动态规划(生产和存储问题)

动态规划(生产和存储问题)
动态规划(生产和存储问题)

动态规划(生产和存储问题)

一、动态规划法的发展及其研究内容

动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。20世纪50年代初美国数学家R.E.BELLMAN等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段问题转化为一系列的单阶段问题,逐个求解

创立了解决这类过程优化问题的新方法——动态规划。1957年出版的他的名著《Dynamic Proggramming》,这是该领域的第一本著作。

动态规划问世以来,在经济管理·生产调度·工程技术和最优控制等方面得到了广泛的应用。例如最短路线·库存管理·资源分配·设备更新·组合·排序·装载等问题,采用动态规划法求解比用其他方法更为简便。

二、动态规划法基本概念

一个多阶段决策过程最优化问题的动态规划模型通常包括以下几个要素:

1.阶段

阶段(stage)是对整个过程的自然划分。通常根据时间顺序或是空间特征来划分阶段,对于与时间,空间无关的“静态”优化问题,可以根据其自然特征,人为的赋予“时段”概念,将静态问题动态化,以便按阶段的顺序解优化问题。阶段变量一般用k=1.2….n.表示。

1.状态

状态(state)是我们所研究的问题(也叫系统)在过个阶段的初始状态或客观条件。它应能描述过程的特征并且具有无后效性,即当某阶段的状态给定时,这个阶段以后的过程的演变与该阶段以前各阶段的状态无关。通常还要求状态是可以直接或者是间接可以观测的。描述状态的变量称为状态变量(State Virable)用s 表示,状态变量的取值集合称为状态集合,用S表示。变量允许取值的范围称为允许状态集合(set of admissble states).用x(k)表示第k阶段的状态变量,它可以是一个数或者是一个向量。用X(k)表示第k阶段的允许状态集合。

n 个阶段的决策过程有n+1个状态变量,x(n+1)是x(n)的演变的结果。

根据演变过程的具体情况,状态变量可以是离散的或是连续的。为了计算方便有时将连续变量离散化,为了分析的方便有时又将离散的变量视为连续的。

2.决策

当一个阶段的状态确定后,可以做出各种选择从而演变

到下一阶段的某个状态,这种选择手段称为决策

(decision),在最优控制问题中也称为控制(control)描述决策的变量称为决策变量(decision virable)。

变量允许取值的范围称为允许决策集合(set of

admissble decisions)。用表示第k阶段处于阶段x(k)的决策变量,它是x(k)的函数,用

表示x(k)的允许决策集合决策变量简称决策。

4.策略

决策组成的系列称为策略(policy)。由初始状态x1开始的全过程的策略记作.

.

由第k阶段的状态x(k)开始到终止状态的后部子过程的策略,

;k=2,…,n-1.

可供选择的策略有一定的范围,称为允许策略集合(set of admissble polices),用,

等表示。

5.状态转移方程

在确定性过程中,一旦某阶段的状态和决策为已知,下阶段的状态偏完全可以确定。用状态转移方程(state transfer equations)表示这种演变规律,写作:

6.阶段指标函数

对于k阶段的状态x(k),当执行了决策时,除带来系统状态的转移之外,还产生第k阶段的局部利

益,它是总效益的一部分,称为阶段指标函数(stage

effective fuction),记作.

7.过程指标函数

用来衡量策略或者是子策略执行效果的数量指标称为过程指标函数(process effective fuction),它定义在所有k后部子过程上,常用用表示,即

k=1,2,…,n.

当k=1时,就是全过程指标函数。

如果状态x(k)和子策略给定,那么也就被确定了,所以是x(k)和的函数,记为:

常见的过程指标函数是连和形式或连积形式:

8.最优指标函数

过程指标函数的最优值称为最优指标函数(optimum effective fuction),记为f(x(k).

它表示,采取了最优子策略

之后,后部子过程所获得的总效益,表示为:

式中opt是optimization的缩写,意为最优化,可以根据具体问题去max或min

三·动态规划法的最优性原理和基本函数方程

在动态规划中起核心作用的是最优性原理:“作为整个过程的最优策略具有这样的性质,无论过去的状态和决策如何,相对于前面决策所形成的状态而言,余下的决策系列必须构成最优子策略。”

动态规划解法的关键在于给出一种递推关系,一般把这种关系称为基本函数方程,

注意到无后效性,最优指标函数为

当k=n时,由于x(n+1)是整个决策过程的终止状态,以后不再做出决策,因此,

这样就得到了可以用来递推的基本函数方程:

f(x(n+1))=0.

类似的,可以得到乘法形式的基本函数方程:

f(x(n+1))=1.

四、建立动态规划模型的基本步骤

1.阶段;

2.状态变量及可能状态集合;

3.决策变量及允许决策集合;

4.状态转移方程;

5.阶段指数函数;

6.基本函数方程;

建立动态规划模型基本上是上面6个步骤,按上述顺序逐步确定1~6的内容。

五、动态规划法的递推方向及求解形式

1.递推解法

基本方程:

f(x(n+1))=0

状态转移方程为

计算步骤是,利用终端条件从k=n开始由后向前递推基本方程,求得各阶段的最优决策和最优函数,最后算出f(x(1)时就得到了最优决策系列

再按照状态转移方程

从k=1开始确定

,k=1,2,…,n}为最优轨迹线,

为最优策略。

2.顺推解法

使用顺推解法时,一些概念的含义须做相应调整。

状态变量x(k)表示第k阶段末系统的形态·状况,最优值函数f(x(k))表示从第一阶段到第k阶段总效益的最优值,状态转移方程为

基本函数方程为

f(x(0))=0或1

3.求解形式

求解动态规划问题,一般有两种形式:解析形式和表格形式,解析形式是利用函数的解析表达式,在每个阶段用经典求极值的方法得到最优解。表格形式是指各阶段的计算过程均在表格中进行,这种形式便于分析和比较,操作过程直观且简练,适用于没有解析表达式的离散型问题。

4.动态规划的适用条件

适用动态规划的问题通常应满足如下3点:

○1最优化原理(最优子结构性质)。如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构性质,即满足最优化原理。由于对于有些问题的某些递归式来讲并不一定能保证最优化原则,因此在求解问题时有必要对它进行验证。若不能保持最优原则,则不可以应用动态规划法求解。在得到最优解的递归式之后,需要执行回溯以构造最优解。

○2无后效性。应用动态规划法的一个重要条件就是将各阶段按照一定的次序排好,阶段i的状态只能由阶段i+1的状态来确定,与其他状态没有关系,尤其是于未发生的状态没有关系。换言之,每个状态都是“过去历史的一个完整总结”。这就是无后效性。

○3子问题的重叠性。子问题的重叠性是指在利用递归算法自顶向下对问题进行求解时,每次产生的问题并不总是新问题,

有些子问题可能会被重复计算多次。动态规划法正是利用子问题的这种重叠性质,对每一个问题只计算一次,然后将其计算结果保持起来,当再次需要计算已经计算过的子问题时,只要简单的查看一下以往的计算结果,从而获得较高的解题效率。

子问题的的重叠性并不是动态规划适用的必要条件,但是如果该性质无法满足,动态规划算法同其他算法相比就无优势可言了。

5.解决问题的步骤

利用动态规划法求解问题的算法通常包含如下几个步骤。

○1分析。对原始的问题进行分析,找到问题的最优解的结构特征。

○2分解。将所给问题按时间或空间特征分解成相互关联的阶段,并确定出计算局部最优解的递推关系,这是利用动态规划法解决问题的关键和难点所在。需要注意的是,分解后的各个阶段一定是有序的或者是可以排序的,即无后向性。否则问题就无法用动态规划求解。

阶段之间相互联系方式是通过状态和状态转移体现的。每个阶段通常包含若干个状态,可以描述问题发展到这个阶段时所处在的一种客观情况。每个阶段的状态都由以前阶段的状态以某种方式“变化”来的,这样的“变化”称为状态转移。状态转移是导出状态的途径,也是联系各阶段的方式。

○3解决。对于每个阶段通过自底向上的方法求得局部最优解。由于这一步骤通常是通过递推实现的,因此,需要递推终止条件或边界条件。

○4合并。将各个阶段求出的解合并为原问题的解,即构造一个最优解。

动态规划的主要难点在于理论的设计,特别是递推关系的建立,一旦设计完成,实现部分就会非常简单。整个求解过程就可以使用一个最优决策表的二维数组来描述,其中行表示决策的阶段,列表示问题状态,表格需要填写的数据一般对应此问题的在某阶段某个状态下的最优值,如最短路径,最长公共子序列,最大价值等。填表的过程就是根据递推关系从1行1列开始,以行或者列优先的顺序,依次填写表格。最后根据整个表格的数据通过简单的取舍或者运算求得问题的最优解。

总之,动态规划算法的关键在于解决冗余,是一个以空间换时间的技术,所以它的空间复杂度要大于其他的算法。

六、动态规划问题在问题中的具体实现

例如:

动态规划规划在生产存储中的运用

生产存储问题是生产活动中经常遇到的问题。大批量生产可以降低成本,但当产量大于销量时就会造成产品积压而增加库存费用;单纯按市场要求安排生产也会因为开工不足

或加班加点造成生产成本增加。因此合理利用存贮资源调节产量,满足要求是十分有意义的。生产与存贮问题是一个生产部门如何在已知生产成本,存贮费用和各阶段市场要求的条件下,决定各个生产阶段的产量,使得计划期内的费用之和最小。

现设有一个生产部门,生产计划周期为n个阶段,已知最初库存量为x1,阶段需求量为dk,单位产品的消耗费用是lk,单位产品的阶段库存费用为hk,仓库容量为mk,阶段

生产能力为bk,生产固定成本为问如何安排现阶段的产量,使计划期内的费用综合为最小?

该问题本身就是一个多阶段决策问题,设状态变量为xk 为k阶段初的库存量,由于计划期初的库存量x1已知,计划期末的库存量通常也是给定的,为简单起见,假定x(n+1)=0,于是状态变量xk的约束条件是:

决策变量uk选为阶段k的产量,它满足的约束条件是:

状态转移方程为,它满足无后效性的要求。

阶段效用由两阶段组成,一部分为生产费用,另一部分为存贮费用,即:

动态规划基本方程为:

七、设计题目:

某机床厂

根据合同,在一至四月份为客户生产某种机床。工厂每月的生产能力为10台,机床可以库存,存储费用为每台每月0.2万元,每月需要的数量及每台机床的生产成本如下表。试确定每月的生产量,要求既能满足每月的需求,又能使生产成本和存储费用之和达到最小。

表需求量及生产成本

1.构造动态规划模型

○1阶段变量k

把每个月作为一个阶段,k=1,2,3,4

○2状态变量

选择每个阶段的库存量为状态变量,可满足无后效性,

由已知条件可知:x1=x5=0,单位为台

○3决策变量

设每个阶段的生产量为决策变量,由已知条件得0≤≤10台,

○4状态转移方程

状态转移方程为:=+-(是第k阶段的市场需求量)

○5阶段指标

第k阶段的指标费用:

(,)=0.2+y(i)(>0)i=1,2,3,4.

或(,)=0.2+0 (=0)

其中y1=7,y2=7.2,y3=8,y4=7.6,单位为万元

2.建立基本方程

设最优值函数是从第k阶段的状态出发到过程终结的最小费用,按动态规划方法的逆序解基本方程又:

[(,)+] (k=4,3,2,1)

F5(x5)=0

3.逆序逆推计算

○1k=4时

按照问题的各种约束条件,确定状态变量x4的取值范围。按穷举法的思路,在量化的精度内,确定状态变量x4的全部可能取值。状态转移方程 x5=x4+u4-d4

又x5=0,d4=6 所以有x4+u4=6

又因为每个月的最大生产能力为10台。第1,2,3月的需求量为6,7,12台,故x4=0,1,2,3,4,4台

○2对x4的的确定取值,分别求出决策变量u4的取值范围

当x4=0,u4=6;x4=3,u4=3

x4=1, u4=5; x4=4, u4=2

x4=2, u4=4; x4=5, u4=1

由此可知x4与u4是一一对应的,即对于每个确定的状态,只有一种决策,故这唯一决策的结果是最优的。

利用第四阶段的基本方程进行计算:

F4(x4)=min[v4(x4,u4)+f5(x5)]

=min[v4(x4,u4)]

=v4(x4,u4)

=0.2x4+7.6u4 (u4>0)或=0.2x4 (u4=0)计算结果列表1 表1 k=4时

+

○2k=3时

因为d3=12,d4=6,x1=x5=0,d1=7.每月的最大生产能力为10台,故2≦x3≦7

当x3=2,u3=10

x3=3,u3=10,9

x3=4,u3=10,9,8

x3=5,u3=10,9,8,7

x3=6,u3=10,9,8,7,6

x3=7,u3=10,9,8,7,6,5

状态变量x3的一个取值,对应决策变量u3的六个可能取值,要求分别计算出各个u3取值相应的指标函数值,再挑选其中的最小值为这个状态的最优指标函数值,f3(0).

下面利用第三阶段的基本方程进行计算。

F3(x3)=min【v3(x3,u3)+f4(x4)】

其中v3(x3,u3)=0.2x3+8u3 (u3>0)或v3(x3,u3)=0.2x3 (u3=0)

状态转移方程x4=x3+u3-12 计算结果位于表2

表2表2 k=3时

+

○3k=2时

确定x2的取值范围

因为x1=0,0≦u1≦10,且d1=6,且x3≧2 因此0≦x2≦4 即x2=0,1,2,3,4.

对于x2的每个确定值,分别求出u2的可能取值

X2=0时,u2=10,9

X2=1时,u2=10,9,8

X2=2时,u2=10,9,8,7

X2=3时,u2=10,9,8,7,6

X2=4时,u2=10,9,8,7,6,5

基本方程f2(x2)=min[v2(x2,u2)+f3(x3)]

其中v2(x2,u2)=0.2x2+7.2u2 (u2>0)或v2(x2,u2)=0.2x2 (u2=0)

状态方程x3=x2+u2-3

注:对上面的u2取值解释。

本来 x2=0时,u2可取值为10,9,8,7.

但由于每个月的最大生产能力为10台且d3=12,所以x3必

须大于2台,因此u2取值只能为10,9.

同理对于x3取其他可能值,也应考虑到x3必须大于2台,

计算结果如下表3.

表3 k=2

+

○4k=1时

确定x1的取值范围

X1=0

确定u1的取值范围

因为d1=6,x1=0。故6≦u1≦10

所以u1=10,9,8,7,6

基本方程f1(x1)=min[v1(x1,u1)+f2(x2)]

其中v1(x1,u1)=x1+7u1 (u1>0)或v1(x1,u1)=x1 (u1=0)状态转移方程:x2=x1+u1-6

计算结果列于下表4中:

表4 k=1

+

○5求全过程最优指标函数与最优化策略

由k=1.可以求出其全过程最优指标函数f1(x1);由k=1至k=4各表,可以依次求出第1,2,3,4各阶段的最优策略,进而得到最优策略。由表1可知。在年初无库存的情况下,四个月的最小费用f1(0)为229.8万元。且第一阶段的最优决策u1=10台,第一阶段末即第二阶段初的最优库存x2=4台。

根据x2=4台查表3可知,第二阶段的最优决策u2=10台,因此库存x3=7台。

根据x3=7台,查表2得,第三阶段的最优决策u3=5台,因

此x4=0台,查表1得u4=6台。这样到最后一个月恰好无库存,即x5=0。

综上所述,该生产与存储问题的最优化安排是:

第1个月生产10台,费用为70万元;

第2个月生产10台,费用为72.8万元;

第3个月生产5台,费用为41.4万元;

第4个月生产6台,费用为45.6万元。

一至四月的生产与存储费用最小为229.8万元。

动态规划之-0-1背包问题及改进

动态规划之-0-1背包问题及改进

有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。在选择装入背包的物品时,对于每种物品i,只能选择装包或不装包,不能装入多次,也不能部分装入,因此成为0-1背包问题。 形式化描述为:给定n个物品,背包容量C >0,重量第i件物品的重量w[i]>0, 价值v[i] >0 , 1≤i≤n.要求找一n元向量(X1,X2,…,X n,), X i∈{0,1}, 使得∑(w[i] * Xi)≤C,且∑ v[i] * Xi达最大.即一个特殊的整数规划问题。 数学描述为: 求解最优值:

设最优值m(i,j)为背包容量为j、可选择物品为i,i+1,……,n时的最优值(装入包的最大价值)。所以原问题的解为m(1,C) 将原问题分解为其子结构来求解。要求原问题的解m(1,C),可从m(n,C),m(n-1,C),m(n-2,C).....来依次求解,即可装包物品分别为(物品n)、(物品n-1,n)、(物品n-2,n-1,n)、……、(物品1,物品2,……物品n-1,物品n)。最后求出的值即为最优值m(1,C)。 若求m(i,j),此时已经求出m(i+1,j),即第i+1个物品放入和不放入时这二者的最大值。 对于此时背包剩余容量j=0,1,2,3……C,分两种情况: (1)当w[i] > j,即第i个物品重量大于背包容量j时,m(i,j)=m(i+1,j) (2)当w[i] <= j,即第i个物品重量不大于背包容量j时,这时要判断物品i放入和不放入对m的影响。 若不放入物品i,则此时m(i,j)=m(i+1,j) 若放入物品i,此时背包

算法分析与设计 实验三 最大子段和问题

昆明理工大学信息工程与自动化学院学生实验报告 ( 201 — 201 学年 第 1 学期 ) 课程名称:算法分析与设计 开课实验室: 年 月 日 一、上机目的及内容 1.上机内容 给定有n 个整数(可能有负整数)组成的序列(a 1,a 2,…,a n ),求改序列形如 ∑=j k k a 1 的子段和的 最大值,当所有整数均为负整数时,其最大子段和为0。 2.上机目的 (1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法; (3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)分别用穷举法、分治法和动态规划法设计最大子段和问题的算法; (2)对所设计的算法采用大O 符号进行时间复杂性分析; (3)上机实现算法,并用计数法和计时法分别测算算法的运行时间; (4)通过分析对比,得出自己的结论。 穷举法是用一个二维数组将从i 到j 的和都记录下来,再比较各元素的大小,时间复杂性为O (n 2),分治法的设计思想是不断将问题为子问题,然后求解子问题,最后对解进行合并,时间复杂性为O(nlog n ),动态规划法的设计思想是将问题划分为若干个子问题,时间复杂度为O(n)。

分治法流程图:

穷举法流程图: 动态规划法流程图: 三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC 及VISUAL C++6.0软件

四、实验方法、步骤(或:程序代码或操作过程) 程序代码: //穷举法 #include void main() { int i,j,n; int num[100],a[100],max; printf("\t\t\t 最大子段和问题(穷举法)\n\n"); printf("请输入所要求最大字段和整数的个数:\n"); scanf("%d",&n); printf("请分别输入这%d个整数的值:\n",n); for(i=0;i int MaxSum(int a[],int left,int right) { int sum=0; if (left==right) {

01背包问题动态规划详解

动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4 4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为 4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是4.所以。 总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.) 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?

下面是实际程序: #include int c[10][100]; int knapsack(int m,int n) { int i,j,w[10],p[10]; for(i=1;ic[i-1][j]) c[i][j]=p[i]+c[i-1][j-w[i]]; else c[i][j]=c[i-1][j]; }

动态规划 报告

算法与分析课程设计报告 题目:最短路径 专业:网络工程 班级:1020552 学号:08 姓名:牛慧敏 太原工业学院计算机工程系2012年11 月15 日

一、算法问题描述 给定一个m*n的矩形网络,设其左上角为起点S。一辆汽车从起点S出发驶向右下角终点T。网格边上的数字表示距离。在若干个网格点处设置了障碍,表示该网格点不可到达。试设计一个算法,求出汽车从起点S出发到达终点T的一条行驶路程最短的路线。 二、算法问题形式化表示 在给定的m x n矩形网格中,得出任意可行的两点之间的距离,再从其中抽取最短路径。但,必须从顶点开始,终点结束。 三、期望输入与输出 顺序得出任意可行的两点之间的距离 四、算法分析与步骤描述 1. 用一个集合R放置最短路径的所有网格点共m*n个。 2. 点集合中的点有其对应坐标原点(0,0)的横纵坐标x,y属性。 3. 用一个集合T记录所有边,边集合中的边有其边长和所连接的两点, 4. 对于m*n的矩行网络,有横向边(m+1)*n条,纵向边m*(n+1)条,。将所有边放入T集合,然后遍历去掉所有直接链接不可达点的边。剩下的就是一张可达的网格图,对于起点S和终点T,从S开始,可以采用图论的Dijkstra算法更新S到每个点的距离d。(用距离记录集合M记录S到每个点的距离。) d(u)=min(d(u),d(v k+1)+w(v k+1->u)). (u与v k+1相邻) 也可以直接将不可达点的连接边长设置为无穷大,然后代入Dijkstra算法 五、问题实例及算法运算步骤 循环将各行加入,即计算将k作为最大通过节点之后的最短路径,如果这个节点连通了其他节点,则察看是否将影响到当前的最短路径,如果加入当前节点和加入的节点之间是相通的, 则执行。以下为源代码: public static String[][] getShortestPath(int data[][]) { int length = data.length; String pathShow[][] = new String[length][length]; for (int i = 0; i < data.length; i++) for (int j = 0; j < data[i].length; j++) { if (data[i][j] > 0) pathShow[i][j] = (i + 1) + "-->" + (j + 1); else pathShow[i][j] = "不通"; } int k = 0; while (k < length) { for (int i = 0; i < length; i++) { if (data[k][i] > 0) { for (int m = 0; m < length; m++) { int temp[] = data[m];

算法合集之《动态规划算法的优化技巧》

动态规划算法的优化技巧 福州第三中学毛子青 [关键词] 动态规划、时间复杂度、优化、状态 [摘要] 动态规划是信息学竞赛中一种常用的程序设计方法,本文着重讨论了运用动态规划思想解题时时间效率的优化。全文分为四个部分,首先讨论了动态规划时间效率优化的可行性和必要性,接着给出了动态规划时间复杂度的决定因素,然后分别阐述了对各个决定因素的优化方法,最后总结全文 [正文] 一、引言 动态规划是一种重要的程序设计方法,在信息学竞赛中具有广泛的应用。 使用动态规划方法解题,对于不少问题具有空间耗费大、时间效率高的特点,因此人们在研究动态规划解题时更多的注意空间复杂度的优化,运用各种技巧将空间需求控制在软硬件可以承受的范围之内。但是,也有一部分问题在使用动态规划思想解题时,时间效率并不能满足要求,而且算法仍然存在优化的余地,这时,就需要考虑时间效率的优化。 本文讨论的是在确定使用动态规划思想解题的情况下,对原有的动态规划解法的优化,以求降低算法的时间复杂度,使其能够适用于更大的规模。 二、动态规划时间复杂度的分析 使用动态规划方法解题,对于不少问题之所以具有较高的时间效率,关键在于它减少了“冗余”。所谓“冗余”,就是指不必要的计算或重复计算部分,算法的冗余程度是决定算法效率的关键。动态规划在将问题规模不断缩小的同时,记录已经求解过的子问题的解,充分利用求解结果,避免了反复求解同一子问题的现象,从而减少了冗余。 但是,动态规划求解问题时,仍然存在冗余。它主要包括:求解无用的子问题,对结果无意义的引用等等。 下面给出动态规划时间复杂度的决定因素: 时间复杂度=状态总数*每个状态转移的状态数*每次状态转移的时间[1] 下文就将分别讨论对这三个因素的优化。这里需要指出的是:这三者之间不是相互独立的,而是相互联系,矛盾而统一的。有时,实现了某个因素的优化,另外两个因素也随之得到了优化;有时,实现某个因素的优化却要以增大另一因素为代价。因此,这就要求我们在优化时,坚持“全局观”,实现三者的平衡。 三、动态规划时间效率的优化 3.1 减少状态总数 我们知道,动态规划的求解过程实际上就是计算所有状态值的过程,因此状态的规模直接影响到算法的时间效率。所以,减少状态总数是动态规划优化的重要部分,本节将讨论减少状态总数的一些方法。

最大子段和动态规划法

实验名称: 最大子段和问题 实验目的: 了解最大子段和问题 实验环境: 操作系统:Windows XP Professional SP3 机器配置:Intel Pentium4 CPU 3.0GHz , 512MB 内存 开发工具:eclipse 实验内容: 1. 求数列的最大子段和(要求时间复杂为nlogn) (算法设计与分析 吕国英 清华大学出 版社 135页 4..3.3 二分法变异) (分治法) (也可用动态规划算法 参看递归王晓东计算机算法设计与分析第三版p61页) 算法的设计思想: 在对分治法德算法分析中注意到,若记???? ? ? <=<==∑=j i k k a n j i i b ][max ][,1<=j<=n,则所求的 最大子段和为: ][1max ][1max 1max ][1max j b n j k a j i n j k a n j i j i k j i k <=<== <=<=<=<==????? ?<=<=<=∑ ∑== 分为两种情况: (1)、当b[j-1]>0时,b[j]=b[j-1]+a[j]。 (2)、当b[j-1]<0时,b[j]=a[j]。 由此可得计算b[j]的动态规划递归式为: b[j]=max }{][],[]1[j a j a j b +-,1<=j<=n 由分析可知:次算法一共比较了n 次,故: T(n)=O(n)

据此可以写出如下程序: 实验步骤: 程序代码如下: package s; public class Po{ public static void main(String[] args) { int[] a=new int[10]; int[] b=new int[10]; int[] x=new int[10]; int start=0; int end = 0; System.out.print("数组为:");//随机赋值 for(int i =0;i<10;i++){ a[i]=(int)(Math.random()*100-50); System.out.print(a[i]+" "); } System.out.print("\n"); tem(a,x,b); int max=maxSum(a,b,end); System.out.print("最大子段和为:"); System.out.println(max); System.out.print("结束位置为:"); System.out.println(findend(a,b,end)); int begin=findStart(a,b,start,end); System.out.print("开始位置为:"); System.out.println(begin); systemout(x,start,end,a,b); } public static void tem(int a[],int x[],int b[]) {int n=a.length-1; int sum=0; b[0]=x[0];

动态规划之01背包问题(最易理解的讲解)

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。 01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] } f[i,j]表示在前i件物品中选择若干件放在承重为j 的背包中,可以取得的最大价值。 Pi表示第i件物品的价值。 决策:为了背包中物品总价值最大化,第i件物品应该放入背包中吗? 题目描述: 有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最 首先要明确这张表是从右到左,至底向上生成的。 为了叙述方便,用e10单元格表示e行10列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为10的背包,那么这个背包的最大价值是6,因为e物品的重量是4,背包装的了,把e装进去后价值为6。然后是e9单元格表示背包承重9,只有物品e, e装进去后,背包价值为6,接着是e8, e7单元格,一直到e3单元格表示背包承重3,但物品e承重4,装不了,所以e3=0, 对于d10单元格,表示只有物品e,d时,承重为10的背包,所能装入的最大价值,是10,因为物品e,d这个背包都能装进去。对于承重为9的背包,d9=10,是怎么得出的呢? 根据01背包的状态转换方程,需要考察两个值, 一个是f[i-1,j],对于这个例子来说就是e9的值6,另一个是f[i-1,j-Wi]+Pi; 在这里, f[i-1,j]表示我有一个承重为9的背包,当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]表示我有一个承重为4的背包(等于当前背包承重减去物品d的重量),当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]就是指单元格e4值为6,Pi指的是d物品的价值,即4 由于f[i-1,j-Wi]+Pi = 6 + 4 = 10 大于f[i-1,j] = 6,所以物品d应该放入承重为9的背包,所以d9=10.

资源分配问题

用动态规划法求解资源分配问题 1.某市电信局有四套通讯设备,准备分给甲、乙、丙三个地区支局,事先调查 了各地区支局的经营情况,并对各种分配方案作了经济效益的估计,如表所示,其中设备数为0时的收益,指已有的经营收益,问如何分配这四套设备,使总的收益最大? 解:分三个阶段1,2,3k =分别对应给甲、乙、丙三个地区支局分配设备, 0,1,2,3,4k s =表示在第k 阶段分配的设备套数, ()k k x s 表示第k 阶段分配k s 套设备所产生的收益 ()k k f s 表示将k s 套设备分配给第k 阶段直到第3阶段所产生的收益 用逆推法得到基本递推方程 1144()max{()()},1,2,3 ()0 k k k k k k f s x s f s k f s ++=+=?? =? 当3k =时 33333(0)48,(1)64,(2)68,(3)78,(4)78f f f f f ===== 当2k =时 223(0)max{(0)(00)}max{4840}88f x f =+-=+= 23223(0)(1)6440(1)max max 104(1)(0)4248x f f x f ++???? ===????++???? 2322323(0)(2)6840(2)max (1)(1)max 64421085048(2)(0)x f f x f x f ++???????? =+=+=???????? ++????

2323 22323(0)(3)4078(1)(2)6842(3)max max 118(2)(1)64506048(3)(0)x f x f f x f x f ++????????++????===????++????????++???? 23232232323(0)(4)4078(1)(3)4278(4)max (2)(2)max 68501246064(3)(1)6648(4)(0)x f x f f x f x f x f ++????????++???????? =+=+=????????++????+????+???? 当1k =时 112(0)max{(0)(0)}max{3888}126f x f =+=+= 12112(1)(0)4188(1)max max 140(0)(1)38102x f f x f ++????===????++???? 1211212(2)(0)4888(2)max (1)(1)max 4110414638108(0)(2)x f f x f x f ++???? ???? =+=+=???????? ++???? 1212 11212(3)(0)6088(2)(1)48104(3)max max 156(1)(2)4110838118(0)(3)x f x f f x f x f ++???? ????++????===????++????????++???? 12121121212(4)(0)6688(3)(1)60104(4)max (2)(2)max 4810816441118(1)(3)38124(0)(4)x f x f f x f x f x f ++????????++???????? =+=+=????????++????+?+??????? 故最大收益为164,具体分配方案为甲3套,乙0套,丙1套。

3 (修改)大规模状态空间中的动态规划和强化学习问题

3 大规模状态空间中的动态规划和强化学习问题 本章我们将讨论大规模状态空间中的动态规划和强化学习问题。对于这类问题,我们一般很难求得问题的精确解,只能得到问题的近似解。前面章节所介绍的一些算法,如值迭代、策略迭代和策略搜索,无法直接用于这类问题。因此,本章将函数近似引入这些算法,提出三类基于函数近似的算法版本,分别是近似值迭代、近似策略迭代和近似策略搜索。本章将从理论和实例两个角度分析算法的收敛性,讨论如何获取值函数逼近器的方法,最后比较分析三类算法的性能。 3.1 介绍 第二章详细介绍了DP/RL中三类经典算法,这三类算法都需要有精确的值函数及策略表示。一般来说,只有存储每一个状态动作对回报值的估计值才能得到精确地Q值函数,同样V值函数只有存储每一个状态的回报值的估计值才能得到;精确的策略描述也需要存储每一个状态对应的动作。如果值函数中某些变量,比如某些状态动作对、状态等,存在很多个或者无穷多个潜在值(又或者这些值是连续的),那么我们就无法精确描述对应的Q值函数或者V值函数,因此,考虑将值函数和策略通过函数近似的方式来表示。由于实际应用中大部分问题都存在大规模或者连续状态空间,因此,函数近似方法是求解动态规划和强化学习问题的基础。 逼近器主要可以分为两大类:带参的和非参的。带参的逼近器主要是从参数空间到目标函数空间的映射。映射函数及参数的个数由先验知识给定,参数的值由样本数据进行调整。典型的例子是对一组给定的基函数进行加权线性组合,其中权重就是参数。相比之下,非参的逼近器通过样本数据直接得到。本质上,非参的函数逼近器也是含带参数的,只是不像带参的函数逼近器,参数的个数及参数的值直接有样本数据决定。例如,本书中所讨论的基于核函数的逼近器就是带参数的函数逼近器,它为每一个数据点定义一个核函数,并对这些核函数做加权线性组合,其中权重就是参数。 本章主要对大规模状态空间中动态规划和强化学习问题进行广泛而深入的讨论。第二章中所介绍的三类主要算法,值迭代、策略迭代和策略搜索,将与函数近似方法相结合,获得三类新的算法,分别是近似值迭代、近似策略迭代以及近似策略搜索。本章将从理论和实例两个角度讨论算法的收敛性,并对比分析三类算法的性能。关于值函数近似与策略逼近的一些其他重要问题,本章也将给予讨论。为了帮助读者更好的阅读本章的内容,图3.1给出一个本章的内容脉络图。

动态规划

动态规划的特点及其应用 摘要:本文的主要内容就是分析它的特点。第一部分首先探究了动态规划的本质,因为动态规划的特点是由它的本质所决定的。第二部分从动态规划的设计和实现这两个角度分析了动态规划的多样性、模式性、技巧性这三个特点。第三部分将动态规划和递推、搜索、网络流这三个相关算法作了比较,从中探寻动态规划的一些更深层次的特点。文章在分析动态规划的特点的同时,还根据这些特点分析了我们在解题中应该怎样利用这些特点,怎样运用动态规划。这对我们的解题实践有一定的指导意义。本文介绍了动态规划的基本思想和基本步骤,通过实例研究了利用动态规划设计算法的具体途径,讨论了动态规划的一些实现技巧,并将动态规划和其他一些算法作了比较,最后还简单介绍了动态规划的数学理论基础和当前最新的研究成果。 关键词: 动态规划,阶段 1 引言 动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 2 动态规划的基本思想 一般来说,只要问题可以划分成规模更小的子问题,并且原问题的最优解中包含了子问题的最优解(即满足最优子化原理),则可以考虑用动态规划解决。动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解

最大子序列和的总结

最大子序列和 第一种情况:可以一个不取 【问题描述】:最大子序列和也叫数列的连续最大和,顾名思义,就是在一个长度为n的数列{An}中,求i,j(1<=i<=j<=n),使得数列{An}中,第i个元素到第j个元素之间,所有元素的和最大。例如:-2, 11, -4, 13, -5, -2时答案为20(11 -4 13) 解法一穷举法:以前我想出了一种算法,具体做法是:取出所给序列的所有子序列求和,共分n组,第一组长度为1,有n个;第二组长度为2, 有n-1个;……,最后一组,长度为n,只有一个。比较这n(n+1)/2个序列的和,再将每组的最大值比较,从而得到最大值以及其上下标。 a1 a2 a n-1 a n a1+a2 a2+a3 a n-1+a n a1+a2+a3 a2+a3+a4 ...... ...... ...... a1+a2......+a n-1 a2+a3......+a n a1+a2......+a n-1 +a n 此算法比较直接,也容易写出代码,但其时间开销为O(n2),空间开销为O(n),效率不高。 解法二:动态规划求解, 1 2 F[i]:表示以元素i结尾的连续最大子序列的和 那么对于第i个元素来说,要形成连续的最大子序列,只和相邻的前一个元素有关。因为可以不取,所以如果元素a[i]连接到以元素i-1结尾的最大连续子序列f[i-1]后是负数(f[i-1]+a[i]<0);则宁可不取,这样最大连续子序列和为0。 动态方程: f[i]:=max{0,f[I-1]+a[i]} (边界条件:f[0]=0;) 3、代码1: for I:=1 to n do if (f[I-1]+a[i])>0 then f[i]:=f[I-1]+a[i] else f[i]:=0; max:=-maxlongint; for i:=1 to n do if f[i]>max then max:=f[i];

0-1背包问题动态规划详解及代码

0/1 背包问题动态规划详解及 C 代码动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01 背包问题。 /* 一个旅行者有一个最多能用M 公斤的背包,现在有N 件物品, 它们的重量分别是W1,W2,...,Wn, 它们的价值分别为P1,P2,...,Pn. 若每种物品只有一件求旅行者能获得最大总价值。 输入格式: M,N W1,P1 W2,P2 输出格式: X*/ 因为背包最大容量M未知。所以,我们的程序要从1到M —个的试。比如,开始任选N 件物品的一个。看对应M 的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1 物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4 4,5

5,6 c[i][j] 数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3 则里面放 4. ...................................................... "这样,这一排背包容量为4,5,6, 10 的时候,最佳方案都是放 4."假如1 号物品放入背包.则再看2 号物品.当背包容量为3 的时候,最佳方案还是上一排的最价方案c 为 4." 而背包容量为5 的时候,则最佳方案为自己的重量 5. "背包容量为7 的时候,很显然是5加上一个值了。加谁??很显然是7-4=3 的时候.上一排c3的最佳方案是 4."所以。总的最佳方案是5+4为 9."这样.一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7 的时候,最佳方案不是本身的 6. "而是上一排的 9."说明这时候3号物品没有被选.选的是1,2号物品.所以得 9.") 从以上最大价值的构造过程中可以看出。 f(n, m)二max{f( n-1,m), f(n-1,m-w[ n] )+P( n,m)}这就是书本上写的动态规划方程. 这回清楚了吗? 下面是实际程序(在VC 6."0环境下通过) : #include int c[10][100];/* 对应每种情况的最大价值*/

南京邮电大学算法设计实验报告——动态规划法

实验报告 (2009/2010学年第一学期) 课程名称算法分析与设计A 实验名称动态规划法 实验时间2009 年11 月20 日指导单位计算机学院软件工程系 指导教师张怡婷 学生姓名丁力琪班级学号B07030907 学院(系) 计算机学院专业软件工程

实验报告 实验名称动态规划法指导教师张怡婷实验类型验证实验学时2×2实验时间2009-11-20一、实验目的和任务 目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态规划法解决实际应用中的最长公共子序列问题。 任务:用动态规划法实现求两序列的最长公共子序列,其比较结果可用于基因比较、文章比较等多个领域。 要求:掌握动态规划法的思想,及动态规划法在实际中的应用;分析最长公共子序列的问题特征,选择算法策略并设计具体算法,编程实现两输入序列的比较,并输出它们的最长公共子序列。 二、实验环境(实验设备) 硬件:计算机 软件:Visual C++

三、实验原理及内容(包括操作过程、结果分析等) 1、最长公共子序列(LCS)问题是:给定两个字符序列X={x1,x2,……,x m}和Y={y1,y2,……,y n},要求找出X和Y的一个最长公共子序列。 例如:X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a}。它们的最长公共子序列LSC={b,c,d,a}。 通过“穷举法”列出所有X的所有子序列,检查其是否为Y的子序列并记录最长公共子序列并记录最长公共子序列的长度这种方法,求解时间为指数级别的,因此不可取。 2、分析LCS问题特征可知,如果Z={z1,z2,……,z k}为它们的最长公共子序列,则它们一定具有以下性质: (1)若x m=y n,则z k=x m=y n,且Z k-1是X m-1和Y n-1的最长公共子序列; (2)若x m≠y n且x m≠z k,则Z是X m-1和Y的最长公共子序列; (3)若x m≠y n且z k≠y n,则Z是X和Y的最长公共子序列。 这样就将求X和Y的最长公共子序列问题,分解为求解较小规模的问题: 若x m=y m,则进一步分解为求解两个(前缀)子字符序列X m-1和Y n-1的最长公共子序列问题; 如果x m≠y n,则原问题转化为求解两个子问题,即找出X m-1和Y的最长公共子序列与找出X 和Y n-1的最长公共子序列,取两者中较长者作为X和Y的最长公共子序列。 由此可见,两个序列的最长公共子序列包含了这两个序列的前缀的最长公共子序列,具有最优子结构性质。 3、令c[i][j]保存字符序列X i={x1,x2,……,x i}和Y j={y1,y2,……,y j}的最长公共子序列的长度,由上述分析可得如下递推式: 0 i=0或j=0 c[i][j]= c[i-1][j-1]+1 i,j>0且x i=y j max{c[i][j-1],c[i-1][j]} i,j>0且x i≠y j 由此可见,最长公共子序列的求解具有重叠子问题性质,如果采用递归算法实现,会得到一个指数时间算法,因此需要采用动态规划法自底向上求解,并保存子问题的解,这样可以避免重复计算子问题,在多项式时间内完成计算。 4、为了能由最优解值进一步得到最优解(即最长公共子序列),还需要一个二维数组s[][],数组中的元素s[i][j]记录c[i][j]的值是由三个子问题c[i-1][j-1]+1,c[i][j-1]和c[i-1][j]中的哪一个计算得到,从而可以得到最优解的当前解分量(即最长公共子序列中的当前字符),最终构造出最长公共子序列自身。

运筹学之动态规划(东南大学)汇总

引言——由一个问题引出的算法 考虑以下问题 [例1] 最短路径问题 现有一张地图,各结点代表城市,两结点间连线代表道路,线上数字表示城市间的距离。如图1所示,试找出从结点A到结点E的最短距离。 图 1 我们可以用深度优先搜索法来解决此问题,该问题的递归式为 其中是与v相邻的节点的集合,w(v,u表示从v到u的边的长度。 具体算法如下: 开始时标记所有的顶点未访问过,MinDistance(A就是从A到E的最短距离。 这个程序的效率如何呢?我们可以看到,每次除了已经访问过的城市外,其他城市都要访问,所以时间复杂度为O(n!,这是一个“指数级”的算法,那么,还有没有更好的算法呢? 首先,我们来观察一下这个算法。在求从B1到E的最短距离的时候,先求出从C2到E的最短距离;而在求从B2到E的最短距离的时候,又求了一遍从C2到E的最短距离。也就是说,从C2到E的最短距离我们求了两遍。同样可以发现,在求从C1、C2到E的最短距离的过程中,从D1到E的最短距离也被求了两遍。而在整个程序中,从D1到E的最短距离被求了四遍。如果在求解的过程中,同时将求得的最短距离"记录在案",随时调用,就可以避免这种情况。于是,可以改进该算法,将每次求出的从v到E的最短距离记录下来,在算法中递归地求MinDistance(v时先检查以前是否已经求过了MinDistance(v,如果求过了则不用重新求一遍,只要查找以前的记录就可以了。这样,由于所有的点有n个,因此不同的状态数目有n 个,该算法的数量级为O(n。 更进一步,可以将这种递归改为递推,这样可以减少递归调用的开销。 请看图1,可以发现,A只和Bi相邻,Bi只和Ci相邻,...,依此类推。这样,我们可以将原问题的解决过程划分为4个阶段,设

常见动态规划算法问题策略分析

常见动态规划算法问题 策略分析

目录 一、动态规划策略 (1) 1.动态规划介绍 (1) 2.求解动态规划问题步骤 (1) 二、几种动态规划算法的策略分析 (1) 1.装配线调度问题 (1) 2.矩阵链乘问题 (2) 3.最长公共子序列(LCS) (3) 4.最大字段和 (4) 5.0-1背包问题 (4) 三、两种解决策略 (5) 1.自底向上策略 (5) 2.自顶向上(备忘录)策略 (5) 3.优缺点分析 (5) 四、总结 (6)

一、动态规划策略 1.动态规划介绍 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多 阶段最优化决策解决问题的过程就称为动态规划。 基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的 求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部 解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。 依次解决各子问题,最后一个子问题就是初始问题的解。 由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在 一个二维数组中。 与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建 立在上一个子阶段的解的基础上,进行进一步的求解)。 2.求解动态规划问题步骤 (1)确定最优解结构 (2)递归定义最优解的值 (3)自底向上计算最优解的值 (4)重构最优解 二、几种动态规划算法的策略分析 1.装配线调度问题 分析:首先确定最优解结构,分析问题可知大致分为两种情况:

解0-1背包问题的动态规划算法

关于求解0/1背包问题的动态规划算法 摘要:本文通过研究动态规划原理,提出了根据该原理解决0/1背包问题的方法与算法实现, 并对算法的正确性作了验证.观察程序运行结果,发现基于动态规划的算法能够得到正确的决策方案且比穷举法有效. 关键字:动态规划;0/1背包;约束条件;序偶;决策序列;支配规则 1、引 言 科学研究与工程实践中,常常会遇到许多优化问题,而有这么一类问题,它们的活动过程可以分为若干个阶段,但整个过程受到某一条件的限制。这若干个阶段的不同决策的组合就构成一个完整的决策。0/1背包问题就是一个典型的在资源有限的条件下,追求总的收益最大的资源有效分配的优化问题。 对于0/1背包问题,我们可以这样描述:设有一确定容量为C 的包及两个向量C ’=(S 1,S 2,……,S n )和P=(P 1,P 2,……,P N ),再设X 为一整数集合,即X=1,2,3,……,N ,X 为SI 、PI 的下标集,T 为X 的子集,那么问题就是找出满足约束条件∑S i 〈=C ,使∑PI 获得最大的子集T 。在实际运用中,S 的元素可以是N 个经营项目各自所消耗的资源,C 可以是所能提供的资源总量,P 的元素可是人们从各项项目中得到的利润。 0/1背包问题是工程问题的典型概括,怎么样高效求出最优决策,是人们关心的问题。 2、求解问题的动态规划原理与算法 2.1动态规划原理的描述 求解问题的动态规划有向前处理法向后处理法两种,这里使用向前处理法求解0/1背包问题。对于0/1背包问题,可以通过作出变量X 1,X 2,……,X N 的一个决策序列来得到它的解。而对于变量X 的决策就是决定它是取0值还是取1值。假定决策这些X 的次序为X n ,X N-1,……,X 0。在对X 0做出决策之后,问题处于下列两种状态之一:包的剩余容量是M ,没任何效益;剩余容量是M-w ,效益值增长了P 。显然,之后对X n-1,Xn-2,……,X 1的决策相对于决策X 所产生的问题状态应该是最优的,否则X n ,……,X 1就不可能是最优决策序列。如果设F j (X )是KNAP (1,j ,X )最优解的值,那么F n (M )就可表示为 F N (M )=max(f n (M),f n-1(M-w n )+p n )} (1) 对于任意的f i (X),这里i>0,则有 f i (X)=max{f i-1(X),f i-1(X-w i )+p i } (2) 为了能由前向后推而最后求解出F N (M ),需从F 0(X )开始。对于所有的X>=0,有F 0(X )=0,当X<0时,有F 0(X )等于负无穷。根据(2),可求出0〈X 〈W 1和X 〉=W 1情况下F 1(X )的值。接着由(2)不断求出F 2,F 3,……,F N 在X 相应取值范围内的值。 2.2 0/1背包问题算法的抽象描述 (1)初始化各个元素的重量W[i]、效益值P[i]、包的最大容量M ; (2)初始化S0; (3)生成S i ;

动态规划经典教程

动态规划经典教程 引言:本人在做过一些题目后对DP有些感想,就写了这个总结: 第一节动态规划基本概念 一,动态规划三要素:阶段,状态,决策。 他们的概念到处都是,我就不多说了,我只说说我对他们的理解: 如果把动态规划的求解过程看成一个工厂的生产线,阶段就是生产某个商品的不同的环节,状态就是工件当前的形态,决策就是对工件的操作。显然不同阶段是对产品的一个前面各个状态的小结,有一个个的小结构成了最终的整个生产线。每个状态间又有关联(下一个状态是由上一个状态做了某个决策后产生的)。 下面举个例子: 要生产一批雪糕,在这个过程中要分好多环节:购买牛奶,对牛奶提纯处理,放入工厂加工,加工后的商品要包装,包装后就去销售……,这样没个环节就可以看做是一个阶段;产品在不同的时候有不同的状态,刚开始时只是白白的牛奶,进入生产后做成了各种造型,从冷冻库拿出来后就变成雪糕(由液态变成固态=_=||)。每个形态就是一个状态,那从液态变成固态经过了冰冻这一操作,这个操作就是一个决策。 一个状态经过一个决策变成了另外一个状态,这个过程就是状态转移,用来描述状态转移的方程就是状态转移方程。 经过这个例子相信大家对动态规划有所了解了吧。 下面在说说我对动态规划的另外一个理解: 用图论知识理解动态规划:把动态规划中的状态抽象成一个点,在有直接关联的状态间连一条有向边,状态转移的代价就是边上的权。这样就形成了一个有向无环图AOE网(为什么无环呢?往下看)。对这个图进行拓扑排序,删除一个边后同时出现入度为0的状态在同一阶段。这样对图求最优路径就是动态规划问题的求解。 二,动态规划的适用范围 动态规划用于解决多阶段决策最优化问题,但是不是所有的最优化问题都可以用动态规划解答呢? 一般在题目中出现求最优解的问题就要考虑动态规划了,但是否可以用还要满足两个条件: 最优子结构(最优化原理) 无后效性 最优化原理在下面的最短路径问题中有详细的解答; 什么是无后效性呢? 就是说在状态i求解时用到状态j而状态j就解有用到状态k…..状态N。 而求状态N时有用到了状态i这样求解状态的过程形成了环就没法用动态规划解答了,这也是上面用图论理解动态规划中形成的图无环的原因。 也就是说当前状态是前面状态的完美总结,现在与过去无关。。。 当然,有是换一个划分状态或阶段的方法就满足无后效性了,这样的问题仍然可以用动态规划解。 三,动态规划解决问题的一般思路。 拿到多阶段决策最优化问题后,第一步要判断这个问题是否可以用动态规划解决,如果不能就要考虑搜索或贪心了。当却定问题可以用动态规划后,就要用下面介绍的方法解决问题了:(1)模型匹配法: 最先考虑的就是这个方法了。挖掘问题的本质,如果发现问题是自己熟悉的某个基本的模型,就直接套用,但要小心其中的一些小的变动,现在考题办都是基本模型的变形套用时要小心条件,三思而后行。这些基本模型在先面的分类中将一一介绍。 (2)三要素法 仔细分析问题尝试着确定动态规划的三要素,不同问题的却定方向不同: 先确定阶段的问题:数塔问题,和走路问题(详见解题报告) 先确定状态的问题:大多数都是先确定状态的。 先确定决策的问题:背包问题。(详见解题报告) 一般都是先从比较明显的地方入手,至于怎么知道哪个明显就是经验问题了,多做题就会发现。 (3)寻找规律法: 这个方法很简单,耐心推几组数据后,看他们的规律,总结规律间的共性,有点贪心的意思。 (4)边界条件法 找到问题的边界条件,然后考虑边界条件与它的领接状态之间的关系。这个方法也很起效。 (5)放宽约束和增加约束 这个思想是在陈启锋的论文里看到的,具体内容就是给问题增加一些条件或删除一些条件使问题变的清晰。 第二节动态规划分类讨论

相关文档
最新文档