《正数和负数教案》3篇
正数和负数的教案ppt

正数和负数的教案ppt【篇一:正数和负数教学设计1】正数与负数一、教学目标1.使学生了解正数与负数是从实际需要中产生的;2.使学生理解正数与负数的概念,并会判断一个数是正数还是负数; 3.初步会用正负数表示具有相反意义的量;4.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力.三、教学过程(一)、从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、??,我们用到整数1,2,??4.87、??为了表示“没有人”、“没有羊”、??,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.(二)、师生共同研究形成正负数概念某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充.现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.(三)、运用举例变式练习例所有的正数组成正数集合,所有的负数组成负数集合.把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合.课堂练习任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:正数集合:{ ?},负数集合:{ ?}.(四)、小结由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.四、练习设计1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度. 2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?3.在下列各数中,哪些是正数?哪些是负数?-3.6,-4,9651,-0.1.4.如果-50元表示支出50元,那么+200元表示什么?5.河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位高0.1米记作什么?6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作什么?7.一物体可以左右移动,设向右为正,问:(1)向左移动12米应记作什么?(2)“记作8米”表明什么?教学后记这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此学生通过这节课只能对负数概念有初步的理解,使学生掌握正负数的记法和它的描述性定义,要求不能过高.对有理数的深入理解将在以后的学习中逐步加强.在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起好主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感.所以这节课采取了在教师的启发引导下,师生共同探究解决的途径,以谈话法为主.同时,教师的语言要尽量儿童化。
负数优秀教案(3篇)

第1篇课时:2课时年级:八年级教学目标:1. 让学生理解负数的概念,掌握负数的表示方法。
2. 让学生学会负数的运算,包括加法、减法、乘法和除法。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 负数的概念和表示方法。
2. 负数的运算。
教学难点:1. 负数的概念的理解。
2. 负数运算的熟练掌握。
教学过程:第一课时一、导入1. 教师提问:同学们,我们已经学习了正数,那么什么是负数呢?请同学们举例说明。
2. 学生回答,教师总结:负数表示比零小的数,例如-1、-2、-3等。
二、新课1. 教师讲解负数的表示方法,包括数轴表示法和文字表示法。
2. 学生跟随教师一起在数轴上表示几个负数,如-2、-3、-4等。
3. 教师引导学生观察数轴,发现负数的特点。
三、练习1. 学生独立完成课本上的练习题,巩固负数的表示方法。
2. 教师巡视指导,解答学生的疑问。
四、小结1. 教师总结本节课所学内容,强调负数的概念和表示方法。
2. 学生复述本节课所学内容,加深记忆。
第二课时一、复习1. 教师提问:同学们,上节课我们学习了负数的概念和表示方法,谁能给大家介绍一下?2. 学生回答,教师总结。
二、新课1. 教师讲解负数的运算,包括加法、减法、乘法和除法。
2. 学生跟随教师一起进行负数运算的练习,如-2+3、-3-5、-4×2、-6÷3等。
3. 教师引导学生总结负数运算的规律。
三、练习1. 学生独立完成课本上的练习题,巩固负数运算。
2. 教师巡视指导,解答学生的疑问。
四、小结1. 教师总结本节课所学内容,强调负数的运算。
2. 学生复述本节课所学内容,加深记忆。
教学评价:1. 课堂表现:观察学生在课堂上的参与程度,如回答问题、练习等。
2. 作业完成情况:检查学生的作业,了解学生对负数的掌握程度。
3. 考试成绩:通过考试检验学生对负数的理解程度和运算能力。
第2篇课时:2课时年级:五年级教材:《人教版小学数学五年级上册》教学目标:1. 让学生理解负数的概念,知道负数的意义和表示方法。
正数和负数教学设计与反思

《正数和负数》第一课时教案教学内容:人教版七年级上册第一章有理数 1.1 正数和负数教学目标:1在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。
2使学生经历数学化,符号化的过程,体会负数产生的必要性。
3感受正、负数和生活的密切联系,享受创造性学习的乐趣.4教学重点:体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量。
教学难点:体会负数的意义,通过描述性定义认识正数、负数和“0”。
教学过程:一、感受相反方向的数量,经历负数产生的过程。
1、回忆小学学过那些数:自然数,分数出示信息:看数的产生过程,现实中负数学习的必要。
2、引入负数的概念?3、总结正负数(1)这些数很特别,都带上了符号,它们是一种“新数”。
-9、-4.5等都叫负数; +7、+988等都叫正数。
你会读吗?请你读给大家听。
注意“-”叫负号,“+”叫正号。
(2)读给你的同伴听。
(3)把你新认识的负数再写两个,读一读。
下面让我们走进正数和负数的世界,进一步了解它们。
(板书课题)二、借助实际生活情境的直观,丰富对正负数的认识。
1、负数有什么用?用正数或负数表示下列数量。
(1向东走200米,用+200米表示;那么向西走200米元用表示。
2.说说实际问题中负数的确定(1.)表示海拔高度(2.)解释温度中正负数的含义(3)做练习三3、怎样理解具有相反意义的量三、理解01、0既不是正数也不是负数。
0是正负数的分界。
2、0只表示没有吗?1).空罐中的金币数量;2).温度中的0℃;3).海平面的高度;4).标准水位;5).身高比较的基准;6.)正数和负数的界点;3、总结0既不是正数,也不是负数;0是正数负数的分界。
0是整数,0是偶数,0是最小的自然数。
四、探究活动(出示课件):1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。
《正数和负数》教案模板:如何应对学生在学习过程中遇到的挑战和困惑?

一、引言正数和负数是数学中非常基础的概念。
学生在初学阶段可能会遇到一些挑战和困惑,如何应对这些问题,是我们要思考和解决的问题。
本文将对教师在教授正数和负数时应该关注的问题进行探讨和总结。
二、学生在学习正数和负数中的挑战和困惑以及应对方法1.学生对正数和负数的概念理解不够清晰在初学阶段,学生可能会对正数和负数的概念理解不够清晰,他们可能对这两个概念的区别不太明确,这样会导致学生在后续的学习中出现困难。
针对这个问题,教师应该在教学中注重对学生进行解释和举例,让学生更加深刻地理解正数和负数的概念,用具体的例子来说明两者的区别和联系。
例如,教师可以将正数和负数分别比喻成上坡和下坡,在举例子时,教师可以让学生想象自己站在一个坡上,那么走上去就是正数,走下来就是负数。
这样学生可以从生活中的经验出发来理解正数和负数,并将其应用到数学中。
2.学生在加、减正数和负数时容易出错在初学阶段,学生容易混淆正负号以及加减的方向,这会导致学生在计算过程中出现错误。
针对这个问题,教师应该在教学中注重示范和演示,让学生通过观察和模仿来掌握加、减正数和负数的方法。
教师可以利用教具或白板来进行演示,先让学生观察教师的计算过程,然后再让学生模仿进行计算。
此外,教师还可以设计一些试题,让学生在课后进行练习,从而加深他们对加减运算的理解和熟练度。
3.学生对绝对值的概念不够清晰在初学阶段,学生可能还不太了解绝对值的概念,这会导致学生在计算过程中出现错误。
针对这个问题,教师应该在教学中注重对学生进行讲解和举例,让学生更加深刻地理解绝对值的概念。
在教学中,教师可以用图像来进行说明,让学生能够形象地理解绝对值的含义。
此外,教师还可以利用具体的例子来让学生掌握如何计算绝对值。
4.学生在解决复杂问题时缺乏策略和实践经验在学习过程中,学生可能会遇到一些较为复杂的问题,这些问题的解决需要一定的策略和实践经验,但是初学阶段的学生可能还缺乏这些经验和方法,导致他们在解决问题时出现瓶颈。
2024年人教版数学六年级下册负数的认识优秀教案3篇

人教版数学六年级下册负数的认识优秀教案3篇〖人教版数学六年级下册负数的认识优秀教案第【1】篇〗一、教学内容:负数的意义。
(课本123—125也得例1、例2)二、教学目标:1、知识与技能:使学生认识负数,理解负数的意义,学会读写负数,并能用负数表示相关的量。
知道0既不是正数,也不是负数。
2、数学思考:通过教学,培养学生的初步分析能力,初步建立负数的概念。
3、问题解决:通过正数、负数的学习,培养学生应用数学知识解决实际问题的能力。
4、情感与态度:从实际问题引入正数、负数,然后通过实例巩固,感知数学知识来源于生活,应用于生活。
三、重点、难点与关键:1、教学重点:理解负数的意义,初步建立负数的概念。
2、教学难点:使学生认识负数,理解负数的意义,学会读写负数,并能用负数表示有关的量。
3、教学关键:使学生认识负数,理解负数的意义,学会读写负数,并能用负数表示有关的量。
四、教具准备:多媒体课件。
五、教学过程;(一)游戏导入,课件展示,生活实例导入。
1.游戏:师生作相反动作游戏,感受生活中的相反现象。
2.课件展示:搜集的天气预报视频。
根据天气预报中的0下摄氏度的读法和记录方法引入新课。
(二)联系生活实际,学习新知。
1、教学例1(1)负数的产生:课件展示,通过天气预报的介绍,引出负数。
①听:听天气预报是怎样播颂的。
(板书:零下3度1度)②看:让学生观察屏幕上是怎样写的。
(板书:-3℃ 1℃)③让学生试读-3℃,教师借机介绍“-”是负号,强调不是减号,并说明在1度前可以加上“+”,记作“+1℃”,介绍“+”是正号,强调不是加号,“+”可以省略不写。
(2)强调温度的记录以0刻度为标准。
①课件展示:在温度计上标出0刻度。
并引导学生标出-3℃、1℃,并说其原因。
②试一试:学生试着标出-5℃、+5℃温度计,进一步强调温度的'记录以0刻度为标准。
(3)巩固练习:①完成课本123页的试一试。
②课堂活动第一题。
先让学生先试读出温度;再让同桌指读;最后让学生找出那个城市最冷,找出那个城市最暖和。
七年级数学《正数和负数》教案

七年级数学《正数和负数》教案数学《正数和负数》教案一教学目标1.使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;2. 会初步应用正负数表示具有相反意义的量;3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;4.培养学生逐步树立分类讨论的思想;5. 通过本节课的教学,渗透对立统一的辩证思想.教学建议一.重点.难点分析本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数.难点是学习负数的必要性及有理数的分类.关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准.正.负数的引入,有各种不同的方法.教材是由学生熟知的两个实例:温度与海拔高度引入的.比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低_5米记作-_5米.由这两个实例很自然地,把大于0的数叫做正数,把加〝-〞号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的〝基准〞.这样引入正.负数,不仅有利于学生正确使用正.负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质.把负数理解为小于0的数.教材中,没有出现〝具有相反意义的量〞的概念.这是有意回避或淡化这个概念.目的是,从正.负数引入一开始就能较深刻的揭示正.负数和零的性质,帮助学生正确理解正.负数的概念.关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类.二.教法建议这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象.难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则.例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准.分类的结果,以及它们的相互联系.通过正数.负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中.三.正数与负数概念的理解1﹒对于正数和负数的概念,不能简单的理解为:带〝+〞号的数是正数,带〝-〞号的数是负数.2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…3﹒到现在为止,我们学过的数细分有五类:正整数.正分数.0.负整数.负分数,但研究问题时,通常把有理数分为三类:正数.0.负数,进行讨论.4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数.四.有理数的分类整数和分数统称为有理数.1)正整数.零.负整数统称为整数;正分数.负分数统称为分数.2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数.3)注意概念中所用〝统称〞二字,它与说〝整数和分数是有理数〞的意思不大一样.前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说〝统称〞还是不错,而用后一种说法就欠妥了.4)分数和小数的区别:分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的.5)到目前为止,所学过的数(除π外)都是有理数.数学《正数和负数》教案二教学目标1.使学生理解的概念,并会判断一个给定的数是正数还是负数;2. 会初步应用正负数表示具有相反意义的量;3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;4.培养学生逐步树立分类讨论的思想;5. 通过本节课的教学,渗透对立统一的辩证思想.教学建议一.重点.难点分析本课的重点是了解是由实际需要产生的以及有理数包括哪些数.难点是学习负数的必要性及有理数的分类.关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准.正.负数的引入,有各种不同的方法.教材是由学生熟知的两个实例:温度与海拔高度引入的.比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低_5米记作-_5米.由这两个实例很自然地,把大于0的数叫做正数,把加〝-〞号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的〝基准〞.这样引入正.负数,不仅有利于学生正确使用正.负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质.把负数理解为小于0的数.教材中,没有出现〝具有相反意义的量〞的概念.这是有意回避或淡化这个概念.目的是,从正.负数引入一开始就能较深刻的揭示正.负数和零的性质,帮助学生正确理解正.负数的概念.关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类.二.知识结构1.正数.负数和零的概念正数负数零象1.2.5. .48等大于零的数叫正数象-1.-2.5, ,-48等小于零的数叫负数0叫做零,0既不是正数也不是负数2.有理数的分类三.教法建议这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象.难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则.例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准.分类的结果,以及它们的相互联系.通过正数.负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中.四.概念的理解1﹒对于正数和负数的概念,不能简单的理解为:带〝+〞号的数是正数,带〝-〞号的数是负数.例如:一定是负数吗?答案是不一定.因为字母可以表示任意的数,若表示正数时, 是负数;当表示0时, 就在0的前面加一个负号,仍是0,0不分正负;当表示负数时,就不是负数了,它是一个正数,这些下节将进一步研究.2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…3﹒到现在为止,我们学过的数细分有五类:正整数.正分数.0.负整数.负分数,但研究问题时,通常把有理数分为三类:正数.0.负数,进行讨论.4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数.五.有理数的分类整数和分数统称为有理数.1)正整数.零.负整数统称为整数;正分数.负分数统称为分数.这样有理数按整数.分数的关系分类为:2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数.因此,有理数按正数.负数.0的关系还可分类为:3)注意概念中所用〝统称〞二字,它与说〝整数和分数是有理数〞的意思不大一样.前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说〝统称〞还是不错,而用后一种说法就欠妥了.4)分数和小数的区别:分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的.如圆周率就不能表示成分数.5)到目前为止,所学过的数(除外)都是有理数.教学设计示例(一)一.素质教育目标(一)知识教学点1.了解:是实际需要的.2.掌握:会判断一个数是正数还是负数.3.应用:会初步应用正负数表示温度.海拔高度等互为相反数意义的量.(二)能力训练点通过正数.负数的学习,培养学生应用数学知识的意识,训练学生善于运用新知识解决实际问题的能力.(三)德育渗透点1.从实际问题引入正数.负数,然后通过实例巩固,让学生感知到数学知识来源于生活并为生活服务.2.通过正负数的学习,渗透对立.统一的辩证思想.(四)美育渗透点通过引人负数,学生会感觉得小学里学的数是〝不全〞的,从而通过本节课的教学,给学生以完整美的享受.二.学法引导1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识.2.学生学法:研究实际问题→认识负数→负数在实际中的应用三.重点.难点.疑点及解决办法1.重点:会判断正数.负数,运用正负数表示具有相反意义的量.2.难点:负数的引入.3.疑点:负数概念的建立.四.课时安排2课时五.教具学具准备投影仪(电脑).自制活动胶片.中国地图.六.师生互动活动设计教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈.七.教学步骤(一)创设情境,复习导入师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数……师小结:为了实际生活需要,在数物体个数时,1.2.3……出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示.【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆.回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分.提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?学生活动:学生们思考,头脑中产生疑问.【教法说明】教师利用问题〝有没有比0小的数?〞制造悬念,并且这时学生有一种急需知道结果的要求.(二)探索新知,讲授新课师:为了研究这个问题,我们看两个实例(出示投影1)用复合胶片翻四次在冬日一天中,一个测量员测了中午_点,晚6点,夜间_点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃)学生活动:看图回答10℃,5℃,零下5℃,零下10℃.[板书]10 5 -5 -10师:再看一个例子,中国地形图上,可以看到我国有一座世界峰—珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-_5米,这两个数表示的高度是相对海平面说的,你能说说8848米,-_5米各表示什么吗?(出示投影2)(显示中国地形图,再显示珠穆朗玛峰和吐鲁番盆地的直观图形).学生活动:学生思考讨论,尝试回答:8848米表示珠穆朗玛峰比海平面高8848米;-_5米表示吐鲁番盆地比海平面低_5米.【教法说明】针对实例,教师不是自己一概地陈述而是注意学生参与意识,要学生观察.动脉.讨论后得出答案,充分发挥了学生的主体地位.教师针对学生回答的情况给与指正.师:以上实例中出现了-5.-10.-_5这样的数,一般地温度比0℃高5℃.10℃.1.6℃.℃记作+5.+10.+1.6.+,大于0的数为正数;当温度比0℃低于5℃.10℃.2.2℃记作-5.-10.-2.2,像这样在正数前面加〝-〞号叫负数;0既不是正数也不是负数.师随着叙述给出板书[板书]正数:大于0的数负数:正数前面加〝-〞号(小于0的数)0:既不是正数也不是负数.【教法说明】在以上两个例子的基础上,对正数尤其是负数的引入已到了水到渠成的地步,这时教师描述性地指出正数.负数的概念,学生不仅认识了什么是,还清楚地知识,是相对的.(三)尝试反馈,巩固练习1.师板书后提问:第二个例子中的8848是什么数,-_5是什么数,海平面的高度是哪个数?2.出示1(投影显示)例1 所有的正数组成正数集合,所有负数组成负数集合,把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里〝-_,4.8,+7.3,0,-2.7,-,,,-8._,3.自己任意写出6个正数与6个负数分别把它填在相应的大括号里.数学《正数和负数》教案三正数集合负数集合4.(1)某地一月份某日的平均气温大约是零下3℃,可用_________数表示,记作__________.(2)地图册上洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比怎样?学生活动:1.2题学生回答,3题同桌交换审阅,4题讨论后举手回答.【教法说明】l题是紧扣上面的例子把正负数应用到实例中去,既呼应了前面,又认识了正负数,2题是通过判断正数负数渗透集会的概念,3题是让学生自行编正数负数,以达到自我消化吸收,4题是用实际生活中的典型例子加强对负数的理解和认识,同时也为下一步引出相反意义的量打下基础.师:在0℃以上的温度用正数表示,0℃以下的温度用负数表示;高于海平面的地方用正数表示它的高度,低于海平面的地方用负数表示它的高度.在实际生活中还有一些与温度.海拔高度类似的量也常常用正负数表示,你能列出一些吗?学生活动:分组讨论,互相补充,两个学生回答.教师对学生列举的例子给与适当分析,针对学生回答予以补充巩固练习:(出示投影升)1.填空(1)-50表示支出50元,那么+100元表示_____________.(2)正常水位为0 ,水位高于正常水位0.2 记作______________,低于正常水位0.3记作______________.(3)乒乓球比标准重量重0._9记作_____________;比标准重量轻0._9记作_____________;标准重量记作______________.2.一个学生演示,教师提出要求规定向前走为正.(1)向前走2步记作_________________.(2)向后走5步记作_________________.(3)〝记作6步〞他应怎么走?〝记作-4步〞呢?(4)原地不动记作_________________.(出示投影5)3.例题一物体沿东西两个相反的方向运动时,可以用正负数表示它们的运动.(1)如果向东运动4 记作4 ,向西运动5记作_______________.(2)如果-7 表示物体向西运动7 ,那么6表明物体怎样运动?学生活动:l题学生审题后回答.2题学生演示,其他学生观察举手回答.3题回答.【教法说明】用正数.负数表示相反意义的量是本节的重点.首先,先让学生举出自己所熟悉的相反意义的量,并用正数负数表示,激发学生兴趣,这时再出示补充的练习中的1题,学生能非常轻松地回答出来,这时学生有一种非常轻松的感觉,噢!原来正数.负数是用来表示这样的量的.紧接着,让一个学生向前后任意走,规定向前为正,让其他学生观察,第一次他向哪个方向走了?走了几步?记作什么?第二次呢?第三次呢?这时学生积极观察举手回答,然后让一个学生提出类似要求〝记作+5应怎样走?〞,这样在活跃.欢快的气氛中加深了对正数负数的理解.最后利用例2作为巩固练习就非常容易了,这一环节就是要学生在一种轻松愉快的气氛中获取知识,符合素质教育的要求.师:通过今天这节课的学习,你能回答老师开始时提出的问题吗?—有没有比零小的数?(有,是负数)1.正数和负数表示的是一对相反意义的量.2.零既不是正数也不是负数.八.随堂练习1.判断题(l)0是自然数,也是偶数( )(2)0可以看成是正数,也可以看成是负数( )(3)海拔-_5米表示比海平面低_5米( )(4)如果盈利1000元,记作+1000元,那么亏损200元就可记作-200元( )(5)如果向南走记为正,那么-10米表示向北走-10米( )(6)温度0℃就是没有温度( )2.将下列各数填入相应的大括号里-9,,0, ,2000,+61,,-10.8正数集合负数集合3.用正数和负数表示下列各量(1)零上24摄氏度表示为___________,零下3.5摄氏度表示为______________.(2)足球比赛,赢2球可记作_________球,输一球应记作____________球.九.布置作业(一)必做题1.下列各数中哪些是正数?哪些是负数?-_,0._,+ , , ,0,25.8,-3.6,-4,9651,-0.12.一物体可左右移动,设向右为正,(1)向左移动_ 应记作什么?(2)〝记作8 〞表明什么?(二)选做题1.一潜水艇所在高度为-50 ,一条鲨鱼在艇上方10 处,鲨鱼所在的高度是多少?2.甲地海拔高度是30 ,乙地海拔高度是20 ,丙地海拔高度是-10 ,哪个地方,哪个地方最低?的地方比最低的地方高多少?十.板书设计随堂练习答案1.√ _ √ √ _ _2.正数集合负数集合3.(1)+24℃,-3.5℃;(2)+2,-1作业答案(一)必作题1.0._, , ,25.8,9651是正数;-_,,-3.6,-4,-0.1是负数;2.(1)向左移动_ 记作 ;(2)记作表明物体向右移动 .(二)选作题1. .2.甲地,丙地最低,的地方比最低的地方高 .(二)一.素质教育目标(一)知识才学点1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解数0在有理数分类中的作用.(二)能力训练点培养学生树立对数分类讨论的观点和能正确地进行分类的能力.(三)德育渗透点通过联系与发展.对立与统一的思考方法对学生进行辩证唯物主义教育.(四)美育渗透点通过有理数的分类,给学对称美的享受二.学法引导1.教学方法:启发引导,充分体现学生为主体,注重学生参与意识.2.学生学法:识记→练习巩固.三.重点.难点.疑点及解决办法1.重点:有理数包括哪些数.2.难点:有理数的分类.3.疑点:明确有理数分类标准.四.教具学具准备投影仪.自制胶片.五.师生互动活动设计教师用投影出示练习题,学生讨论解决,教师引导学生对有理数进行分类,学生以多种形式完成训练题.六.教学步骤(一)复习导入(出示投影1)1.把下列各数填入相应的大括号内:+6, ,3.8,0,-4,-6.2, ,-3.8,正数集合负数集合2.填空:(1)若下降5 记作-5 ,那么上升8 记作__________________,不升不降记作_____________________.(2)如果规定+20表示收入20元,那么-10元表示______________.(3)如果由地向南走3千米用3千米表示,那么-5千米表示____________________,在地不动记作__________________.【教法说明】出示投影后,学生思考,然后举手回答问题.当学生回答完一题后.教师追问:你能不能说说什么叫正数,负数呢?0是正数吗?是负数吗?通过第1小题,使学生进一步理解正.负数的概念,以及零的特殊意义.通过第2小题使学生掌握对于两种相反意义的量,如果其中一种量用正数表示,那么另一种量便可以用负数表示.师:在小学大家学过1,2,3,4……这是什么数呢?生:自然数.师:在这些自然数前面加上负号,如-1,-2,-3,-4……这些是什么数呢?生:负数.师:具体叫什么负数呢?师:今天我们要把大家学过的数分类命名,然后给一个统一的名称.【教法说明】通过教师由浅入深层层设问,使学生在头脑当中逐步认识问题.这样一步一个台阶的教学过程,符合学生认识问题的一般规律.(二)探索新知,讲授新课1.分类数的名称1,2,3,4……叫做正整数;-1,-2,-3,-4……叫做负整数.0叫做零., , (即)……叫做正分数;, , (即)……叫做负分数;正整数.负整数和零统称为整数.正分数和负分数统称为分数.整数和分数统称有理数.即【教法说明】以上内容由师生共同参与完成,教师启发诱导,遵循了由具体到抽象的认识规律.提出问题:巩固概念(出示投影2)(1)0是整数吗?是正数吗?是有理数吗?(2)-5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?【教法说明】这三道小题主要是检查学生对概念的理解.新授过程中随时设计习题进行反馈练习,以便调节回授.注意:有时为了研究的需要,整数也可以看作是分母为1的分数,这时分数包括整数,本章中的分数是指不包括整数的分数.2.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类方法也常常不同,常用的有以下两种:(1)先把有理数按〝整〞和〝分〞来分类,再把每类按〝正〞与〝负〞来分类,如下表:(2)先把有理数按〝正〞和〝负〞来分类,再把每类按〝整〞和〝分〞来分类,如下表尝试反馈,巩固练习(出示投影3)下列有理数中:-7,10.1, ,89,0,-0.67, .哪些是整数?哪些是分数?哪些是正数?哪些是负数?学生思考,然后找同学逐一回答.其他同学准备补充或纠正.【教法说明】通过此题,检查学生对有理数分类的掌握情况,通过对有理数进行分类,培养学生树立对数分类讨论的观点和正确地进行分类的能力.3.数的集合我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合.同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合.(三)变式训练,培养能力(出示投影4)(1)把有理数6.4,-9, ,+10,,-0._1,-1, ,-8.5,25,0,100按正整数.负整数.正分数.负分数分成四个集合.正整数集合 ,负整数集合正分数集合 ,负分数集合(2)把下列有理数:-3,+8, ,+0.1,0, ,-10,5,-0.7填入相应的集合:整数集合 ,分数集合正数集合 ,负数集合【教法说明】学生思考后,动笔完成上述第(1)题.一个学生在黑板上板演,其他学生做在练习本上,然后师生共同订正.从中进一步培养学生分类能力.第(2)题采用分组计分形式,充分调动学生学习数学的积极性,增强学生集体荣誉感.(四)归纳小结师:今天我们一起学习了哪些内容?由学生自己小结,然后教师再总结:今天我们一起学习了有理数的定义和两种分类方法.要能正确地判断一个数属于哪一类,要特别注意〝0〞不是正数,但是整数.【教法说明】课堂小结,采取学生小结的办法,让学生积极参与教学活动,归纳出本节课所学的知识.再由教师归纳总结,帮助全体学生进一步明确本节课的重点和应达到的目标.(五)反馈检测(出示投影5)(1)整数和分数统称为_______________;整数包括___________________._________________和零,分数包括________________和__________________.(2)把下列各数填入相应集合的持号内:-3,4,-0.5,0,8.6,-7整数集合 ,分数集合正有理数集合 ,负分数集合(4)选择题:-100不是( )A.有理数;B.自然数;C.整数;D.负有理数.以小组为单位计分,积分的组为优胜组.【教法说明】通过反馈检测,既使学习的积极性和主动性,增强学生积极参与教学活动的意识和集体荣誉感.七.随堂练习1.判断题(1)整数又叫自然数.()(2)正数和负数统称为有理数()(3)向东走-20米,就是向西走20米( )(4)温度下降-2℃,是零上2℃( )(5)非负数就是正数,非正数就是负数()2.在下列适当的空格里打上〝√〞号有理数整数分数正整数负分数自然数2-3._ 03.把下列各数分别填在相应的大括号里 1.8,-42,+0._, ,0,-3.__926,,1整数集合分数集合正数集合负数集合。
六年级负数教案(3篇)

第1篇教学目标:1. 知识与技能:理解负数的意义,掌握负数的表示方法,能够进行简单的负数运算。
2. 过程与方法:通过观察、比较、操作等活动,培养学生的抽象思维能力。
3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生良好的学习习惯。
教学重点:1. 负数的意义及表示方法。
2. 负数的简单运算。
教学难点:1. 负数的意义理解。
2. 负数运算的掌握。
教学准备:1. 多媒体课件2. 教学卡片3. 学生练习册教学过程:一、导入新课1. 利用多媒体课件展示生活中的负数实例,如气温、海拔等,引导学生思考负数的意义。
2. 提问:同学们,你们知道什么是负数吗?请大家分享一下自己对这个概念的理解。
二、讲授新课1. 负数的意义及表示方法(1)教师引导学生回顾整数和正数的概念,然后介绍负数的定义:在数轴上,0的左侧表示负数。
(2)教师演示如何用符号“-”表示负数,如-3、-5等。
(3)学生练习用符号表示负数,教师巡视指导。
2. 负数的简单运算(1)教师讲解负数加法的规则:同号相加,异号相减,取较大数的符号。
(2)教师演示负数加法运算,如-2 + (-3) = -5。
(3)学生练习负数加法,教师巡视指导。
(4)教师讲解负数减法的规则:减去一个数,等于加上这个数的相反数。
(5)教师演示负数减法运算,如-3 - (-2) = -1。
(6)学生练习负数减法,教师巡视指导。
三、巩固练习1. 学生独立完成练习册上的负数题目,教师巡视指导。
2. 学生展示自己的答案,教师点评并纠正错误。
四、课堂小结1. 教师总结本节课所学内容,强调负数的意义、表示方法及简单运算。
2. 学生分享自己的学习心得,教师点评。
五、课后作业1. 完成练习册上的相关题目。
2. 预习下一节课的内容。
教学反思:本节课通过观察、比较、操作等活动,让学生理解了负数的意义,掌握了负数的表示方法及简单运算。
在教学过程中,教师应注重培养学生的抽象思维能力,引导学生积极参与课堂活动。
认识负数教学设计(优秀4篇)

认识负数教学设计(优秀4篇)《认识负数》教案篇一一、教材分析:《认识负数》是在学生系统地认识整数、小数的基础上进行教学的。
通过负数的认识,使学生明白数不仅包括正的,还有负的,从而使学生对数的概念形成一个完善、系统的知识结构,为今后进一步认识负数打下基础。
在生活中,由于人们生活和生产的需要,有时仅仅用已学过的数(即正数)已经不能明确地表达意思了,于是产生了负数。
学生在感知了负数的产生之后,由于生活经验,已经见过负数的存在,于是在这种生活经验的基础上,尤其是在温度中,深刻体会了负数的意义,从而为下节课系统认识正负数打下扎实的基础。
二、学情分析:在学习生活中的负数之前,学生已经系统认识了整数和小数,并且对分数也有了初步的认识。
知道这些已学过的数的个数都是无限的。
学生由于生活经验,可能在某些地方已经知道了负数的存在。
基于这样的学习起点,本节课必须在学生认知冲突产生矛盾的前提下让学生体会负数产生的必要性。
并通过熟悉的生活情境让学生体会负数的意义。
同时在本节课上也应尽量通过数学思想的渗透,使知识形成一个完整的结构,为今后进一步学习正、负数打下基础。
设计理念:一、注重体现数学知识形成的逻辑性。
新知的形成往往是在旧知的迁移或是与旧知产生矛盾冲突的前提下形成的。
本节课我就合理采用后者的呈现形式,让学生在记录一组信息时,强烈感受到仅仅用以前学过的数已经不能清楚地表示一对相反意义的量了,于是体会到了负数产生的必要性。
并感受符号化的思想,体会到数学的简洁性。
同时通过生活经验的感知和内化,理解了负数的意义,又沟通了正数、0、负数三者之间的联系,使知识形成完整的结构。
这样的知识形成过程既符合学生的认知规律,又符合数学知识和思维的逻辑性。
二、注重体现数学知识与生活联系的紧密性。
《新课标》中提出:在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题。
可见数学知识与生活的联系有多重要。
本节课我先结合地震引出负数,再联系南方大雪灾,让学生在雪灾的场景中对比正、负数;还让学生举一举你在生活中见到过哪些负数,唤起学生对数学知识的学习兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Don't be like a troubled person and tell others about your misfortune.(页眉可删)《正数和负数教案》3篇《正数和负数教案》篇1单元教学内容1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,•从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系。
引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念。
2.通过怎样用数简明地表示一条东西走向的马路旁的树、•电线杆与汽车站的相对位置关系引入数轴。
数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系。
(2)数轴能反映数的性质。
(3)数轴能解释数的某些概念,如相反数、绝对值、近似数。
(4)数轴可使有理数大小的比较形象化。
3.对于相反数的概念,•从数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等来说明相反数的几何意义,同时补充零的相反数是零作为相反数意义的一部分。
4.正确理解绝对值的概念是难点。
根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值。
(2)有理数的绝对值是一个非负数,即最小的绝对值是零。
(3)两个互为相反数的绝对值相等,即│a│=│-a│。
(4)任何有理数都不大于它的绝对值,即│a│a,│a│-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.三维目标1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数。
(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴上已知点所表示的解。
(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值。
(4)会利用数轴和绝对值比较有理数的大小。
2.过程与方法经过探索有理数运算法则和运算律的过程,体会类比、转化、数形结合等数学方法。
3.情感态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言。
重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、•负数表示具有相反意义的量,会求一个数的相反数和绝对值。
2.难点:准确理解负数、绝对值等概念。
3.关键:正确理解负数的意义和绝对值的意义。
课时划分1.1 正数和负数 2课时1.2 有理数 5课时1.3 有理数的加减法 4课时1.4 有理数的乘除法 5课时1.5 有理数的乘方 4课时第一章有理数(复习) 2课时1.1正数和负数第一课时三维目标一。
知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
二。
过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
三。
情感态度与价值观培养学生积极思考,合作交流的意识和能力。
教学重、难点与关键1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2.难点:正确理解负数的概念。
3.关键:创设情境,充分利用学生身边熟悉的事物,•加深对负数意义的理解。
教具准备投影仪。
教学过程四、课堂引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。
人们由记数、排序、产生数1,2,3,为了表示没有物体、空位引进了数0,•测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2•页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.五、讲授新课(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。
而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+0.5,+,就是3,2,0.5,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。
(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量。
•正数和负数在许多方面被广泛地应用。
在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。
例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额。
(6)、请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义。
(7)、你能再举一些用正负数表示数量的实际例子吗?(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。
六、巩固练习课本第3页,练习1、2、3、4题。
七、课堂小结为了表示现实生活中的.具有相反意义的量,我们引进了负数。
正数就是我们过去学过的数(除0外),在正数前放上-号,就是负数,•但不能说:带正号的数是正数,带负号的数是负数,在一个数前面添上负号,它表示的是原数意义相反的数。
如果原数是一个负数,那么前面放上-号后所表示的数反而是正数了,另外应注意0既不是正数,也不是负数。
八、作业布置1.课本第5页习题1.1复习巩固第1、2、3题。
九、板书设计1.1正数和负数第二课时1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。
而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+0.5,+,就是3,2,0.5,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思《正数和负数教案》篇2一.知识与技能进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义.二.过程与方法经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征.三.情感态度与价值观鼓励学生积极思考,激发学生学习的兴趣.教学重、难点与关键1.重点:正确理解正、负数的概念,能应用正数、•负数表示生活中具有相反意义的量.2.难点:正数、负数概念的综合运用.3.关键:通过对实例的进一步分析,•使学生认识到正负数可以用来表示现实生活中具有相反意义的量.教具准备投影仪教学过程四、复习提问课堂引入1.什么叫正数?什么叫负数?举例说明,•有没有既不是正数也不是负数的数?2.如果用正数表示盈利5万元,那么-8千元表示什么?五、新授例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值.2.20__年下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,•中国增长7.5%.写出这些国家20__年商品进出口总额的增长率.分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数.•负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.2.六个国家20__年商品进出口总额的增长率分别为:美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-•2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-•7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义.六、巩固练习1.课本第5页的第8题.点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、•意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多.2.补充练习.若向西走10米,记作-10米,如果一个人从A地先走12米,再走-15米,•你能判断此人这时在何处吗?解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从A 地先向东走12米,接着再向西走15米,此人这时应该在A地的西方3米处.七、课堂小结通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量.八、作业布置课本第5页习题1.1第4、5、6、7题.九、板书设计正数和负数《正数和负数教案》篇3学习目标 1、了解负数是从实际需要中产生的;2、能判断一个数是正数还是负数,理解数0表示的量的意义;3、会用正负数表示实际问题中具有相反意义的量.重点难点重点:正、负数的概念,具有相反意义的量难点:理解负数的概念和数0表示的量的意义教学流程师生活动时间复备标注一、导入新课我先向同学们做个自我介绍,我姓,大家可以叫我老师,身高米,体重千克,今年岁,教龄是年龄的,我将和同学们一起度过三年的初中学习生活.老师刚才的介绍中出现了一些数,它们是些什么数呢?[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数. 所以,数产生于人们实际生产和生活的需要.在生活中,仅有整数和分数够用了吗?二、新授1、自学章前图、第2 页,回答下列问题数-3,3,2,-2,0,1.8%, -2.7%,这些数中,哪些数与以前学习的数不同?什么是正数,什么是负数?归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+ 1/3,…,就是2、0.5、1/3,….这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.2、自学第2—3页,回答下列问题大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么 0是什么数呢?0有什么意义?归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界.0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量.3、用正负数表示具有相反意义的量:自学课本3—4页有哪些相反意义的量?请举出你所知道的相反意义的量?“相反意义的量”有什么特征?归纳小结:一是意义相反,二是有数量,而且是同类量.完成3页练习4、例题自学例题,完成归纳。