出现相对位移时,应优先选择能量守恒定律.【变式探究】(2017·全国卷Ⅲ)如图9所示,一质量为m ,长度为l 的均匀柔软细绳PQ 竖直悬挂.用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距13l .重力加速度大小为g .在此过程中,外力做的功为( )图9A.19mgl B.16mgl C.13mgl D.12mgl 【答案】A【解析】以均匀柔软细绳MQ 段为研究对象,其质量为23m ,取M 点所在的水平面为零势能面,开始时,细绳MQ 段的重力势能E p1=-23mg ·l 3=-29mgl ,用外力将绳的下端Q 缓慢地竖直向上拉起至M 点时,细绳MQ 段的重力势能E p2=-23mg ·l 6=-19mgl ,则外力做的功即克服重力做的功等于细绳MQ 段的重力势能的变化,即W =E p2-E p1=-19mgl +29mgl =19mgl ,选项A 正确.【黄金押题】1.一质量为m 的汽车原来在平直路面上以速度v 匀速行驶,发动机的输出功率为P .从某时刻开始,司机突然加大油门将汽车发动机的输出功率提升至某个值并保持不变,结果汽车在速度到达2v 之后又开始匀速行驶.若汽车行驶过程所受路面阻力保持不变,不计空气阻力.下列说法正确的是( )A .汽车加速过程的最大加速度为P mvB .汽车加速过程的平均速度为32v C .汽车速度从v 增大到2v 过程中做匀加速运动D .汽车速度增大时发动机产生的牵引力不断增大答案 A2.两轮平衡车(如图2所示)广受年轻人的喜爱,它的动力系统由电池驱动,能够输出的最大功率为P 0,小明驾驶平衡车在水平路面上沿直线运动,受到的阻力恒为F f .已知小明和平衡车的总质量为m ,从启动到达到最大速度的整个过程中,小明和平衡车可视为质点,不计小明对平衡车做的功.设平衡车启动后的一段时间内是由静止开始做加速度为a 的匀加速直线运动,则( )图2A.平衡车做匀加速直线运动过程中能达到的最大速度为v=P0F f+ma B.平衡车运动过程中所需的最小牵引力为F=maC.平衡车达到最大速度所用的时间t=P0(F f+ma)aD.平衡车能达到的最大行驶速度v0=P0 F f+ma答案 A3.(多选)如图3所示,轻质弹簧一端固定,另一端连接一小物块,O点为弹簧在原长时物块的位置.物块由A点静止释放,沿粗糙程度相同的水平面向右运动,最远到达B点.在从A到B的过程中,物块( )图3A.加速度先减小后增大B.经过O点时的速度最大C.所受弹簧弹力始终做正功D.所受弹簧弹力做的功等于克服摩擦力做的功答案AD4.(多选)如图4所示,竖直平面内有一半径为R 的固定14圆轨道与水平轨道相切于最低点B .一质量为m 的小物块P (可视为质点)从A 处由静止滑下,经过最低点B 后沿水平轨道运动,到C 处停下,B 、C 两点间的距离为R ,物块P 与圆轨道、水平轨道之间的动摩擦因数均为μ.现用力F 将该小物块沿下滑的路径从C 处缓慢拉回圆弧轨道的顶端A ,拉力F 的方向始终与小物块的运动方向一致,小物块从B 处经圆弧轨道到达A 处过程中,克服摩擦力做的功为μmgR ,下列说法正确的是( )图4A .物块在下滑过程中,运动到B 处时速度最大B .物块从A 滑到C 的过程中克服摩擦力做的功等于2μmgRC .拉力F 做的功小于2mgRD .拉力F 做的功为mgR (1+2μ)答案 CD解析 物块在下滑过程中,开始阶段,重力沿轨道切线方向的分力大于滑动摩擦力,物块的速度增大.后来,重力沿轨道切线方向的分力小于滑动摩擦力,速度减小,则当重力沿轨道切线方向的分力等于滑动摩擦力时速度最大,此位置在AB 之间,故A 错误;物块缓慢地从B 被拉到A ,克服摩擦力做的功为μmgR ,而物块从A 滑到B 的过程中,物块做圆周运动,根据向心力知识可知物块所受的支持力比缓慢运动时要大,则滑动摩擦力较大,所以克服摩擦力做的功W f 大于μmgR ,因此物块从A 滑到C 的过程中克服摩擦力做的功大于μmg ·2R ,故B 错误;从C 到A 的过程中,根据动能定理得:W F -mgR -μmgR -μmgR =0-0,则由此可得拉力F 做的功为W F =mgR (1+2μ),故D 正确;从A 到C 的过程中,根据动能定理得:mgR -W f -μmgR =0,因为W f >μmgR ,由此可得:mgR >μmgR +μmgR ,由以上可得:W F <2mgR ,故C 正确.5.(多选)某段滑雪道倾角为30°,滑雪运动员(包括雪具在内)总质量为m ,从距底端高为h 处由静止开始匀加速下滑,下滑加速度为g 3(重力加速度为g ).在运动员下滑的整个过程中( ) A .运动员减少的重力势能全部转化为动能B .运动员克服摩擦力做功为2mgh 3C .运动员最后获得的动能为2mgh 3D .系统减少的机械能为mgh 3答案 CD6.(多选)如图5所示,轻质弹簧一端固定在水平面上的光滑转轴O 上,另一端与套在粗糙固定直杆A 处的质量为m 的小球(可视为质点)相连.A 点距水平面的高度为h ,直杆与水平面的夹角为30°,OA =OC ,B 为AC 的中点,OB 等于弹簧原长.小球从A 处由静止开始下滑,经过B 处的速度为v ,并恰好能停在C 处.已知重力加速度为g ,则下列说法正确的是( )图5A .小球通过B 点时的加速度为g 2B .小球通过AB 段与BC 段摩擦力做功相等C .弹簧具有的最大弹性势能为12mv 2 D .A 到C 过程中,产生的内能为mgh答案 BCD7.(多选)如图6所示,一个质量为2m 的甲球和一个质量为m 的乙球,用长度为2R 的轻杆连接,两个球都被限制在半径为R 的光滑圆形竖直轨道上,轨道固定于水平地面.初始时刻,轻杆竖直,且质量为2m 的甲球在上方,此时,受扰动两球开始运动,重力加速度为g ,则下列说法正确的是( )图6A .甲球下滑过程中减少的机械能总等于乙球增加的机械能B .甲球下滑过程中减少的重力势能总等于乙球增加的重力势能C .整个运动过程中甲球的最大速度为233gR D .甲球运动到最低点前,轻杆对乙球一直做正功答案 ACD8.足球运动员在距球门正前方s 处的罚球点,准确地从球门正中央横梁下边缘踢进一球,横梁下边缘离地面的高度为h ,足球质量为m ,不计空气阻力,运动员至少要对足球做的功为W ,下面给出功W 的四个表达式中哪一个是合理的( )A .W =12mg (2h +s 22h )B .W =12mg h 2+s 2 C .W =mgh D .W =12mg (h 2+h 2+s 2) 答案 A解析 要能准确地从球门正中央横梁下边缘踢进一球,则运动员对球做的功W >mgh ,W =12mg ⎝⎛⎭⎪⎫2h +s 22h =mgh +mgs 2h >mgh ,所以此式合理,故A 正确,C 错误;因W >mgh ,但s 取一定的值时,12mg h 2+s 2可能小于mgh ,故B 错误;等号右边单位为:kg·N/kg·m 2=N·m 2=J·m,不是焦耳,故D 错误.9.据报导:我国一家厂商制作了一种特殊的手机,在电池能量耗尽时,摇晃手机,即可产生电能维持通话,摇晃手机的过程是将机械能转化为电能,如果将该手机摇晃一次,相当于将100 g 的重物举高20 cm ,若每秒摇两次,则摇晃手机的平均功率为(g =10 m/s 2)( )A .0.04 WB .0.4 WC .4 WD .40 W 答案 B解析 由题意知,摇晃手机的平均功率P =2mgh t =2×0.1×10×0.21 W =0.4 W ,故B 正确,A 、C 、D 错误. 10.如图1所示,不可伸长的细线一端固定,另一端系一小球,小球从与悬点等高处由静止释放后做圆周运动,不计空气阻力,则小球从释放位置运动到最低点的过程中( )图1A.水平方向加速度不断增大B.竖直方向加速度不断增大C.重力做功的瞬时功率先增大后减小D.拉力做功的瞬时功率先增大后减小答案 C解析开始时小球沿水平方向的加速度为0,在最低点小球沿水平方向的加速度为0,所以小球沿水平方向的加速度不是不断增大,故A错误;小球在最低点沿竖直方向的速度为0,小球沿竖直方向向下先做加速运动,后做减速运动,所以小球沿竖直方向的加速度也不可能不断增大,故B错误;重力的瞬时功率P=mgv cos θ,其中v是瞬时速度,θ是瞬时速度的方向与重力方向的夹角,小球在开始点和最低点重力的瞬时功率均为零,可知重力的瞬时功率先增大后减小,故C正确;拉力的方向与小球的运动方向始终垂直,则拉力始终不做功,拉力的瞬时功率始终为零,故D错误.11.(多选)如图2所示,半径为R的光滑圆环固定在竖直平面内,O是圆心,虚线OC水平,D是圆环最低点;两个质量均为m的小球A、B套在圆环上,两球之间用轻杆相连,从图示位置由静止释放,则( )图2A .A 、B 系统在运动过程中机械能守恒B .当杆水平时,A 、B 球速度达到最大C .B 球运动至最低点D 时,A 、B 系统重力势能最小D .A 球从C 点运动至D 点过程中受到的合外力做正功答案 AB12.从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k 与时间t 的关系图象是( )答案 A解析 小球做竖直上抛运动时,速度v =v 0-gt ,根据动能E k =12mv 2得E k =12m (v 0-gt )2,故图象A 正确. 13.如图3所示为机场用于检查物品的装置,主要由水平传送带和X 光透视系统两部分组成.若乘客把物品轻放在传送带上之后,物品总会先、后经历两个阶段的运动,传送过程传送带速度不变.用v 表示传送带速度,用μ表示物品与传送带间的动摩擦因数,则( )图3A .前阶段,物品可能向传送方向的相反方向运动B .后阶段,物品受到摩擦力的方向跟传送方向相同C .v 相同时,μ不同的等质量物品与传送带摩擦产生的热量相同D .μ相同时,v 增大为原来的2倍,前阶段物品的位移也增大为原来的2倍答案 C解析 前阶段,物品的速度小于传送带的速度,相对传送带向后运动,受到与传送方向相同的滑动摩擦力作用,在这个滑动摩擦力作用下向传送方向做初速度为零的匀加速直线运动,当物品的速度与传送带的速度相同时,两者无相对运动或者相对运动趋势,摩擦力为零,A 、B 错误;加速过程中物品的加速度为a =μg ,加速运动时间t =v a =v μg ,所以摩擦产生的热量为Q =μmg ⎝⎛⎭⎪⎫vt -vt 2=12μmgvt =12μmgv ·v μg =12mv 2,故v 相同时,μ不同的等质量物品与传送带摩擦产生的热量相同,C 正确;物品加速位移x =v 22a =v 22μg ,当μ相同时,v 增大为原来的2倍,前阶段物品的位移增大为原来的4倍,D 错误.14.将一质量为m 的小球从足够高处水平抛出,飞行一段时间后,小球的动能为E k ,再经过相同的时间后,小球的动能为2E k (此时小球未落地),不计空气阻力,重力加速度为g ,则小球抛出的初速度大小为( ) A. 2E k 3m B .2E k 3m C .3E k 3m D. 3E k 2m答案 B15.(多选)如图4所示,大圆环固定不动,套在大圆环上的小环从某处由静止滑下,在大圆环上来回运动几次,最终静止不动.下列说法正确的是( )图4A.小环不一定停在大圆环的最低点B.小环第一次运动到最低点时动能最大C.运动过程中产生的内能等于小环减小的机械能D.第一次到达左边最高点的过程中,小环的机械能先减小后增大答案BC解析由于小环能从静止下滑,故摩擦力小于重力沿圆弧切线方向的分力,故最终静止在大圆环的最低点,故A错误;小环在运动过程中,摩擦力始终做负功,故小环第一次运动到最低点时重力做功最大,摩擦力做负功最少,故动能最大,故B正确;由于小环最终静止在大圆环的最低点,根据能量守恒可知,运动过程中产生的内能等于小环减小的机械能,故C正确;第一次到达左边最高点的过程中,摩擦力始终做负功,故小环的机械能一直减小,故D错误.16.(多选)如图5所示,质量相等的两个物块A和B用跨过滑轮的轻绳相连,不计摩擦和滑轮质量,B物块套在光滑的竖直杆上,在B下落的过程中,下列说法正确的是( )图5A.物块B减少的机械能等于物块A增加的机械能B.物块B减少的重力势能等于物块A和B增加的动能之和C.绳拉力对A做的功等于B克服绳拉力做的功D.物块A和B的速度大小相等答案AC17.如图1所示,小明在演示惯性现象时,将一杯水放在桌边,杯下压一张纸条,若缓慢拉动纸条,发现杯子会出现滑落;当他快速拉动纸条时,发现杯子并没有滑落.对于这个实验,下列说法正确的是( )图1A.缓慢拉动纸条时,摩擦力对杯子的冲量较小B.快速拉动纸条时,摩擦力对杯子的冲量较大C.为使杯子不滑落,杯子与纸条间的动摩擦因数尽量大一些D.为使杯子不滑落,杯子与桌面间的动摩擦因数尽量大一些答案 D解析纸条对杯子的摩擦力一定,缓慢拉动纸条时,抽出的过程中时间长,则摩擦力对杯子的冲量较大;快速拉动纸条时,抽出的过程中时间短,则摩擦力对杯子的冲量较小,故A、B错误;为使杯子不滑落,杯子与桌面间的动摩擦因数尽量大一些,这样杯子在桌面上运动的加速度大,位移短,故C错误,D正确.18.(多选)向空中发射一物体(不计空气阻力),当物体的速度恰好沿水平方向时,物体炸裂为a、b两块.若质量较大的a的速度方向仍沿原来的方向,则( )A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C .a 、b 一定同时到达地面D .炸裂的过程中,a 、b 的动量变化大小一定相等答案 CD19.一质量为M 的航天器远离太阳和行星,正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出质量为m 的气体,气体向后喷出的速度大小为v 1,加速后航天器的速度大小v 2等于 (v 0、v 1、v 2均为相对同一参考系的速度)( )A.(M +m )v 0-mv 1M B.(M +m )v 0+mv 1M C.Mv 0+mv 1M -m D.Mv 0-mv 1M -m答案 C解析 以v 0的方向为正方向,由动量守恒定律有Mv 0=-mv 1+(M -m )v 2,解得v 2=Mv 0+mv 1M -m,故选C. 20.如图4所示,用传送带给煤车装煤,平均每5 s 内有5 000 kg 的煤粉落于车上,由于传送带的速度很小,可认为煤粉竖直下落.要使车保持以0.5 m/s 的速度匀速前进,则对车应再施以向前的水平拉力的大小为( )图4A .50 NB .250 NC .500 ND .750 N答案 C21.如图5所示,在光滑水平面上,质量为m 的A 球以速度v 0向右运动,与静止的质量为5m 的B 球碰撞,碰撞后A 球以v =av 0(待定系数a <1)的速率弹回,并与固定挡板P 发生弹性碰撞,若要使A 球能再次追上B 球并相撞,则系数a 可以是( )图5A.14B.25C.23D.17 答案 BC解析 A 与B 发生碰撞,以v 0的方向为正方向,根据动量守恒定律可知:mv 0=5mv B -mav 0,要使A 球能再次追上B 球并相撞,且A 与固定挡板P 发生弹性碰撞,则av 0>v B ,由以上两式可解得:a >14,故B 、C 正确.22.光滑水平地面上有一静止的木块,子弹水平射入木块后未穿出,子弹和木块的v -t 图象如图6所示,已知木块质量大于子弹质量,从子弹射入木块到达到稳定状态,已知木块增加了50 J 动能,则此过程产生的内能可能是( )图6A .10 JB .50 JC .70 JD .120 J 答案 D23.如图3所示,B、M、N分别为竖直光滑圆轨道的右端点、最低点和左端点,B点和圆心等高,N点和圆心O的连线与竖直方向的夹角为α=60°.现从B点的正上方某处A点由静止释放一个小球,经圆轨道飞出后以水平方向上的v通过C点,已知圆轨道半径为R,v=gR,重力加速度为g,不计空气阻力,则以下结论正确的是( )图3A.C、N的水平距离为3RB.C、N的水平距离为2RC.小球在M点对轨道的压力为6mgD.小球在M点对轨道的压力为4mg答案AC24.如图3所示,质量为m的小球套在半径为R的固定光滑圆环上,圆环的圆心为O,原长为0.8R的轻质弹簧一端固定于O点,另一端与小球相连,弹簧与圆环在同一竖直平面内,圆环上B点在O的正下方,当小球在A处受到沿圆环切线方向的恒力F作用时,恰好与圆环间无相互作用,且处于静止状态.已知:R=1.0 m,m=1.0 kg,∠AOB=θ=37°,弹簧处于弹性限度内,sin 37°=0.6,co s 37°=0.8,重力加速度g=10 m/s2.求:图3(1)该弹簧的劲度系数k;(2)撤去恒力,小球从A点沿圆环下滑到B点时的速度大小v B;(3)在(2)中,小球通过B点时,圆环对小球的作用力大小F N B .答案(1)40 N/m (2)2.0 m/s (3)6.0 N25.雨滴在空中下落时,由于空气阻力的影响,最终会以恒定的速度匀速下降,我们把这个速度叫做收尾速度.研究表明,在无风的天气条件下,空气对下落雨滴的阻力可由公式F f =12C ρSv 2来计算,其中C 为空气对雨滴的阻力系数(不同空间为不同常量),ρ为空气的密度(不同空间密度不同),S 为雨滴的有效横截面积(即垂直于速度方向的横截面积).已知雨滴下落空间范围内的空气密度为ρ0,空气对雨滴的阻力系数为C 0,雨滴下落时可视为球形,半径均为R ,每个雨滴的质量均为m ,且在到达地面前均已达到收尾速度,重力加速度为g .(1)求雨滴在无风的天气条件下沿竖直方向下落时收尾速度的大小;(2)若根据云层高度估测出雨滴在无风的天气条件下由静止开始竖直下落距地面的高度为h ,求每个雨滴在竖直下落到地面过程中克服空气阻力所做的功. 答案 (1)1R2mg πC 0ρ0 (2)mg ⎝ ⎛⎭⎪⎫h -m πC 0ρ0R 2解析 (1)设雨滴竖直下落的收尾速度大小为v 雨滴达到收尾速度时开始匀速下落,则有:mg =F f 又因为F f =12C 0ρ0Sv 2=12C 0ρ0·πR 2v 2解得:v =1R2mgπC 0ρ0(2)设雨滴在空中由静止沿竖直方向下落至地面的过程克服空气阻力所做的功为W f , 由动能定理:mgh -W f =12mv 2解得:W f =mg ⎝ ⎛⎭⎪⎫h -mπC 0ρ0R 226.如图4所示,光滑水平轨道AB 与光滑半圆形导轨BC 在B 点相切连接,半圆导轨半径为R ,轨道AB 、BC 在同一竖直平面内.一质量为m 的物块在A 处压缩弹簧,并由静止释放,物块恰好能通过半圆导轨的最高点C .已知物块在到达B 点之前与弹簧已经分离,弹簧在弹性限度内,重力加速度为g .不计空气阻力,求:图4(1)物块由C 点平抛出去后在水平轨道的落点与B 点的距离; (2)物块在B 点时对半圆轨道的压力大小; (3)物块在A 点时弹簧的弹性势能. 答案 (1)2R (2)6mg (3)52mgR。
【备战2013】高考物理 考前30天冲刺押题 专题08 磁场

【备战2013】高考物理考前30天冲刺押题专题08 磁场【2013高考考纲解读】磁场同电场一样,是电磁学的核心内容,也是每年高考的必考内容。
常见题型有选择题、计算题。
重点知识点有:磁场对电流的作用,带电粒子在磁场中的运动,安培力、洛伦兹力的性质等。
命题形式多把磁场的性质、运动学规律、牛顿运动定律、圆周运动知识、功能关系、电磁感应等有机地结合在一起,构成计算题甚至压轴题,对学生的空间想象能力、分析物理过程和运用规律的综合能力以及运用数学知识解决物理问题的能力进行考查。
复习时不但应加深对磁场、磁感应强度这些基本概念的认识,掌握安培力和洛伦兹力以及带电粒子在匀强磁场中做圆周运动的规律,而且也要重视“地磁场、质谱仪、回旋加速器”等与科技生活联系密切的知识点。
【题型示例】【示例1】如图9-1是导轨式电磁炮实验装置示意图。
两根平行长直金属导轨沿水平方向固定,其间安放弹体(包括金属杆EF)。
弹体可沿导轨滑行,且始终与导轨保持良好接触。
已知两导轨内侧间距L=23cm,弹体的质量m=0.1kg,轨道间所加匀强磁场的磁感应强度B=5T,弹体与轨道的动摩擦因数μ=0.05。
当滑动变阻器的电阻值调到R=0.1Ω时,弹体沿导轨滑行5m后获得的发射速度v=15m/s(此过程视为匀加速运动)。
电路中其余部分电阻忽略不计,求此过程中电源的输出功率。
12【解析】对弹体受力分析:F 安-f =ma 其中 F 安=BIL ,f =μmg弹体匀加速运动,由运动公式得:v 2=2as代入数据得 a =22.5m/s 2 ,F 安=2.3N ,I = 2At = v a = 23s电源输出的电能 E = I 2Rt +F 安·s 电源的输出功率 P = E t = I 2R +F 安·st代入数据得 P =17.65W 【答案】17.65W【示例2】如图9-2所示,在竖直平面内有一圆形绝缘轨道,半径R =1m ,处于垂直于轨道平面向里的匀强磁场中,一质量为m =1×10-3kg ,带电量为q =-3×10-2C 的小球,可在内壁滑动。
功能关系及应用

功能关系及应用[高考要求]本专题涉及的考点有:功和功率、动能和动能定理、重力做功和重力势能、弹力功与弹性势能、合力功与机械能,摩擦阻力做功、内能与机械能。
都是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。
动能定理、功能关系是历年高考力学部分的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。
《考纲》对本部分考点要求都为n类,功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分值重,而且还常有高考压轴题。
考题的内容经常与牛顿运动定律、曲线运动、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本专题知识。
它的特点:一般过程复杂、难度大、能力要求高。
还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。
一、重要地位:1.对功的概念殛计算方法拿握不^位・高中学生刚接触矢量与标量,对功有正负但文是标壘不能理解,而在计聲的时候’又不能it确应用公式硕=仏皿,淚以为计算功套上该公式就万羞大吉,岂不知谕公式一股仅仅适用于恒力做功.2、不旨士灵活运用动能定理动能定理最高中狗理中应用非常广臣的一个定理,应用动能定理有很多忧点,眞是同学对该定理理解不深,戴看不能正确的分析初、末狀态.或善不能正确的求出合外力的如或者不能正确的表示动能变化氫导数对诙规律划应用错溟百出.3、对守恒思想理解不够深刻在高中物理学习过程中,既要学习到普遍适用的守恒定律一一能量守恒定律,又要学习到条件限制下的守恒定律一一机械能守恒定律。
学生掌握守恒定律的困难在于:对于能量守恒定律,分析不清楚哪些能量发生了相互转化,即哪几种能量之和守恒;而对于机械能守恒定律,又不能正确的分析何时守恒,何时不守恒。
4、对功和能混淆不清在整个高中物理学习过程中,很多同学一直错误的认为功与能是一回事,甚至可以互相代换,其实功是功,能是能,功和能是两个不同的概念,对二者的关系应把握为:功是能量转化的量度。
高考物理二轮专题突破专题四功能关系的应用2功能关系在电学中的应用

(1)A点的场强大小;
难点突破
【解析】 由点电荷电场强度公式和电场叠加原理可得: E=kL2Q2-k32QL2=392LkQ2 ;
【答案】392LkQ2
难点突破
(2)阻力的大小; 【解析】由对称性知,φA=φB,电荷从A到B的过程中,电场力做功为零, 克服阻力做功为:Wf=FfL,由动能定理:
-FfL=0-12mv0 2, 得:Ff=m2vL20
【答案】AD
难点突破
高考预测 1、如图所示,直角三角形ABC由三段细直杆连接而成,AB杆竖直,AC杆 粗糙且绝缘,其倾角为30°,长为2L,D为AC上一点,且BD垂直AC,在BC杆 中点O处放置一正点电荷Q.一套在细杆上的带负电小球,以初速度v0由C点沿 CA上滑,滑到D点速率恰好为零,度为g.则( ) A.小球上滑过程中先匀加速后匀减速 B.小球下滑过程中电场力先做负功后做正功
难点突破
【解析】由题意分析知,小球在水平方向匀减速,竖直方向匀加速,由于时
间相等,两方向位移相同,故qE=mg,合力大小为 2 mg,斜向左下方45°,
故小球的动能先减小后增大;电场力一直做负功,小球机械能一直减小,小球的
加速度始终保持2 g不变,从A点到B点电场力做负功,大小为qEh=mgh,故电 势能增加了mgh.
2.磁场力又可分为洛伦兹力和安培力.洛伦兹力在任何情况下对运动的电荷 都 不做功 ;安培力可以做正功、负功,还可以不做功.
高考物理考前押题 功能关系在力学中的应用(1)
2014高考物理考前押题:功能关系在力学中的应用(在1~10题给出的四个选项中,第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求.)1.用一水平拉力使质量为m 的物体从静止开始沿粗糙的水平面运动,物体的v -t 图象如图2-4-15所示.下列表述正确的是 ( ).图2-4-15A .在0~t1时间内拉力逐渐增大B .在0~t1时间内物体做曲线运动C .在t1~t2时间内拉力的功率不为零D .在t1~t2时间内合外力做功为12mv2 解析 由F -μmg=ma 及P =Fv 知0~t1时间内拉力F 逐渐减小,物体做直线运动,A 、B 错误;在t1~t2时间内,由动能定理知,F≠0,F 合=0,故C 正确,D 错误.答案 C2.(2013·株洲市重点中学联考)A 、B 两物体的质量之比mA ∶mB =2∶1,它们以相同的初速度v0在水平面上做匀减速直线运动,直到停止,其v -t 图象如图2-4-16所示.那么,A 、B 两物体所受摩擦阻力之比FA ∶FB 与A 、B 两物体克服摩擦阻力做的功之比WA ∶WB 分别为( ).图2-4-16A .2∶1,4∶1B .4∶1,2∶1C .1∶4,1∶2D .1∶2,1∶4解析 由a =Δv Δt和v -t 图线知aA ∶aB =2∶1 由F =ma 知FA ∶FB =4∶1由v -t 图线下包围的面积等于位移大小知xA ∶xB =1∶2由W =Fx 知WA ∶WB =2∶1,故B 正确.答案 B3.用竖直向上大小为30 N 的力F ,将2 kg 的物体由沙坑表面静止抬升1 m 时撤去力F ,经一段时间后,物体落入沙坑,测得落入沙坑的深度为20 cm.若忽略空气阻力,g 取10 m/s2.则物体克服沙坑的阻力所做的功为 ( ).A .20 JB .24 JC .34 JD .54 J解析 用竖直向上大小为30 N 的力F ,将2 kg 的物体由沙坑表面静止抬升1 m 时,由动能定理,Fh -mgh =12mv2,撤去力F 后由动能定理,mg(d +h)-W =0-12mv2,联立解得W =mg(d +h)+Fh -mgh =Fh +mgd =30×1 J+2×10×0.2 J=34 J .选项C 正确.答案 C4.光滑水平地面上叠放着两个物体A 和B ,如图2-4-17所示.水平拉力F 作用在物体B 上,使A 、B 两物体从静止出发一起运动.经过时间t ,撤去拉力F ,再经过时间t ,物体A 、B 的动能分别设为EA 和EB ,在运动过程中A 、B 始终保持相对静止.以下有几个说法正确的是( ).图2-4-17A .EA +EB 等于拉力F 做的功B .EA +EB 小于拉力F 做的功C .EA 等于拉力F 和摩擦力对物体A 做功的代数和D .EA 大于撤去拉力F 前摩擦力对物体A 做的功答案 A5.质量为1 kg 的物体静止于光滑水平面上.t =0时刻起,物体受到向右的水平拉力F 作用,第1 s 内F =2 N ,第2 s 内F =1 N .下列判断正确的是( ).A .2 s 末物体的速度是4 m/sB .2 s 内物体的位移为3 mC .第1 s 末拉力的瞬时功率最大D .第2 s 末拉力的瞬时功率最大解析 由牛顿第二定律得第1 s 和第2 s 内的加速度分别为2 m/s2和1 m/s2,第1 s 末和第2 s 末的速度分别为v1=a1t1=2 m/s ,v2=v1+a2t2=3 m/s ,则选项A 错误;2 s 内的位移x =v1t12+v1+v22t2=3.5 m ,则选项B 错误;第1 s 末拉力的瞬时功率P1=Fv1=4 W ,第2 s 末拉力的瞬时功率P2=Fv2=3 W ,则选项C 正确,D 错误.答案 C6.如图2-4-18所示,足够长的水平传送带以稳定的速度v0匀速向右运动,某时刻在其左端无初速地放上一个质量为m 的物体,经一段时间,物体的速度达到v02,这个过程因物体与传送带间的摩擦而产生的热量为Q1,物体继续加速,再经一段时间速度增加到v0,这个过程中因摩擦而产生的热量为Q2.则Q1∶Q2的值为 ( ).图2-4-18A .3∶1B .1∶3C .1∶1D .与μ大小有关解析 设物体与传送带之间的动摩擦因数为μ,物体在加速运动过程中,由牛顿第二定律得F 合=μmg=ma ,a =μg,物体从静止到v02和从v02到v0所用的时间t =v02μg 相同,物体对地的位移分别为x1和x2,传送带对地的位移分别为s1和s2,物体相对传送带的位移分别为Δx1和Δx2,则x1=12at2=12×v02t =v208μg ,x2=v02t +12at2=12⎝ ⎛⎭⎪⎫v02+v0t =3v208μg,s1=s2=v0t =v202μg ,Δx1=s1-x1=3v208μg ,Δx2=s2-x2=v208μg =13Δx1,Q1=μmgΔx1,Q2=μmgΔx2=13Q1,选项A 正确. 答案 A7.在离水平地面h 高处将一质量为m 的小球水平抛出,在空中运动过程中所受空气阻力大小恒为Ff ,水平距离为x ,落地速率为v ,那么,在小球运动过程中 ( ).A .重力所做的功为mghB .小球克服空气阻力所做的功为Ff h2+x2C .小球落地时,重力的瞬时功率为mgvD .小球的重力势能和机械能都逐渐减少解析 小球下落过程中,受到重力和空气阻力,重力为恒力,重力做功为mgh ,选项A 正确;空气阻力大小虽不变,但方向在不断改变,所以为变力,它做的功等于空气阻力的大小乘以路程,而不是乘以位移,选项B 错误;小球落地时,小球速度方向与重力方向间有夹角,重力的功率等于重力乘以速度的竖直分量,选项C 错误;小球在下落过程中,高度逐渐减小,所以重力势能逐渐减少,空气阻力做负功,将一部分机械能转化为内能,所以机械能也逐渐减少,选项D 正确.答案 AD8.(2013·大纲卷,20)如图2-4-19所示,一固定斜面倾角为30°,一质量为m 的小物块自斜面底端以一定的初速度沿斜面向上做匀减速运动,加速度的大小等于重力加速度的大小g.若物块上升的最大高度为H ,则此过程中,物块的 ( ).图2-4-19A .动能损失了2mgHB .动能损失了mgHC .机械能损失了mgHD .机械能损失了12mgH 解析 运动过程中有摩擦力做功,考虑动能定理和功能关系.物块以大小为g 的加速度沿斜面向上做匀减速运动,运动过程中F 合=mg ,由受力分析知摩擦力Ff =12mg ,当上升高度为H 时,位移s =2H ,由动能定理得ΔEk=-2mgH ;由功能关系知ΔE=WFf =-12mgs =-mgH ,选项A 、C 正确.答案 AC9.如图2-4-20所示,穿在水平直杆上质量为m 的小球开始时静止.现对小球沿杆方向施加恒力F0,垂直于杆方向施加竖直向上的力F ,且F 的大小始终与小球的速度成正比,即F =kv(图中未标出).已知小球与杆间的动摩擦因数为μ,小球运动过程中未从杆上脱落,且F0>μmg.下列说法正确的是( ).图2-4-20A .小球先做加速度增大的加速运动,后做加速度减小的加速运动直到静止B .小球的最大加速度为F0mC .恒力F0的最大功率为F20+F0μmg μkD .小球在加速运动过程中合力对其做功为12m ⎝ ⎛⎭⎪⎫F0+μmg μk 2 解析 刚开始,F =0,a =F0-μmg m ,之后v 增大,a =F0-μmg+μkv m逐渐增大,当F =kv =mg 时,加速度达到最大,即am =F0m ;当速度继续增大,F =kv>mg 时,a =F0-μkv -mg m不断减小,当μ(F-mg)=F0,即μ(kv-mg)=F0时,a =0,速度达到最大,所以vm =F0+μmg μk,此后小球做匀速运动.根据以上分析,选项A 错,B 正确.Pm =F0vm =F20+F0μmg μk,选项C 正确.根据动能定理可得小球在加速运动过程中合力对其做功为W =12m ⎝ ⎛⎭⎪⎫F0+μmg μk 2,D 项正确. 答案 BCD10.(2013·东北三校一模,20)如图2-4-21所示,两根等长的细线拴着两个小球在竖直平面内各自做圆周运动.某一时刻小球1运动到自身轨道的最低点,小球2恰好运动到自身轨道的最高点,这两点高度相同,此时两小球速度大小相同.若两小球质量均为m ,忽略空气阻力的影响,则下列说法正确的是( ).图2-4-21A .此刻两根线拉力大小相同B .运动过程中,两根线上拉力的差值最大为2mgC .运动过程中,两根线上拉力的差值最大为10mgD .若相对同一零势能面,小球1在最高点的机械能等于小球2在最低点的机械能解析 已知小球质量为m ,当两小球运动到题中图示位置时,设两球速度大小为v ,此时两根细线的拉力分别为F1和F2,F1-mg =m v2L ,F2+mg =m v2L,故选项A 错误.易知小球1在最高点时细线的拉力F1′最小,设此时速度大小为v1,则有F1′+mg =m v21L,再由机械能守恒定律有:12mv2=12mv21+2mgL ;小球2在最低点时细线的拉力F2′最大,设此时速度大小为v2,则有F2′-mg =m v22L ,再由机械能守恒定律有:12mv22=12mv2+2mgL ,联立解得,运动过程中两根线上拉力的差值最大为F2′-F1′=2mg +m v22-v21L=2mg +8mg =10mg ,故选项C 正确,B 错误.取题中图示位置为零势能面,由机械能守恒定律知选项D 正确.答案 CD11.(2013·天津卷,10)质量为m =4 kg 的小物块静止于水平地面上的A 点,现用F =10 N 的水平恒力拉动物块一段时间后撤去,物块继续滑动一段位移停在B 点,A 、B 两点相距x =20 m ,物块与地面间的动摩擦因数μ=0.2,g 取10 m/s2,求:(1)物块在力F 作用过程发生位移x1的大小;(2)撤去力F 后物块继续滑动的时间t.解析 设物块受到的滑动摩擦力为F1,则F1=μmg ①根据动能定理,对物块由A 到B 整个过程,有Fx1-F1x =0 ②代入数据解得:x1=16 m ③(2)设刚撤去力F 时物块的速度为v ,此后物块的加速度为a ,滑动的位移为x2,则x2=x -x1 ④由牛顿第二定律得:F1=ma ⑤由v2-v20=2ax 得v2=2ax2 ⑥由v =v0+at 得v =at ⑦代入数据解得:t =2 s ⑧答案 (1)16 m (2)2 s12.如图2-4-22所示,质量为m =0.1 kg 的小物块置于平台末端A 点,平台的右下方有一个表面光滑的斜面体,在斜面体的右边固定一竖直挡板,轻质弹簧拴接在挡板上,弹簧的自然长度为x0=0.3 m ,斜面体底端C 距挡板的水平距离为d2=1 m ,斜面体的倾角为θ=45°,斜面体的高度h =0.5 m .现给小物块一大小为v0=2 m/s 的初速度,使之在空中运动一段时间后,恰好从斜面体的顶端B 无碰撞地进入斜面,并沿斜面运动,经过C 点后再沿粗糙水平面运动,过一段时间开始压缩轻质弹簧.小物块速度减为零时,弹簧被压缩了Δx=0.1 m .已知小物块与水平面间的动摩擦因数μ=0.5,设小物块经过C 点时无能量损失,重力加速度g 取10 m/s2,求:图2-4-22(1)平台与斜面体间的水平距离d1;(2)小物块在斜面上的运动时间t ;(3)压缩弹簧过程中的最大弹性势能Ep.解析 (1)小球到达斜面顶端时,vBy =v0tan θ vBy =gt1d1=v0t1解得:d1=0.4 m.(2)在B 点,vB =v0cos θ小球由B 到C 过程中,mgsin θ=ma v2C -v2B =2a h sin θvC =vB +at解得:t =0.2 svC =3 2 m/s.(3)小球在水平面上的运动过程中,由动能定理得 μmg(d2-x0)+μmgΔx+Ep =12mv2C代入数据解得:Ep =0.5 J.答案 (1)0.4 m (2)0.2 s (3)0.5 J。
高中物理高考物理经典题型解题思路辅导 电磁感应与电路
电磁感应与电路思想方法提炼电磁感应是电磁学的核心内容,也是高中物理综合性最强的内容之一,高考每年必考。
题型有选择、填空和计算等,难度在中档左右,也经常会以压轴题出现。
在知识上,它既与电路的分析计算密切相关,又与力学中力的平衡、动量定理、功能关系等知识有机结合;方法能力上,它既可考查学生形象思维和抽象思维能力、分析推理和综合能力,又可考查学生运用数知识(如函数数值讨论、图像法等)的能力。
高考的热点问题和复习对策:1.运用楞次定律判断感应电流(电动势)方向,运用法拉第电磁感应定律,计算感应电动势大小.注重在理解的基础上掌握灵活运用的技巧.2.矩形线圈穿过有界磁场区域和滑轨类问题的分析计算。
要培养良好的分析习惯,运用动力学知识,逐步分析整个动态过程,找出关键条件,运用运动定律特别是功能关系解题。
3.实际应用问题,如日光灯原理、磁悬浮原理、电磁阻尼等复习时应多注意。
此部分涉及的主要内容有: 1.电磁感应现象.(1)产生条件:回路中的磁通量发生变化.(2)感应电流与感应电动势:在电磁感应现象中产生的是感应电动势,若回路是闭合的,则有感应电流产生;若回路不闭合,则只有电动势,而无电流.(3)在闭合回路中,产生感应电动势的部分是电源,其余部分则为外电路.2.法拉第电磁感应定律:E=n ,E=BLvsin θ, 注意瞬时值和平均值的计算方法不同.3.楞次定律三种表述:(1)感应电流的磁场总是阻碍磁通量的变化(涉及到:原磁场方向、磁通量增减、感应电流的磁场方向和感应电流方向等四方面).右手定则是其中一种特例. (2)感应电流引起的运动总是阻碍相对运动. (3)自感电动势的方向总是阻碍原电流变化. 4.相关链接(1)受力分析、合力方向与速度变化,牛顿定律、动量定理、动量守恒定律、匀速圆周运动、功和能的关系等力学知识.(2)欧姆定律、电流方向与电势高低、电功、电功率、焦耳定律等电路知识. (3)能的转化与守恒定律. 感悟 · 渗透 · 应用【例1】三个闭合矩形线框Ⅰ、Ⅱ、Ⅲ处在同一竖直平面内,在线框的正上方有一条固定的长直导线,导线中通有自左向右的恒定电流,如图所示,若三个闭合线框分别做如下运动:Ⅰ沿垂直长直导线向 下运动,Ⅱ沿平行长直导线方向 平动,Ⅲ绕其竖直中心轴OO ′转动. (1)在这三个线框运动的过程中, 哪些线框中有感应电流产生?方向如何? (2)线框Ⅲ转到图示位置的瞬间,是否 有感应电流产生?t∆∆Φ【解析】此题旨在考查感应电流产生的条件.根据直线电流周围磁场的特点,判断三个线框运动过程中,穿过它们的磁通量是否发生变化.(1)长直导线通有自左向右的恒定电流时,导线周围空间磁场的强弱分布不变,但离导线越远,磁场越弱,磁感线越稀;离导线距离相同的地方,磁场强弱相同.线框Ⅰ沿垂直于导线方向向下运动,穿过它的磁通量减小,有感应电流产生,电流产生的磁场方向垂直纸面向里,根据楞次定律,感应电流的磁场方向也应垂直纸面向里,再由右手螺旋定则可判断感应电流为顺时针方向;线框Ⅱ沿平行导线方向运动,与直导线距离不变,穿过线框Ⅱ的磁通量不变,因此线框Ⅱ中无感应电流产生;线框Ⅲ绕OO ′轴转动过程中,穿过它的磁通量不断变化,在转动过程中线框Ⅲ中有感应电流产生,其方向是周期性改变的.(2)线框Ⅲ转到图示位置的瞬间,线框中无感应电流,由于长直导线下方的磁场方向与纸面垂直,在该位置线框Ⅲ的两竖直边运动方向与磁场方向平行,不切割磁感线,所以无感应电流;从磁通量变化的角度考虑,图示位置是线框Ⅲ中磁通量从增加到最大之后开始减小的转折点,此位置感应电流的方向要发生变化,故此时其大小必为0.【解题回顾】对瞬时电流是否存在应看回路中磁通量是否变化,或看回路中是否有一段导体做切割磁感线运动,要想知道线框在磁场中运动时磁通量怎样变化,必须知道空间的磁场强弱、方向分布的情况,对常见磁体及电流产生的磁场要相当熟悉.【例2】如图所示,在倾角为θ的光滑的斜面上,存在着两个磁感应强度相等的匀强磁场, 方向一个垂直斜面向上,另一个垂直斜面向下, 宽度均为L ,一个质量为m ,边长也为L 的正方形线框(设电阻为R)以速度v 进入磁场时, 恰好做匀速直线运动.若当a b 边到达gg ′与ff ′ 中间位置时,线框又恰好做匀速运动,则:(1)当a b 边刚越过ff ′时,线框加速度的值为多少? (2)求线框开始进入磁场到a b 边到达gg ′与ff ′ 中点的过程中产生的热量是多少? 【解析】此题旨在考查电磁感应与能量之间的关系.线框刚越过ff ′时,两条边都在切割磁感线,其电路相当于两节相同电池的串联,并且这两条边还同时受到安培力的阻碍作用.(1)a b 边刚越过ee ′即做匀速直线运动,表明线框此时所受的合力为0,即在a b 边刚越过ff ′时,a b 、cd 边都切割磁感线产生感应电动势,但线框的运动速度不能突变,则此时回路中的总感应电动势为E ′=2BLv ,设此时线框的加速度为a ,则2BE ′L/R-mgsin θ=m a ,a =4B 2L 2v/(Rm)-gsin θ=3gsin θ,方向沿斜面向上.(2)设线框再做匀速运动时的速度为v ′,则mgsin θ=(2B 2L 2v ′/R)×2,即v ′=v/4,从线框越过ee ′到线框再做匀速运动过程中,设产生的热量为Q ,则由能量守恒定律得:LRBLv B mg ⋅⋅=θsin 2223215sin 23'2121sin 23mv mgL mv mv L mg Q +=-+⋅=θθ【解题回顾】电磁感应过程往往涉及多种能量形式的转化,适时选用能量守恒关系常会使求解很方便,特别是处理变加速直线运动或曲线运动问题. 【例3】如图所示,d a 、cb 为相距L 的平行导轨(电阻可以 忽略不计).a 、b 间接有一个固定 电阻,阻值为R.长直细金属杆 MN 可以按任意角架在水平导轨上, 并以速度v 匀速滑动(平移),v 的方向和d a 平行. 杆MN 有电阻,每米长的电阻值为R.整个空间充满匀强磁场,磁感应强度的大小为B ,方向垂直纸面(dabc 平面)向里(1)求固定电阻R 上消耗的电功率为最大时θ角的值 (2)求杆MN 上消耗的电功率为最大时θ角的值.【解析】如图所示,杆滑动时切割磁感线而产生感应电动势E=BLv ,与θ角无关.以r 表示两导轨间那段杆的电阻,回路中的电流为: (1)电阻R 上消耗的电功率为:由于E 和R 均与θ无关,所以r 值最小时,P R 值达最大.当杆与导轨垂直时两轨道间的杆长最短,r 的值最小,所以P R 最大时的θ值为θ=π/2.(2)杆上消耗的电功率为: P r = 要求P r 最大,即要求 取最大值.由于 显然,r=R 时, 有极大值因每米杆长的电阻值为R ,r=R 即要求两导轨间的杆长为1m ,所以有以下两种情况:①如果L ≤1m ,则θ满足下式时r=R 1×sin θ=L 所以θ=arcsinL②如果L >1m ,则两导轨间那段杆长总是大于1m ,即总有r >R 由于在r >R 的条件下,上式随r 的减小而单调减小,r 取最小值时, 取最小值, 取最大值,所以,Pr 取最大值时θ值为【例4】如图所示,光滑的平行导轨P 、Q 相距 L=1m ,处在同一水平面中,导轨左端接有如图所示 的电路,其中水平放置的平行板电容器C 两极板间 距离d=10mm ,定值电阻R 1=R 3=8Ω,R 2=2Ω,导轨 电阻不计. 磁感应强度B=0.4T 的匀强磁场竖直向下r R E I +=222)(r R RE R I P R +==222)(r R r E r I +=2)(r R r+])(1[41)(22R r R r R r R r +--=+2)(r R r+22)21()(R r R R r R r +-=+-2)(Rr R r +-2)(R r r +2πθ=穿过导轨面.当金属棒a b 沿导轨向右匀速运动(开关S 断开)时,电容器两极板之间质量m=1×10-14kg 、带电量Q=-1×10-15C 的微粒恰好静止不动;当S 闭合时,微粒以加速度a =7m/s 2向下做匀加速运动,取g=10m/s 2,求:(1)金属棒a b 运动的速度多大?电阻多大?(2)S 闭合后,使金属棒a b 做匀速运动的外力的功率多大?【解析】(1)带电微粒在电容器两极板间静止时,受向上的电场力和向下的重力作用而 平衡,则得到:mg=求得电容器两极板间的电压由于微粒带负电,可知上极板电势高.由于S 断开,R 1上无电流,R 2、R 3串联部分两端总电压等于U 1,电路中的感应 电流,即通过R 2、R 3的电流为:由闭合电路欧姆定律,a b 切割磁感线运动产生的感应电动势为E=U 1+Ir ① 其中r 为a b 金属棒的电阻当闭合S 后,带电微粒向下做匀加速运动,根据牛顿第二定律,有:mg-U 2q/d=m a求得S 闭合后电容器两极板间的电压:这时电路中的感应电流为 I 2=U 2/R 2=0.3/2A=0.15A根据闭合电路欧姆定律有 ② 将已知量代入①②求得E=1.2V ,r=2Ω 又因E=BLv∴v=E/(BL)=1.2/(0.4×1)m/s=3m/s即金属棒a b 做匀速运动的速度为3m/s ,电阻r=2Ω(2)S 闭合后,通过a b 的电流I 2=0.15A ,a b 所受安培力F 2=BI 2L=0.4×1×0.15N=0.06N a b 以速度v=3m/s 做匀速运动时,所受外力必与安培力F 2大小相等、方向相反,即F=0.06N ,方向向右(与v 同向),可见外力F 的功率为: P=Fv=0.06×3W=0.18W【例5】已知某一区域的地下埋有一根与地面平行的直线电缆,电缆中通有变化的电流,在其周围有变化的磁场,因此,可以通过在地面上测量闭合试探小线圈中的感应电动势来探测电缆的确切位置、走向和深度.当线圈平面平行地面时,a 、c 在两处测得试探线圈感应电动势为0,b 、d 两处测得试探线圈感应电动势不为0;当线圈平面与地面成dU q 1V V q mgd U 11001.0101015141=⨯⨯==--A A R R U I 1.02813211=+=+=V Vqd a g m U 3.01001.0)710(10)(15142=⨯-⨯=-=--)(231312r R R R R R I E +++=45°夹角时,在b、d两处测得试探线圈感应电动势为0;经测量发现,a、b、c、d恰好位于边长为1m的正方形的四个顶角上,如图所示,据此可以判定地下电缆在两点连线的正下方,离地表面的深度为 m.【解析】当线圈平面平行地面时,a、c在两处测得试探线圈感应电动势为0,b、d两处测得试探线圈感应电动势不为0;可以判断出地下电缆在a、c两点连线的正下方;如图所示a′c′表示电缆,当线圈平面与地面成45°夹角时,在b、d两处测得试探线圈感应电动势为0;可判断出O′b垂直试探线圈平面,则作出:Rt△OO′b,其中∠ObO′=45°那么OO′=Ob= /2=0.71(m).【解题回顾】本题是一道电磁感应现象的实际应用的题目,将试探线圈产生感应电动势的条件应用在数学中,当线圈平面与地面成45°夹角时,在b、d两处测得试探线圈感应电动势为0,即电缆与在b、d两处时的线圈平面平行,然后作出立体几何的图形,便可用数学方法处理物理问题.【例6】在如图所示的水平导轨上(摩擦、电阻忽略不计),有竖直向下的匀强磁场,磁感强度B,导轨左端的间距为L1=4L,右端间距为L2=L。
高考物理《功能关系》押题预测
功能关系高中物理作为高考重要科目,高考大纲中列出的必考内容范围包括必修模块和选修模块。
必修模块包括必修1和必修2中考点共有23个,其中II级要求14个(位移、速度和加速度;匀变速直线运动及其公式、图象;力的合成和分解;共点力的平衡;牛顿运动定律、牛顿运动定律的应用;运动的合成与分解;抛体运动;匀速圆周运动的向心力;功和功率;动能和动能定理;重力做功与重力势能;功能关系、机械能守恒定律及其应用;万有引力定律及其应用;环绕速度)。
选修模块包括选修3-1和3-2中考点共有36个,其中II级要求11个(库仑定律;电场强度、点电荷的场强;电势差;带电粒子在匀强电场中的运动;欧姆定律;闭合电路欧姆定律;匀强磁场中的安培力;洛伦兹力公式;带电粒子在匀强磁场中的运动;法拉第电磁感应定律;楞次定律)。
高考大纲中要求的实验共有11个(选修模块中6个,选修模块中5个)。
通过分析近五年的高考试题,可以发现高考大纲中列出的必考内容59个考点中,其中II级要求考点25个,考查频率高的考点只有18个。
也就是说,在每年的高考必考部分12个试题中,绝大多数试题是考查这18个高频考点的。
因此在高考冲刺阶段,重点加强这18个高频考点的训练,就可锁定高分,事半功倍,赢得高考,金榜题名。
高频考点八、功能关系和机械能守恒定律【考点解读】功能关系和机械能守恒定律包括高考大纲中II级要求考点:重力做功与重力势能;功能关系、机械能守恒定律及其应用。
重力做功等于重力势能变化的负值,实际上也属于功能关系。
机械能守恒定律是能量守恒定律在力学中的表现形式,是高考命题重点之一。
押题预测1.在竖直平面内,一根光滑金属杆弯成图示形状,相应的曲线方程为y=2π/3(单位:m),式中=1m-1。
将一光滑小环套在该金属杆上,并从=0处以v0=5m/s的初速度沿杆向下运动,取重力加速度g=10m/s2,下列说法正确的是A.小环沿金属杆运动过程中,机械能不守恒B.小环运动到=π/2m时的速度大小是5m/sC.小环运动到=π/2m时的速度大小是53m/sD.小环运动到=π/2m时的速度大小是543m/s押题预测2.如图所示,光滑固定轨道MO和ON底端对接,且ON>MO,M、N两点高度相同。
【备战2013】高考物理 考前30天冲刺押题 专题09 电磁感应
1【备战2013】高考物理 考前30天冲刺押题 专题09 电磁感应【2013高考考纲解读】电磁感应是电磁学中最为重要的内容,也是高考命题频率最高的内容之一。
题型多为选择题、计算题。
主要考查电磁感应、楞次定律、法拉第电磁感应定律、自感等知识。
本部分知识多结合电学、力学部分出压轴题,其命题形式主要是电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用、电磁感应与能量守恒的综合应用。
复习中要熟练掌握感应电流的产生条件、感应电流方向的判断、感应电动势的计算,还要掌握本部分内容与力学、能量的综合问题的分析求解方法。
【题型示例】【示例1】如图10-1所示,两条水平虚线之间有垂直于纸面向里,宽度为d ,磁感应强度为B 的匀强磁场.质量为m ,电阻为R 的正方形线圈边长为L (L< d ),线圈下边缘到磁场上边界的距离为h .将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时刻的速度都是v 0,则在整个线圈穿过磁场的全过程中(从下边缘进入磁场到上边缘穿出磁场),下列说法中正确的是A .线圈可能一直做匀速运动B .线圈可能先加速后减速C .线圈的最小速度一定是22m gR B LD .线圈的最小速度一定是()L d h g +-2图5 图10-12【解析】由于L <d,总有一段时间线圈全部处于匀强磁场中,磁通量不发生变化,不【示例2】如图10-2所示的(a )、(b )、(c)中除导体棒ab 可动外,其余部分均固定不动,(a )图中的C 原来不带电。
设导体棒、导轨和直流电源的电阻均可忽略。
导体棒和导轨间的摩擦也不计。
图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向下的匀强磁场中,导轨足够长,今给导体棒ab 一个向右的初速度v 0,在下列三种情形下导体棒ab 的最终运动状态是A . 三种情况下导体棒ab 最终均做匀速运动B . (a )、(c )中,棒ab 最终将以不同速度做匀速运动;(b)中ab 棒最终静止C . (a )、(c )中,棒ab 最终将以相同速度做匀速运动;(b)中ab 棒最终静止D . (a)、(b )、(c )中,棒ab 最终都静止图10-2【示例3】一有界匀强磁场区域如图10-3甲所示,质量为m、电阻为R的长方形矩形线圈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014高考物理考前押题:功能关系在电磁学中的应用 (在1~10题给出的四个选项中,第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求.) 1.一带电粒子射入一固定的正点电荷Q的电场中,沿如图2-5-10所示的虚线由a点经b点运动到c点,b点离Q最近.若不计重力,则 ( ).
图2-5-10 A.带电粒子带正电荷 B.带电粒子到达b点时动能最大 C.带电粒子从a到b电场力对其做正功 D.带电粒子从b到c电势能增加 解析 从轨迹可知,粒子受到排斥力作用,所以粒子带正电,选项A正确.粒子从a到b电场力对其做负功,动能减少,电势能增大;从b到c电场力对其做正功,动能增大,电势能减少,故粒子在b点动能最小,电势能最大,所以选项B、C、D错误. 答案 A 2.如图2-5-11所示,匀强电场E方向水平向左,带有正电荷的物体沿绝缘水平面向右运
动,经过A点时动能是100 J,经过B点时,动能是A点的15,减少的动能有35转化成电势能,那么,当它再次经过B点时动能为 ( ).
图2-5-11 A.4 J B.8 J C.16 J D.20 J
解析 物体在运动中受到的电场力与滑动摩擦力均不变.由题意得EkB=15×100 J=20 J.由
W电+Wf=ΔEk,W电=35ΔEk,得Wf=25ΔEk.当由B点减速为0时,Wf1=25EkB=25×20 J=8 J.由B点向右,再返回到B点,整个过程由动能定理分析得:-2×8=EkB′-EkB得EkB′=-16 J+20 J=4 J,A项正确. 答案 A 3.如图2-5-12所示,空间有与水平方向成θ角的匀强电场.一个质量为m的带电小球,用长为L的绝缘细线悬挂于O点.当小球静止时,细线恰好处于水平位置.现用一个外力将小球沿圆弧缓慢地拉到最低点,此过程小球的电荷量不变.则该外力做的功为 ( ). 图2-5-12 A.mgLcot θ B.mgLtan θ
C.mgLcos θ D.mgL 解析 取小球受力分析如图,由平衡条件得Eq与mg的合力F=mgcot θ.当用外力将小球沿圆弧缓慢移到最低点的过程中:绳子拉力不做功,W外+WF=ΔEk=0,即W外-mgcot θ·L=0,得W外=mgcot θ·L,A项正确. 答案 A 4.如图2-5-13所示,质量为m的金属线框A静置于光滑平面上,通过细绳跨过定滑轮与质量为m的物体B相连,图中虚线内为一水平匀强磁场,d表示A与磁场左边界的距离,不计滑轮摩擦及空气阻力,设B下降h(h>d)高度时的速度为v,则以下关系中成立的是 ( ).
图2-5-13 A.v2=gh B.v2=2gh C.A产生的热量Q=mgh-mv2
D.A产生的热量Q=mgh-12mv2
解析 对系统由动能定理得mgh+W电=12(m+m)v2,-W电=mgh-mv2,A产生的热量Q=-W电=mgh-mv2,选项C正确. 答案 C 5.如图2-5-14所示,一个带正电的小球穿在一根绝缘的粗糙直杆AC上,杆与水平方向成θ角,整个空间存在着竖直向上的匀强电场和垂直于杆方向斜向上的匀强磁场.小球沿杆向下运动,在A点时的动能为100 J,在C点时动能减为零,D为AC的中点,在运动过程中,则 ( ). 图2-5-14 A.小球在D点时的动能为50 J B.小球电势能的增加量一定等于重力势能的减少量 C.到达C点后小球可能沿杆向上运动 D.小球在AD段克服摩擦力做的功与小球在DC段克服摩擦力做的功相等 解析 小球做减速运动,F洛将减小.球与杆的弹力将变小,所受摩擦力也将变小,合力为变力.根据F合x=ΔEk可知A错误;重力势能的减少量等于电势能和内能增量之和,B错误;若电场力大于重力,小球可能沿杆向上运动,C正确.由于摩擦力为变力,D错误. 答案 C 6.如图2-5-15所示,带电平行板中匀强电场方向竖直向下,匀强磁场方向水平向里,一带电小球从光滑绝缘轨道上的a点自由滑下,经过轨道端点P进入板间恰好沿水平方向做直线运动.现使球从轨道上较低的b点开始滑下,经P点进入板间,在之后运动的一小段时间内 ( ).
图2-5-15 A.小球的重力势能一定会减小 B.小球的机械能可能不变 C.小球的电势能一定会减小 D.小球动能可能减小 解析 若小球带正电q,当小球做直线运动时,它所受向下的重力mg加上向下的电场力qE等于向上的洛伦兹力qvB,若它从轨道上较低的b点滑下,经过P时的速度要小于v,则它在之后的一小段时间内要向下方偏转,洛伦兹力不做功,重力和电场力都做正功,速度增大,洛伦兹力也增大,动能也增大;若小球带负电q,当小球做直线运动时,它所受向下的重力mg加上向下的洛伦兹力qvB等于向上的电场力qE,若它从轨道上较低的b点滑下,经过P时的速度要小于v,则它在之后的一小段时间内要向上方偏转,洛伦兹力不做功,重力做负功而电场力做正功,速度增大,洛伦兹力也增大,动能也增大.可知只有选项C正确. 答案 C 7.如图2-5-16所示,Ⅰ、Ⅱ、Ⅲ是竖直平面内三个相同的半圆形光滑绝缘轨道,k为轨道最低点,Ⅰ处于匀强磁场中,Ⅱ和Ⅲ处于匀强电场中,三个完全相同的带正电小球a、b、c从轨道最高点自由下滑至第一次到达最低点k的过程中,下列说法中正确的有 ( ).
图2-5-16 A.在k处,球b速度最大 B.在k处,球c对轨道压力最大 C.球b需时最长 D.球c机械能损失最多 解析 从最高点到最低点,合力对c球做正功,对b球做负功,对a球不做功,根据动能定理可知在k处球c动能最大,速度最大,A错;求出最低点动能后,由左手定则判断a球洛伦兹力的方向竖直向上,在k处列向心力方程可得在k处球c对轨道压力最大,B对;任一高度处根据动能定理可知,b球速度最小,即b球全程平均速率最小,路程一定时,b球运动时间最长,C对;对球c,电场力做正功,电势能减小,机械能增加,D错. 答案 BC 8.如图2-5-17所示,竖直平面内有一固定的光滑椭圆大环,其长轴长BD=4L、短轴长AC=2L,劲度系数为k的轻弹簧上端固定在大环的中心O,下端连接一个质量为m、电荷量为q、可视为质点的小环,小环刚好套在大环上且与大环及弹簧绝缘,整个装置处在水平向右的匀强电场中,将小环从A点由静止释放,小环运动到B点时速度恰好为0.已知小环在A、B两点时弹簧的形变量大小相等,则 ( ).
图2-5-17 A.小环从A点运动到B点的过程中,弹簧的弹性势能一直增大 B.小环从A点运动到B点的过程中,小环的电势能一直减小
C.电场强度的大小E=mgq
D.小环在A点时受到大环对它的弹力大小F=mg+12kL 解析 由于小环在A、B两点时弹簧的形变量相等,又由于OA=L、OB=2L,则小环在A点时弹簧应该处于压缩状态,小环在B点时弹簧应该处于伸长状态,则小环从A点运动到B点的过程中,弹簧的弹性势能先减小后增大,故A选项错误;将小环从A点由静止释放,运动到B点的速度恰好为0可以判断出小环带正电,又根据沿着电场线的方向电势逐渐降低,根据电势能与电势的关系Ep=qφ可知:小环从A点运动到B点的过程中,小环的电势能逐渐减小,故B选项正确;由于小环在A、B两点的弹簧的形变量相等,即弹簧的弹性势能相等,小环从A点运动到B点的过程中,根据能量守恒定律可得mgL=2qEL,解得E=mg2q,故C选项错误;根据平衡条件可得小环在A点时受到大环对它的弹力大小为F=kx+mg,又小环在A、B两点时弹簧的形变量相等可得l0-x=L和l0+x=2L,解得F=mg+kL2,故D选项正确. 答案 BD 9.如图2-5-18所示,长为L,倾角为θ的光滑绝缘斜面处于匀强电场中,一带电荷量为+q、质量为m的小球,以初速度v0由斜面底端的A点开始沿斜面上滑,到达斜面顶端的速度仍为v0.则下列说法正确的是 ( ).
图2-5-18 A.小球在B点的电势能一定大于小球在A点的电势能 B.由上述条件可以求得A、B两点的电势差 C.电场方向与AC垂直时,电场强度最大 D.电场方向与斜面平行时,电场强度最小 解析 小球从A到B动能不变,重力势能增加量等于电势能减小量,所以A错误.由于重力
做功与电场力做功大小相等,所以mgh=qUAB,AB两点间电势差UAB=mgLsin θq,B正确.小球受重力、斜面的支持力和电场力作用,当电场力与重力沿斜面的分力相等,电场力沿垂直斜面方向的分力、重力沿垂直斜面方向的分力和支持力平衡时,小球就会做匀速运动,所以当电场力沿斜面向上时电场力有最小值,而电场力没有最大值,所以C错误,D正确. 答案 BD 10.如图2-5-19所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距L=1 m,导轨平面与水平面成θ=37°角,下端连接阻值R=2 Ω的电阻.匀强磁场方向与导轨平面垂直.质量m=0.2 kg、电阻r=1 Ω的金属棒放在两导轨上.棒与导轨垂直并保持良好接触,它们之间的动摩擦因数μ=0.25(设最大静摩擦力大小等于滑动摩擦力大小).当金属棒由静止下滑60 m时速度达到稳定,电阻R消耗的功率为8 W,金属棒中的电流方向由a到b,则下列说法正确的是(g=10 m/s2,sin 37°=0.6,cos 37°=0.8) ( ).
图2-5-19 A.金属棒沿导轨由静止开始下滑时加速度a的大小为4 m/s2 B.金属棒达到稳定时速度v的大小为10 m/s C.磁场方向垂直导轨平面向上,磁感应强度B的大小为0.4 T D.金属棒由静止到稳定过程中电阻R上产生的热量为25.5 J 解析 金属棒开始下滑时不受安培力,由牛顿第二定律得a=gsin θ-μgcos θ=4 m/s2,