液质联用技术在药物分析中的应用研究进展.doc

液质联用技术在药物分析中的应用研究进展.doc
液质联用技术在药物分析中的应用研究进展.doc

目录

摘要 (1)

前言 (2)

1 LC-MS分析原理 (2)

2 LC-MS仪的组成及其分析条件的选择 (3)

2.1 LC-MS联用仪的组成 (3)

2.2 LC-MS分析条件的选择和优化 (3)

2.2.1接口的选择 (3)

2.2.2正、负离子模式的选择 (3)

2.2.3流动相的选择 (3)

2.2.4流量和色谱柱的选择 (3)

2.2.5辅助气体流量和温度的选择 (4)

3 LC-MS在药物分析中的应用 (4)

3.1 LC-MS在药物筛选方面的应用 (4)

3.2 LC-MS在药物成分鉴定研究 (4)

3.2.1中药成分分析 (5)

3.2.2 抗生素药物成分分析 (5)

3.2.3中成药、保健品、食品中非法添加化学药物成分的鉴定分析 (5)

3.3 LC-MS在药物代谢分析的应用 (6)

3.4 LC-MS在残留药物分析的应用 (7)

4 展望 (7)

参考文献 (9)

液质联用技术在药物分析中的应用研究进展

摘要:液相色谱-质谱联用技术以其高分离能力,高灵敏度和专属性强的优势,在药物成分的鉴定分析、药物代谢研究、中成药和保健品中非法添加化学药物成分的鉴定分析以及药物残留分析等方面得到广泛的应用。本文简要综述了近年来液质联用技术在药物分析中的应用,阐述了LC-MS技术在药物筛选,药物成分鉴定研究,药物代谢分析以及残留药物分析方面的研究进展,并对其发展趋势进行了展望。

关键词:液质联用;药物分析;应用;进展

Recent Development in the Application of LC-MS in

Pharmaceutical Analysis

Chuanyang Su

Abstract:Liquid chromatography-mass spectrometry is regarded as an important technology for many advantages such as high separating efficiency, good sensitivity and strong specifity. So it is widely used in analysis of drugs and metabolites, chemical medicine mixed illegally in Chinese medicine and drug residue. This paper briefly reviewed its application in pharmaceutical analysis, the application and development as drug screening, analysis of drugs and metabolites, drug residues were mainly introduced. Finally, the development trend of LC-MS is proposed. Key words: LC-MS;pharmaceutical analysis ; application; development

前言

液相-质谱联用技术(LC-MS)是20世纪90年代发展起来的一门综合分析技术, LC的高分离效能与MS的高灵敏度,高选择性使之成为当代最重要的分离和鉴定分析方法之一。该技术自20 世纪70 年代进行开创研究以来,经历了长期的实践和研究过程,直到90 年代大气压电离技术成熟后,各种商品化仪器相继问世,LC-MS 技术才得以迅速发展,成为科研和日常分析的有力工具。

液相-质谱联用技术与气相色谱-质谱联用技术( GC-MS)相比,气相色谱-质谱联用技术发展较早,技术较为成熟,但GC样品要求有一定的蒸汽压,实际应用中,只有少部分样品可以不经过预先处理可达到GC的分离要求,多数情况下需要做预处理或衍生化使之成为易汽化的样品才能进行GC-MS分析;而液相色谱不受上述限制,可分离高极性的和热不稳定的化合物,这使得液相-质谱联用技术具有更广阔的应用前景[1]。

1 LC-MS分析原理

LC-MS仪主要由高效液相色谱,接口装置(LC与MS之间的连接装置,同时也是电离源),质谱仪组成。

混合样品通过液相色谱系统进样,由色谱柱分离,从色谱仪流出的被分离组分依次通过接口进入质谱仪的离子源处并被离子化,然后离子被聚焦于质量分析器中,根据质荷比而分离,分离后的离子信号被转变为电信号,传递至计算机数据处理系统,根据质谱峰的强度和位置对样品的成分和结构进行分析。

LC-MS是通过一个“接口”来实现的,所用接口合适与否,不仅会影响质谱仪的灵敏度,而且影响质谱仪所能提供的结构信息和应用范围。在接口研制方面,前后发展了有20多种[2],其中主要有直接导入界面、传送带界面、渗透膜界面、热喷雾界面和离子束界面,但这些技术都有不同方面的限制和缺陷,直到大气压电离技术(API)成熟后,液-质才得以飞速发展。大气压电离技术包括电喷雾电离和大气压化学电离(APCI)。作为LC-MS联用仪的质量分析器,最常用的是四极杆分析器,离子阱分析器和飞行时间分析器。

四极杆分析器由4根棒状电极组成[3],当样品量很少,而且样品中特征离子已知时,可以采用离子监测,这种扫描方式灵敏度高,通过选择适当的离子使干扰组分不被采集,可以消除组分间的干扰。

飞行时间质量分析器的特点是质量范围宽,扫描速度快,既不需电场也不需磁场。但是,长时间以来一直存在分辨率低这一缺点,主要原因在于离子进入漂移管前的时间分散、空间分散和能量分散。目前,通过采取激光脉冲电离方式,

离子延迟引出技术和离子反射技术,可以在很大程度上克服上述3个原因造成的分辨率下降,这种分析器已广泛应用于液相色谱-质谱联用仪中。

离子阱质量分析器的特点是结构小巧,质量轻,灵敏度高,而且还有多级质谱功能,其与四极杆分析器类似,离子在离子阱内的运动遵守所谓马蒂厄微分方程,也有类似四极杆分析器的稳定图。在稳定区内的离子,轨道振幅保持一定大小,可以长时间留在阱内,不稳定区的离子振幅很快增长,撞击到电极而消失。

2 LC-MS仪的组成及其分析条件的选择

2.1 LC-MS联用仪的组成

HPLC部分:高压输液系统、进样系统、色谱柱、检测系统、记录仪。

MS部分:供电系统、进样系统、离子源、质量分析器、离子检测器。

接口装置:(也是电离源)。

2.2 LC-MS分析条件的选择和优化

2.2.1接口的选择

ESI适合于中等极性到强极性的化合物分子,特别是那些在溶液中能预先形成离子的化合物和可以获得多个质子的大分子(如蛋白质)APCI不适合可带多个电荷的大分子,其优势在于弱极性或中等极性的小分子的分析。

2.2.2正、负离子模式的选择

选择的一般原则为:正离子模式适合于碱性样品,可用乙酸或甲酸对样品加以酸化。样品中含有仲氨或叔氨时可优先考虑使用正离子模式。负离子模式适合于酸性样品,可用氨水或三乙胺对样品进行碱化。样品中含有较多的强伏电性基团,如含氯,含溴和多个羟基时可尝试使用负离子模式。

2.2.3流动相的选择

常用的流动相为甲醇,乙腈,水和它们不同比例的混合物以及一些易挥发盐的缓冲液,如甲酸铵,乙酸铵等,还可以加入易挥发酸碱如甲酸,乙酸和氨水等调节pH值。

LC/MS接口避免进入不挥发的缓冲液,避免含磷和氯的缓冲液,含钠和钾的成分必须送样前一定要摸好LC条件,能够基本分离,缓冲体系符合MS要求。

2.2.4流量和色谱柱的选择

不加热ESI的最佳流速[4]是150ul/min,应用4。6 mm内径LC柱时要求柱后分流,目前大多采用 l2.1 mm内径的微柱,TIS源最高允许lml/min,建议200~400ul/minAPCI的最佳流速~lml/min,常规的直径4.6mm柱最合适。为了提

高分析效率,常采用< 100 mm的短柱(此时UV图上并不能获得完全分离,由于质谱定量分析时使用MRM的功能,所以不要求各组分没有完全分离)。这对于大批量定量分析可以节省大量的时间。

2.2.5辅助气体流量和温度的选择

雾化气对流出液形成喷雾有影响,干燥气影响喷雾去溶剂效果,碰撞气影响二级质谱的产生。

操作中温度的选择和优化主要是指接口的干燥气体而言,一般情况下选择干燥气温度高于分析物的沸点20 左右即可[5]。对热不稳定性化合物,要选用更低的温度以避免显著的分解。

选用干燥气温度和流量大小时还要考虑流动相的组成,有机溶剂比例高时可采用适当低的温度和流量小一点的。

3 LC-MS在药物分析中的应用

3.1 LC-MS在药物筛选方面的应用

在药物筛选工作中,是否能有效去除已知的化合物,以及能否对潜在的新药前体进行早期鉴定是高通量筛选的关键。因此,必须在分离化合物的初期,运用各HPLC检测手段来指导分离具有特定结构的化合物。

目前MS是分子检测中最灵敏的方法,并能得到被测物的分子量及化学结构信息。Bringmann[6]等采用HPLC-核磁共振(nuclear magnetic resenace,NMR)和LC-MS 等几种分析手段相结合的方法考察了热带葛藤类植物提取物中所含有的成分,利用HPLC-NMR和LC-MS分析发现了2个新的天然产物,并鉴定了结构,确定了绝对构型。Wolfender[7]等运用此法对龙胆科、豆科的多种植物进行了检测,实验表明,仅用少量的样品就能快速而准确地对具有生物活性的化合物进行分离与鉴别。萝摩科三酚丹是一种具有抗肿瘤活性的药用植物,其主要有效成分为菲吲哚里西丁类生物碱。首先采用分离得到3种骨架10个菲吲哚里西丁类生物碱,在此基础上用LC-MS技术对有效部位进行了考察,分析检测到11个微量的菲吲哚里西丁类生物碱成分。通过参照单体化合物的质谱裂解规律,分析推测了一些微量成分的化学结构。

3.2 LC-MS在药物成分鉴定研究

液质联用技术将液相色谱高效的在线分离能力与质谱的高选择性、高灵敏度的检测能力相结合,可以同时得到化合物的保留时间、分子量及特征结构碎片等丰富的信息,是组分复杂样品和微重样品分离分析最有力的研究手段。

3.2.1中药成分分析

中药药物成分复杂多样,分离提纯难度大,液质联用技术对样品不需要进行繁琐和复杂的前处理,因此在中药成分分析研究得到广泛应用,包括对已知成分的定性定量分析,在对未知成分的研究中,质谱检测器可以给出大量的结构信息,结合同类已知结构化合物的裂解规律,或结合其他检测方法,即可对未知成分进行直接分析。袁杰[8]等采用 HPLC /ESI-MS 联用的方法对朝鲜淫羊藿的化学成分进行分析,以ESI-MS 获得的准分子离子峰确定化合物的分子量,根据多级质谱所得的碎片峰,结合紫外光谱、HPLC 的保留时间等信息鉴定了 9 个黄酮苷类化合物。KiteG C[9]等采用 HPLC /ESI-MS 分析了皂树中一百多种皂苷类成分的结构。总之,液质联用技术不仅能够对中药化学成分进行定性和定量研究,还能够通过串联质谱给出的结构信息推测某些未知成分,指导下一步的研究工作。

3.2.2 抗生素药物成分分析

许多抗生素品种由于其产生菌绝大多数都是产生结构相似的多组分复合物,用常规分析方法对其进行快速鉴别和相关物质分析比较困难,药品质量难以控制。液质联用技术以其强有力的分离和分析能力,在这类抗生素药物成分分析和相关物质的鉴定上显示了巨大的优势。牛长群[10]等用 LC -ESI - MS 分析了氨苄西林、阿莫西林中的相关物质,确定了其结构,为氨苄西林、阿莫西林的相关物质的质量控制提供了重要证据。胡敏等[11]应用 HPLC-(+) ESI-MS 快速鉴定了头孢硫脒的降解产物。

总之,高效液相-质谱联用技术集液相色谱的高分离能力和质谱的高灵敏度高选择性于一体,使同时分析多个化合物成为可能,并显示了极大优势。

3.2.3中成药、保健品、食品中非法添加化学药物成分的鉴定分析

近几年来,中成药或保健品非法添加化学药物屡见不鲜,患者在不知情的情况大量服用,可能造成严重的不良反应。液相-质谱联用技术,灵敏度高的优点,越来越多地应用于中成药或保健品非法添加药物成分的鉴别,成为打假治劣的一把利剑。张启明[12]等用LC2ESI(+)/MS对补肾壮阳类中药及中药保健品中非法掺入的化学药物成分———枸橼酸西地那非进行定性鉴定分析,在所测的65批样品中,13种被检测出含有枸橼酸西地那非。丘颖姮[13]等建立了LC-ESI(+)/MS对减肥类药品和保健品中非法掺入的酚酞的专属性方法,结果在114种受试减肥类药品及保健品中, 42种被检测到掺入酚酞。

3.3 LC-MS在药物代谢分析的应用

药物代谢是研究药物进入人体后,在体液、酶等的作用下进行的生化反应过程[14]。对药物代谢的研究,包括药物及其代谢物的分离、鉴定、体内体外代谢的比较、代谢途径的追踪、痕量分析测定。利用液质联用技术,可以很好地分离纯化鉴定代谢物样品,并且能对以往难于辨识的痕量药物代谢物进行鉴定及定量分析。

液质联用技术在分析各种复杂生物基质中的药物代谢产物时,由于其选择性强,灵敏度高,不仅可以避免复杂、繁琐、耗时的样品前处理工作,而且能分离鉴定以往难于辨识的痕量药物代谢产物,尤其是串联质谱(MS/MS)的应用,通过多反应监测(MRM) ,可以大大提高分析的专一性和灵敏度。同时利用碰撞诱导解离可将化合物的分子离子或准分子离子打碎,通过中性丢失扫描、母离子扫描和子离子扫描,并与原型药物结构信息相比较,即可鉴定出代谢产物的结构。国内外曾多有采用LC-MS法进行药物代谢研究的报道,不仅可以避免复杂的分离纯化代谢物样品,而且能分离鉴定难于辨识的痕量代谢产物。表1列举了2004年以来国内外的部分应用。

3.4 LC-MS在残留药物分析的应用

在液质联用技术出现以前,残留药品由于其含量很低,缺乏适用仪器,检测方法落后,因此没有引起人们的重视。随着科学技术的发展成熟,液相色谱-质谱联用技术由于其高灵敏度的优势,广泛用于残留药物分析中。吉永亮[24]等采用高效液相色谱-电喷雾-串联四极杆质谱法,以甲醇-乙腈-0.1%甲酸(20∶20∶60)为流动相建立了测定蜂蜜中残留氯霉素的方法,加入同位素内标氯霉素-d5,经Oasis SPE柱净化,采用多反应检测(MRM)方式测定321 /152(氯霉素)和326 /157 (氯霉素-d5 ) ,方法检出限为0.02μg·kg- 1 ,定量限为0.1 μg·kg- 1。谢文[25]等建立了动物源食品中氯霉素、甲砜霉素、氟苯尼考残留量的LC-ESI/MS方法。以甲醇-水为流动相进行梯度洗脱,采用负离子方式扫描,多反应监测氯霉素四对离子(321.0/151.9, 3211/256.6, 321.0/194.2, 321.0/175.4) ,甲砜霉素两对离子( 354.1/185.0, 354.1/290.0) ,氟苯尼考两对离子( 356.0/335.9, 356.0/185.1 ) 和同位素内标氯霉素-d5( 326.0/157.1 ) 。该方法的测定低限是0.1μg·kg- 1。

4 展望

LC-MS技术是一种普适性的分析技术,近年来获得了迅速的发展,在药物分析检验方面具有十分广阔的应用前景[26]。该技术路线的起点较高,故与目前的各种免疫法和高效液相色谱法相比,具有专一可靠、灵敏度高、操作简便、试剂成本低廉、可应对高通量的样品分析测试等特点,可对众多生物基质内的微量物质进行可靠的定量检测与定性验证,远远满足国内外对食品安全控制与监管的要求,与已成熟的GC-MS联用技术相比,LC-MS还处于发展阶段,但LC-MS所具备的一系列优点,决定了它的应用前景比GC-MS更为广泛。LC-MS的发展可以说是接口技术的发展,扩大LC-MS应用范围以使热不稳定和强极性化合物在不加衍生化的情况下得以直接分析并将质谱分析用于生物大分子是液质接口技术的发展方向[27]。

LC-MS各种“软”离子化接口技术,特别是大气压电离(API)技术的开发正是迎合了这个方向,简化了样品处理过程,被人们称为LC-MS技术乃至质谱技术的革命性突破。HPLC/API/MS作为高灵敏度的简捷方法被广泛应用于食品分析的各个领域,API接口的研制成功,解决了HPLC流速与MS仪在真空条件下工作的匹配问题,扩大了HPLC /MS联用技术的应用范围,极大地促进了食品安全分析学科的发展。在串联质谱方面,目前以四极杆串联质谱为主,它可进行MS1和MS2操作(空间上)。离子阱质谱和傅利叶变换质谱(FT-ICR-MS)亦可完成多级串联质谱分析(时间上),离子阱质谱通过改变阱里射频场最多可进行10级MS操作,FT-ICR-MS通过离子回旋共振进行多级MS操作。飞行时间质谱(TOF)作为第2个质量分析器,

现代药物分析技术-GC-MS电子教案

现代分析技术GC-MS的介绍与应用 一、GC-MS技术介绍: 1.GC-MS的概念:气象色谱-质谱联用仪(GC-MS),是一种集气象色谱的 高速、高分离效能、高灵敏度和质谱的高选择性于一体,通过总离子流 谱图和综合气相保留值法能对多组分混合物进行定性鉴定和分子结构的 准确判断,通过峰匹配法、总离子流质量色谱图、选择离子检测法可对 待测物进行定量分析的现代分析方法。 2.GC-MS的装置和原理:GC-MS联用主要包括色谱柱、接口、和质谱仪 的选择。 ①装置: 气相色谱仪接口质谱仪 (样品传输) ②原理:气相色谱仪:利用供试品中的混合物在气相流动相和固定相 (固、液)中的分配系数的不同将供试品分离为单一的组分。 接口:被气相色谱仪分离的混合物,按其各自不同的保留时间,与载气同时流出色谱柱,经过接口,除去载气,保留被分离的组分进 入MS仪。 质谱仪:各组分分子进入MS后被离子源离子化。对于有机物,新生成的分子离子会进一步裂解成为各种碎片离子,经分析检测, 记录MS图。 ③关键装置:接口组件,理想的接口:1.除去全部载气2:试样无损失 分类:a) 直接导入型 b) 分流型 c) 浓缩型 现在最常用的是:毛细管直接导入型接口,优点为构造 简单,产率高(100%) 3.GC-MS定性分析方法:总离子流色谱法和质量碎片图谱法 ①总离子流色谱法:经色谱分离后的组分分子进入离子源后被电离成离 子,同时,在离子源内的残余气体和一部分载气分子也被电离成离子, 这部分离子构成本底。样品离子和本底离子通过离子源的加速电压, 射向质量分析器。在离子源内设置一个总离子检测极,收集总离子流

的一部分,经放大并扣除本底离子流后,在记录纸上得到该样品的总 离子流色谱图。 ②质量碎片图谱法:系用保留时间为横坐标,记录一个或若干个特征离 子碎片的强度所构成的质量碎片图谱,也就是进行选择性离子记录。 二、GC-MS的应用: 1、中药与天然药物研究 运用用GC-MS 联用技术检测了广藿香油里广藿香酮的比例,此法特异 性强、准确且重复性好,更便于控制药材与其制剂的品质。运用用LC-MS 法对川芎有效位置中藁本内酯及亚丁烯邻苯二甲内酯等多种化学成分 实施了分析及指纹图谱检测,经过检测不同产地与不同批次的川芎药材,使用NIST 谱库测检品,依据相对峰面积测检确定了指纹图谱里的15 个 共有峰。 2、抗生素类型药物分析 氯霉素是一种广泛使用的抗生素类药物,其能够造成人的再生障碍性贫 血。运用GC-MS 法分析了蜂蜜中氯霉素留存比例,回收率在90%左右, 线性关系良好,而且灵敏度高、方法干扰少。利用固相萃取-气相色谱- 质谱法,净化、提取富集条件,构建了动物组织里氯霉素留存量的测检 方法。结果加样回收率在85%~100%之间,RSD 少于25%,检出限为0.1 ug/mg,样品里氯霉素的留存比例在0.1~5.0 ug/mg 之间。 3、非甾体抗炎类药物分析 构建人血浆中阿司匹林及水杨酸GC-MS 方法,且分析了肠溶阿司匹林 片在正常人体里的药代动力学。此方法以苯甲酸作为内标。血样酸化之 后再由乙醚一二氯甲烷进行提取,运用选择离子措施实施测检、定量。 结果水杨酸、阿司匹林的日内与日间RSD 均低于4.8%与6.2%,均回收 比率超过97%,见图1。最小测检密度阿司匹林为10 ug/L,水杨酸为0.1 mg/L。 4、药动学领域的应用 一些学者针对运用气相色谱-质谱法构建了同时检测麻黄汤中麻黄碱及伪麻黄碱血药密度的措施,且分析了两者在人体里的药代动力学等 环节。此方法唯一性较强,不易受生物样本里一些杂质的影响,对一些 种类的成分分离性较好,吻合生物样品检测要求,适合用在麻黄汤中两 种主要成分的血药密度检测。 5、在方剂中的应用 气相色谱-质谱联用针对方剂挥发性成分实施分离的时候还利用质谱测 检器实施在线鉴定,这样不但能够获取方剂里挥发性成分的类型数据, 还能够推断其内部结构,所以能够通过构建气相色谱-质谱指纹图谱实施 方剂的相应质量控制。在研究三拗汤加味方与组方药材挥发油的内部结

药物分析方法进展

药物分析方法进展 摘要: 药物分析的发展已从一种专门技术逐步发展成为一门日臻成熟的科学,所涉及的研究范围包括药品质量控制、临床药学、中药与天然药物分析、药物代谢分析、法医毒物分析、兴奋剂检测和药物制剂分析等。随着药物科学的迅猛发展,各相关学科对药物分析不断提出新的要求,它已不再仅仅局限于对药物进行静态的质量控制,而是发展到对制药过程、生物体内和代谢过程进行综合评价和动态分析研究。 关键词药物分析研究进展 药物是预防、治疗、诊断疾病和帮助机体恢复正常机能的物质。药品质量的优劣直接影响到药品的安全性和有效性,关系到用药者的健康与生命安危。虽然药品也属于商品,但由于其特殊性,对它的质量控制远较其他商品严格。因此,必须运用各种有效手段,包括物理、化学、物理化学、生物学以及微生物学的方法,通过各个环节全面保证、控制与提高药品的质量。传统的药物分析,大多是应用化学方法分析药物分子,控制药品质量。然而,现代药物分析无论是分析领域,还是分析技术都已经大大拓展。从静态发展到动态分析,从体外发展到体内分析,从品质分析发展到生物活性分析,从单一技术发展到联用技术,从小样本分析发展到高通量分析,从人工分析发展到计算机辅助分析。 具体一点的讲,药物分析是分析化学技术在药学领域中的具体应用。分析化学的进步,尤其是近年仪器分析和计算机技术的进展,为药物分析的发展提供了坚实的基础。药物分析的任务是在药学各个领域中,对出于不同的目的和要求, 不同来源和组成的样品中的某些成分进行检出、鉴别和测定。药物分析发展的主要趋向就是如何能够简便、快速地从复杂组成的样品中,灵敏、可靠地检测一些微量成分。 药物分析学的研究范围包括药物质量控制、临床药学、中药与天然药物分析、药物代谢分析、法医毒物分析、兴奋剂检测和药物制剂分析、创新药物研究,以及药品上市后的再评价等,哪里有药物,哪里就有药物分析。 1、药物分析技术的发展 光谱法如紫外分光光度法、核磁共振光谱法、质谱法、拉曼光谱法、红外光谱法、荧光、磷光及化学发光光谱法、原子吸收和原子发射光谱法以及X 2射线衍射谱法等,方法较多。近年来发展虽不如色谱那么迅速,在药典中所占的比重有下降的趋势,但是仍出现了很多新方法,如二维核磁共振谱法、近红外光谱法、激光拉曼光谱以及色谱光谱联用技术等。在新的世纪中,这些方法会有更快的发展,并广泛地应用于药学科学各领域中。电化学部分分别为化学传感器、离子选择性电极和动力电化学方法与应用。近几年生物传感器的发展,成为电分析化学中活跃的研究领域。微电极技术是一种新的电化学测试技术,在活体分析中,微电极用作电化学微探针,检测动物神经传递物质的扩散过程,成为微柱液相色谱和高效毛细管电泳的电化学检测器。在将来药物分析的发展中,将会显示出光辉的应用前景。 复杂样品中微量成分的检测是在药物分析工作中比较困难的问题。色谱法对复杂样品具有较高的分离能力,是药物分析中常用的分析技术。 薄层色谱法主要用于药物及制剂的鉴别、杂质检查以及中药成分分析,已成为当今药

免疫分析技术的应用

时间分辨荧光免疫分析技术的研究进展及在食品安全领域中的应用 应化1001 王旸慧 随着分析方法的飞速发展,无论是食品中有毒有害物质,还是环境中 痕量元素的检测,或者生物体内功能因子的分析,都迫切需要一种灵敏度高、快速准确、性能稳定的痕量分析方法。时间分辨荧光免疫分析技术(time-resolved fluoroimmunoassay,简称为TRFIA)是20世纪80 年代中 期发展起来的一种新的荧光标记技术。这种方法应用某些特殊的稀土金属,能够区分背景光的散射所引起的干扰,从而大大地提高了分析的灵敏度。与传统的酶免疫法(EIA)、发射免疫分析法(RIA)相比,它具有很多优点:灵敏度高达10-19;稳定性好,克服了酶和放射性荧光物质的不稳定性; 动态范围宽;试剂货架期长;无放射性危害等,时间分辨荧光分析目前被公 认为是灵敏度最高的分析方法之一。 一、时间分辨荧光免疫分析法的原理及优势 时间分辨荧光免疫分析法(TRFIA)是在荧光分析(FIA)的基础上发展 起来的一种特殊的荧光分析法。它利用了具有独特荧光特性的镧系元素及 其螯合物为示踪物,标记抗体、抗原、激素、多肽、蛋白质、核酸探针及 生物细胞,以代替传统的荧光物质、酶、同位素、化学发光物质。用时间 分辨荧光免疫分析检测仪测定反应产物中的荧光强度,根据产物荧光强度 和相对荧光强度的比值,准确地测定反应体系中被分析物的浓度。TRFIA 所 使用的荧光标记物是镧系稀土金属,由于镧系稀土金属离子螯合物有很长 的荧光寿命(微秒级),有别于传统荧光的短荧光寿命,使其能通过时间分 辨方式区别于背景荧光(钠秒级),正是由于荧光衰变时间长,可以延缓 测量时间,待测样品中短寿命的本底荧光衰变后再测稀土离子的特异荧光,因此可完全消除本底荧光的干扰。镧系稀土金属离子螯合物荧光很宽的Stokes 位移使其容易通过波长分辨方式进一步区别于背景荧光,提高方法 学的稳定性。镧系稀土金属离子螯合物狭窄的荧光发射峰使其荧光检测具 有很高的效率,进一步提高了信号检测的特异性和灵敏性。此外,由于检 测时加入了荧光增强液,它可使原来荧光增强100万倍,以上各种因素使TRFIA 的检测灵敏度和准确性大大提高。 二、TRFIA 的反应模式 目前在实践中应用的主要有固相双位点夹心法和竞争法。夹心法多用 于蛋白质类大分子化合物的测定,竞争法多用于小分子半抗原的检测。反 应模式流程如下:

液质联用实验报告

液质联用技术在药物分析中的应用 1、实验目的 1、了解液质联用的原理及作用; 2、了解该液质联用仪器适用的样品种类及注意事项; 2、实验原理 液质联用(HPLC-MS)又叫液相色谱-质谱联用技术,它以液相色谱作为分离系统,质谱为检测系统。样品在质谱部分和流动相分离,被离子化后,经质谱的质量分析器将离子碎片按质量数分开,经检测器得到质谱图。 电喷雾四级杆飞行时间质谱(ESI-Q-TOF-MS):质谱分析是一种测量离子荷质比的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定去质量。电喷雾电离(ESI)是质谱方法中的一种“软电离”方式,它的原理是:在强电场的作用,引发正、负离子的分离,从而生成带高电荷的液滴。在加热气体(干燥气体)的作用下,液滴中溶剂被汽化,随着液滴体积逐渐缩小,液滴的电荷密度超过表面张力极限时,引起液滴自发的分裂,即“库仑爆炸”。分裂的带电液滴随着溶剂的进一步变小,最终导致离子从带电液滴中蒸发出来,产生单电荷或多电荷离子,进入质谱仪。由于ESI的电离方式可以产生多电荷离子,大大拓宽了测定物质的分子量的范围。四级杆(Quadrupole)主要起选择离子的作用,其后的碰撞池可以将通过四级杆选择的母离子碎裂成子离子,从而获得更多的结构信息。气相离子能够被适当的电场或磁场在空间或时间上按照荷质比的大小进行分离有赖于质量分析器。与其他质量分析器相比,飞行时间质量分析器(TOF)具有结构简单、灵敏度高和质量范围宽等优点(因为大分子离子的速度慢,更易于测量),分辨率也可达到万分之一。 3、实验仪器 Aglient 6510 Quadrupole Time-of-Flight LC/MS 4、数据记录及结果处理 样品的LC-MS图如下图1所示,结合表1前可知,该物质为软骨藻酸。

现代分析技术在药物分析和质量控制中的应用

现代分析技术在药物分析和质量控制中的应用 发表时间:2019-05-07T10:50:32.433Z 来源:《药物与人》2019年1月作者:陈艳国 [导读] 自改革开放几十年来我国的经济实力、军事实力、政治地位都得到了很大的提高,制造业、医疗行业、餐饮、建筑等各行各业都在这些年里取得了不同程度的发展和进步,同时为我国酝酿了良好的政治、文化、法律的环境氛围,这才使得我国各行各业兴盛发展、国家基础建设越来越完善,在这样的大环境下我国各个行业都愈发地注重生产效率,然而质量也是无法忽视的重要环节。 正大天晴药业集团股份有限公司陈艳国 摘要:自改革开放几十年来我国的经济实力、军事实力、政治地位都得到了很大的提高,制造业、医疗行业、餐饮、建筑等各行各业都在这些年里取得了不同程度的发展和进步,同时为我国酝酿了良好的政治、文化、法律的环境氛围,这才使得我国各行各业兴盛发展、国家基础建设越来越完善,在这样的大环境下我国各个行业都愈发地注重生产效率,然而质量也是无法忽视的重要环节。那医药行业来说质量是最为重要的东西,因此药物分析是实施药品检测、药品代谢分析、药效评价等多项内容重要手段,是控制药物质量的必备方法。当今科学技术飞速发展,在药物分析的技术方面也取得了很大的发展,针对不同结构不同类型的药物需要选用适当的分析方法以确保药物质量,本文就从传统分析方法着手,接着对现代分析技术的应用。 关键词:分析技术;药物分析;质量控制 [中图分类号]R927 [文献标识码]A [文章编号]1439-3768-(2019)-01-CR 引言:我国综合实力在一天天地提升,人们的生活也是越来越好,对自身健康的意识也逐渐提高,对各类药物的需求和质量的要求也是越来越高。现代分析技术对当今药物分析的重大贡献不言而喻,同时也能够有效地促进我国医疗事业的稳定发展,能够控制药物质量从而保证药物使用者的人身财产安全,且对于药物临床应用的效果有较大的提升。 1、传统药物分析方法 传统药物分析方法一般采用物理的手段来对药品的质量进行检测,如重量分析法;而化学分析方法则是通过酸碱中和滴定、沉淀法、氧化还原滴定等方法,而这些通常是静态分析,难以动态追踪药物的一系列数据;人工操作较多检测结果会受到较多人为因素的影响,从而产生一些不必要的误差。 1.1光谱法 药物分析的常用方法之一就是光谱法,同时还包括紫外分光光度法、质谱法、红外光谱法、化学发光光谱法等等,随着技术的更新迭代,光谱法衍生出一些能够应用到药物检测中的检测方式,例如近红外光谱法、色谱光谱联用法等。生物、化学传感器、微电极技术被应用到药物分析当中成为电化学药物分析研究的新领域。近红外光谱法的应用可以对药物进行定性和定量分析,同时还可以监控药物生产过程中的质量,并对药物成分的优劣进行鉴别[1]。 1.2色谱法 当药物样品繁多、成分更加复杂时,对药物的分析就需要用到色谱法对其执行分离分析,色谱法的应用能够对药品中复杂成分和结构进行分离并进行检测操作,实际的药物分析中也常常用到这一方法。如:鉴别药物、检测药物中杂质、分析药物成分等会用到薄层色谱法,这一方法操作简单易于理解,薄层的单次使用能够有效地避免药品的交叉污染现象、点样多个使用不同的染色剂在鉴别时更加有方便快捷的优势,但其检测分辨率和自动化程度与气相色谱法相比仍旧较低,被称为定性和半定量分析。作为定量分析时,有较多的影响和牵制因素、故检测的准确率有一定的降低,精确性比不上别的色谱检测方法。薄层色谱法在近年来的发展中引入了一些自动化仪器来提高检测的自动化程度,如自动点样仪、扫描仪等[2]。 2、药物分析中现代分析技术的应用 2.1化学发光检测技术 化学发光检测技术是一项被运用到药物分析工作当中的重要的现代分析技术,这一技术在药物检测中的使用能够较好地实现药物安全性的检测和质量控制两大目的。该技术在实际使用过程中是利用酶这一催化剂进行反应,在不同的药物中产生不同的能量,接着能量供给发光中间体,从而形成光源,对光源物质进行检测便可判断样本药物中相应成分的含量与质量,化学发光检测技术应用起来操作简单,同时检测过程持续时间较短、能够较为快捷的得出检测成果,在成本方面、检测所用成本价格较为低廉,与世界各国同类检测技术相比发光强度更高,在现代药物分析中具有普遍的适用性。事实上,化学发光检测技术其原理为化学酶的特殊标记,检测门槛不高、利用很少的药物成分即可以执行检测,能够在较短时间内获得结果。当前我国医疗临床中化学发光检测技术多用于细菌、病毒、肿瘤的检测工作中[3]。 2.2绿色气相色谱法 绿色气相色谱法在实际运用时利用稀有气体He和H2或是N2作为检测的洗脱剂,符合绿色安全的基本,气相色谱又涵盖了以下几种不同的检测技术: 1.直接进样气相色谱技术 直接进样色谱法一般用于柱上的进样,也能够运用对有吸附剂衬管进行填充的方式,以达到防止样品中溶剂进入毛细管柱的目的,更加有利于样本的制备。 2.顶空进样气相色谱技术 针对药物当中残留的有机溶剂分析检测一般采用顶空进样气相色谱技术,此方法通过测定药物样本上方气体的成分和相对含量来进一步测定药物样品各类成分的含量和质量,进而能够使药物的质量得到控制。该方法的具体操作方式为:先将药物样品溶液密封在平衡瓶内,以一定的恒定温度对其进行加热一段时间,使瓶内的气液两相达到平衡状态,接着由自动进样器获取气体并注入色谱柱当中,进而取得药物样本中有机残留的结果。 2.3毛细管电泳法 高效毛细管电泳法是较快成长起来的一种现代分析技术,在药物分析当中运用电场力作为驱动,毛细管作为药物成分分离的途径,根

化学发光免疫分析技术及其应用研究进展

化学发光免疫分析技术及其应用研究进展 发表时间:2014-12-16T16:00:48.107Z 来源:《科学与技术》2014年第10期下供稿作者:岳伦 [导读] 通过对化学发光免疫分析技术及其应用的相关研究,我们可以发现,该项技术的良好效果已经被普遍应用在临床检验与检测当中岳伦 重庆热展建筑工程咨询服务中心重庆 400012 【摘要】本文首先介绍了化学发光免疫分析技术的基本原理,分析了其基本装置。在探讨化学发光免疫分析技术在临床检验中应用的基础上,研究了其应用进展。 【关键词】化学发光;免疫分析技术;应用;研究进展 一、前言 作为一项效果较为理想的分析技术,化学发光免疫分析技术近期得到了长足的发展。研究该项技术的应用进展情况,能够更好地把握其运用动态,以更好地指导该项技术的实际应用。本文从介绍该项技术的基本原理着手本课题的研究。 二、化学发光免疫分析技术的基本原理 化学发光免疫分析技术是由免疫分析和化学发光分析两个系统构成的。其中免疫分析是用标记物直接标记在抗原或抗体之上的,然后再经过抗原与抗体反应生成抗体免疫复合物,其中标记物可以是化学发光物质,也可以是某种酶。化学发光免疫分析系统是在免疫反应结束后,加入氧化剂或酶的发光底物,待发光物质氧化后就会形成一个处于激发态的中间体,会发射光子释放能量以回到稳定的基态,发光强度可以利用发光信号测量仪器进行检测,其中被测物的含量就是根据化学发光标记物与发光强度的关系利用标准曲线计算出来的。 化学发光的原理是指分子或原子中的电子吸收能量后,发生能级跃迁而释放光子的过程,能级跃迁过程是电子从基态到激发态的过程,实现了从较低能级向较高能级的跃迁。其中可以根据形成激发态分子的能量来源不同将发光过程分为化学发光、光照发光和生物发光。 化学发光又可分为直接化学发光和间接化学发光,若参加反应的物质是一个反应产物分子,且被激发到能发射光的电子激发态,那么这就是直接化学发光过程。若参加反应的物质激发能传递到另一个未参加化学反应的分子D上,使D分子激发到电子激发态,D分子从激发态回到基态时发光,这种过程叫间接化学发光。 三、化学发光免疫分析的基本装置 1.电极材料的选择与制备 化学发光检测的基本模式决定了其在免疫传感中必须使用特定的光电活性电极。而免疫探针分子则在这种电极表面固定,随后的免疫识别反应也在该表面发生,所以光电活性材料的选择和制备与免疫传感的检测性能密切相关。理想的光电活性电极应该具有较低的电子空穴复合率,以便获得稳定的光电流密度。一般而言,在化学发光免疫传感中,光电活性电极的选择主要取决于所设计的检测路径与传感过程。常用的电极有整体电极和氧化铟锡(ITO)修饰电极。整体电极如二氧化钛纳米管阵列电极,ITO修饰电极则由ITO基底和光电修饰材料两部分构成。 2.免疫探针分子的固定 电极制备好后,免疫探针分子的固定是传感器制备中重要的一步,直接决定着传感器性能的优劣。原则上,电化学免疫传感器中可以使用的固定方法都可以用于化学发光传感。但因后者使用的电极材料有所不同,所以具体采用的固定方法往往和电极材料的种类以及实验的设计有关。另外,为了保证探针分子的准确定位与吸附以使探针分子在固定后保持较高的活性和稳定性并形成具有适宜厚度、密度、多孔性的敏感膜,同时为了避免非特异性吸附和结合的干扰,在固定这一步骤中需对电极的表面化学性质进行严格控制,因此需要对实验条件进行多重优化以便确定最佳条件。 四、化学发光免疫分析技术在临床检验中的应用 1.激素分析 所谓的激素,其实就是内分泌腺或者内分泌细胞所分泌出来的活性物质,是细胞之间进行信息传递的一种化学媒介。各种激素通过化学发光面积分析技术进行测定,然后由化学发光面积分析技术提供各种检测数据,化学发光面积分析技术检测能够为临床治疗、诊断,以及预后等提供相关数据,且数据可靠性非常高,将检测的灵敏度与特异性大大地提高了。 2.对肿瘤标志物的分析 所谓的肿瘤标志物,其实是肿瘤在增殖的过程中,有肿瘤相关细胞的合成与释放,或者是机体与该细胞产生反应后,生成的一种物质,如激素、蛋白质、酶以及癌基因等。在患者的体液、血液以及细胞与组织中都存在肿瘤标志物。化学发光面积分析技术对肿瘤患者(良性及恶性肿瘤)在早期进行辅助诊断,并且对术后进行监测,同时,它还能用于对新肿瘤标志物的寻找。相关检测人员对血清中的相关抗原及cyfra21-1的浓度进行了检测,结果显示,对于食管癌患者的诊断,以及对预后的监测,它们能够达到相关标准。相关检测人员对肝病中,细胞色素的含量进行了检测,结果显示,作为肝衰竭病症的新标志物,细胞色素C达标。 3.病原诊断 对于乙型肝炎病症,其病毒表面的抗原与抗体是在感染后,对免疫功能及治疗效果的评价指标是血清标志物。如果应用常规的酶检测法,很有可能会漏检一些病毒携带量少的患者。而化学发光面积分析技术的灵敏度以及线性范围比酶法更高。相关检测人员对容易感染相关病毒的围产期儿童体内的相关病毒进行了检测,结果显示,化学发光面积分析技术检测法比常规酶法的灵敏度更高。 五、化学发光免疫分析技术的应用进展 1.检测细菌及病毒细胞的是一切生命活动的基本组成单位,人体就是由千千万万的细胞集合而成,每个细胞就是一个独立的小生命,而控制着细胞的核心物质就是核酸,核酸是遗传物质基础,具有贮存、传递和表达遗传信息的功能。因此对标本中的核酸进行定量检测,对于临床准确、及时的诊断疾病,监测治疗效果是十分必要的。传统采用普通的细菌培养方法往往存在培养时间过长等诸多缺陷,因此,现在很多实验室都在寻求快速、灵敏的检测方法。研究表明用放大核酸序列分析的方法对食物中沙门杆菌进行检测,结果表明,应用化学

武汉大学 现代仪器分析方法与实践 实验报告(ESI MS液质)

高效液相色谱与质谱联用 廖宇翔2011202030138 第七组材料物理与化学 实验目的 1. 掌握高效液相色谱与质谱联用的工作原理及仪器的基本结构 2. 了解仪器的操作方法 实验原理 液质联用(HLPC-MS)又叫液相色谱-质谱联用技术,它以液相色谱作为分离系统,质谱为检测系统。样品在色谱部分被分离,通过接口进入质谱,被离子化后,经质谱的质量分析器将离子碎片按质量数分开,经检测器得到质谱图。不同离子的质荷比及其在电场中运动的速度不同,质量分析器便能依此进行分离检测并记录,得到质谱图。而对比色谱图与质谱图中峰的位置可进行定性和结构分析,根据峰的强度可进行定量分析。液质联用体现了色谱和质谱优势的互补,将色谱对复杂样品的高分离能力,与MS具有高选择性、高灵敏度及能够提供相对分子质量与结构信息的优点结合起来,在药物分析、食品分析和环境分析等许多领域得到了广泛的应用。 主要仪器 HPLC-ESI-MS 实验所用的质谱仪为电喷雾电离和离子阱检测。电喷雾电离条件温和,分子不易形成碎片,有大量的分子离子。离子阱能有效地保留进入质谱的离子,提高检测器中的离子浓度,有更高的灵敏度。 操作步骤 1.样品预处理。 2.选择合适的工作条件,进样分析。 3.处理数据。 4.在记录质谱数据时可以更据需要选择碎片离子峰的二次或多次质谱图。 思考题 1.质谱仪由哪几部分组成? 质谱仪主要由真空系统、进样系统、离子源、质量分析器和离子检测器五部分组成。

2.为什么实验中要维持高真空? 空气中的大量氧会烧坏离子源的灯丝;残余气体分子会使产生信号,干扰质谱图;残余气体分子会引起额外的离子-分子反应,改变裂解模型,使图谱复杂化;残余气体会干扰离子源中电子束的正常调节;大量气体分子还会使离子很快淬灭,达不到检测器;质谱中的加速电压会使残余气体分子放电,影响检测。 3.离子源的作用是什么?说出几种常见的离子源。 试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子以便被电场加速,进而进入质量分析器被分别记录。即离子源的作用是将分子转化成离子,以便进行检测。常见的离子源有:电子轰击EI、化学电离CI、场致电离FI、场解析电离源FD、快原子轰击FAB、激光解析LDI、电喷雾电离ESI、大气压化学电离APCI等等。 4.常见的ESI电喷雾质谱的合适溶剂有哪些? ESI-MS的合适溶剂主要有水、N,N’-二甲基甲酰胺(DMF)、甲醇、正己烷、乙腈以及挥发性酸碱等等。

学年药物分析技术期末考试

2017/2018学年 药剂专业《药物分析技术》期末考试试题A卷 15级药剂班姓名:学号:成绩: 一、A型题(最佳选择题)(下列每题1分,共60分) 1、对药物质量进行分析检验的目的是() A.提高药物分析的研究水平 B.提高药物的疗效 C.检查药物的纯度 D.保证用药的安全和有效 E.提高药物的经济效益 2、直接碘量法测定的药物应是() A.腐蚀性药物 B.还原性药物 C.中性药物 D.酸性药物 E.无机药物 3、药典规定,测定片剂崩解时限时取多少片() A.10 B.15 C.20 D.6 E.3 4、制剂含量的表示方法是() A.以每1g样品中所含有纯药品的量(g)表示 B.以每1个最小单位样品中所含有纯药品的量(g)表示 C.以实际测定的量表示 D.以每lml样品中所含有纯药品的量(g)表示 E.以含量占标示量的百分比表示 5、下列含量测定方法中,糖类辅料对其产生干扰的是() A.配位滴定法 B.酸碱滴定法 C.非水溶液滴定法 D.氧化还原滴定法 E.紫外-可见分光光度法 6、下列检查项目中,不属于片剂常规检查项目的是() A.重量差异 B.崩解时限 C.溶出度 D.含量均匀度 E.澄清度 7、欲排除注射液中的亚硫酸钠等抗氧剂的干扰,常用的掩蔽有()

A.甲醛和丙酮 B.甲醇和乙醇 C.乙醇和甲醛 D.甲醛和三氯甲烷 E.丙酮和甲醇 8、片剂检查中规定凡进行哪项检查后,不再进行崩解时限的检查() A.重量差异 B.装量差异 C.溶出度 D.含量均匀度 E.微生物限度 9、《中国药典》2015年版规定,凡检查含量均匀度的制剂可不进行() A.崩解时限检查 B.溶出度检查 C.重量差异检查 D.粒度检查 E.脆碎度检查 10、阿司匹林与碳酸钠试液共热,放冷后用稀硫酸酸化,产生的臭气为() A.硫酸 B.醋酸 C.水杨酸钠 D.苯甲酸 E.水杨酸 11、检查阿司匹林中游离水杨酸,《中国药典》2015年版采用的方法是() A.薄层色谱法 B.气相色谱法 C.高效液相色谱法 D.紫外-可见分光光度法 E.旋光法 12、《中国药典》2015年版阿司匹林及其制剂都需要检查的特殊杂质是() A.游离水杨酸 B.有关物质 C.溶液的澄清度 D.重金属 E.易炭化物 13、哪种滴定法中,常加入溴化钾作催化剂的是() A.酸碱滴定法 B.非水溶液滴定法 C.碘量法 D.亚硝酸钠滴定法 14、中国药典规定亚硝酸钠滴定法指示终点方法采用()。 A.外指示剂法 B.内指示剂法 C.永停滴定法 D.酚酞指示剂 15、药典凡例中规定“室温”系指() A.70~80℃ B.40~50℃ C.10~30℃ D.2~10℃ 16、苯巴比妥与铜吡啶试液反应生成的配合物为() A.红色 B.紫色 C.绿色 D.蓝色 E.黄绿色

免疫分析技术研究进展

免疫分析技术研究进展 摘要:目的:综述免疫分析技术的最新研究进展。方法:通过查阅国内外有关免疫分析技术的研究论文,对放射免疫分析(RIA)、酶免疫分析(EIA)、荧光免疫分析(FIA)、化学发光免疫分析(CLIA)等免疫分析技术进行了综述,同时指出了发展前景和尚待解决的问题。结果:多种免疫分析方法相互结合,可大大提高分析方法的灵敏度,增大检测范围;CLIA和TRFIA是非放射免疫分析的两大主流,其中,CLIA更具有竞争力。结论:目前还没有一种免疫分析技术是完美无缺的,各种技术还需要不断发展和完善,以开发出更新、更理想的免疫分析技术。 关键词:药物分析学;免疫分析;放射免疫分析;酶免疫分析;荧光免疫分析;化学发光免疫分析 免疫分析法(immunoassay ,IA)是基于抗原和抗体特征性反应的一种技术。由于免疫分析试剂在免疫反应中所体现出的独特的选择性和极低的检测限,使这种分析手段在临床、生物制药和环境化学等领域得到广泛应用。各种标记技术(放射性标记、荧光标记、化学发光、酶标记等)的发展,使免疫分析的选择性更加突出。免疫分析法起始于本世纪50年代,首先应用于体液大分子物质的分析,1960年,美国学者Yalow和Berson等将放射性同位素示踪技术和免疫反应结合起来测定糖尿病人血浆中的胰岛素浓度,开创了放射免疫分析方法的先河。1968年,Oliver将地高辛同牛血清白蛋白结合,使之成为人工抗原,免疫动物后成功获得了抗地高辛抗体,从而开辟了用免疫分析法测定小分子药物的新领域。在RIA的基础上,随着新的标记物质的发现及新的标记方法的使用,以及电子计算机、自动控制技术的广泛应用,派生出许多新的检测技术[1],使免疫分析法逐渐发展成为一门新型的独立学科。 1 免疫分析方法分类 (1)根据标记物的不同,可以免疫分析主要分为放射免疫分析(radioimmunoassay,RIA)、酶免疫分析(enzyme immuoassay,EIA)、化学发光免疫分析(chemiluminescent immunoassay,CLIA)、荧光免疫分析法(fluorescence immunoassay,FIA)等。 (2)按反应机制的不同,可以分为竞争法和非竞争法。非竞争法是将待测抗原与足够的标记抗体充分反应形成抗原-标记抗体复合物,产生的信号强度与抗原的量成正比。竞争法是将过量的待测抗原与定量标记抗原竞争结合形成定量的特异性抗体,待测抗原的量越大,与抗体结合的标记抗原量越少,产生的信号强度越小,由此定量待测抗原的量。 (3)还可以按测定过程中的某些步骤的差异分为均相免疫分析和非均相免疫分析两大类。均相酶免疫测定法的特点是抗原-抗体反应达到平衡,对结合与游

药物分析技术

药物分析技术 212 药物分析技术主编李家庆中国医药科技出版社《药物分析技术》编委会主编李家庆副主编孙轶梅陈静编委(以姓氏笔画为序)王晓洁(湖北省医药学校)孙轶梅(河南省医药学校)张玮芳(上海市医药学校)肖海燕(山东药品食品职业学院)李家庆(湖北省医药学校)李婷菲(广东省食品药品职业技术学校)陈静(江西省医药学校)彭先芬(湖北科益药业股份有限公司)蒋波(江苏省常州技师学院医药校区)内容简介本教材由模块-项目-任务组成,有三个模块,分别是“模块一药物分析技术基础知识”.“模块二药物分析技术专项技能”和“模块三药物分析技术综合技能”。在“模块二”和“模块三”中,采用了大量的流程.图片来表达真实的工作情景。“模块三”收载的15个药物案例包含原料药和片剂.注射剂.胶囊剂.颗粒剂.软膏剂.滴眼液.口服液.眼膏剂.粉针等多个剂型,药典中应用广泛的分析方法和技术尽量得到体现。增加了结果的评价和判定内容。为了满足中职学生继续学习能力和不同职业岗位的适应能力,将较深的知识放在知识拓展栏目中,知识链接栏目收集了一些有趣的知识,目标检验栏目中的题目尽量多样化,以提高学生的学习兴趣和主动参与意识,从而达到学习掌握知识.提高技能的目的。

本教材层次分明,实用性强,适应面广,各学校和教师可以根据不同的专业特点.教学时数的多少来使用本教材。也可作为生产企业的相关人员的培训教材。 编者 xx年3月前言国务院“关于大力推进职业教育改革与发展的决定”明确提出:职业教育要为经济结构调整服务:为促进就业和再就业服务;为农业与农村服务:为推进西部大开发服务。 随着市场经济的不断发展和完善,市场的竞争,核心是人才的竞争,中国作为“世界的工厂”需要大量的经过专业学习.实践能力强的技术人才。 随着新版药典和新GMP的实施,随之带来的是新方法.新技术的大量应用,对药品质量的要求是越来越严格,教材更新迫在眉睫。 值此时机,全国食品药品职业教育指导委员会组织全国几所从事医药中等职业教育的学校对教材进行了新一轮的编写。 本教材以《教育部中等职业学校专业目录》为纲要,紧扣《中国药典》(xx年版)和《中国药品检验标准操作规范》(xx 年版),真正体现“以就业为导向.以能力为本位.以发展技能为核心”的职业教育宗旨,强调理论知识“够用”,强化技能训练,突出技能的“适用”。 本教材力求突出职业教育的特色,即:能力观课程结构来源于对工作过程的分解;结果观创设真实的工作情景展开教学。

液质联用分析实验报告

液质联用分析实验报告文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

液质联用分析 一、实验目的 1.了解液相色谱仪和质谱仪的原理、基本构造。 2.学会运用液质联用仪检测样品,会选择合适的质谱电离源检测样品,会运用色谱对混合物中的目标物分离和定量。 3.了解、熟悉质谱基本操作技术及质谱检测器的基本组成及功能原理。 二、实验原理 色谱分析是运用物种在固定相和流动相两相间的分配系数不同而达到分离的效果的一种分离技术,主要目的是对混合物中目标产物进行分离和定量的一种分析技术。质谱是通过测定样品的质荷比来进行分析的一种方法。通过液-质谱联用(LC-MS)技术可实现样品的分离和定量分析,达到快速灵敏的效果。 (1)液质联用系统的常见部件 HPLC(色谱分离)→接口(样品引入)→离子源(离子化)→分析器→检测器(离子检测)→数据处理(数据采集及控制)→色谱图; 质谱仪器构成:包括真空系统、电喷雾离子源、质量分析器及检测器。 三、仪器与试剂 Waters ZQ液质联用仪(LC/MS) 甲醇溶液、苯甲酸、十六烷基三甲基溴化铵 四、实验内容

运用液相色谱-质谱联用仪测定苯甲酸和十六烷基溴化铵(CTAB)的质荷比,熟悉仪器的操作流程,并能从所得的质谱图中指认出相应物质对应的质荷比,能对谱图做定性的描述。 五、实验步骤 1.打开仪器开关和计算机电源。 2.待仪器运转正常,打开测试软件,先用甲醇清洗柱子(在Load 状态下进样,分析时在Inject 状态下); 3.选择分析模式(正、负离子模式),输入分析的样品名; 4.利用软件进行数据分析。 五、实验结果与分析 (1)CTAB (正离子模式) CTAB : 正离子模式时在284/=z m 处有强的信号峰,为+CTAB 。 (2) CTAB (负离子模式) CTAB :负离子模式时在79/=z m 和81/=z m 处有强的信号峰,且强度为 1:1,可以判断为-Br 。 说明十六烷基三甲基溴化胺用两种模式都可以。 (3) 苯甲酸(负离子模式) 苯甲酸:负离子模式时在()() 1211-/==氢苯甲酸m m z m 处有强信号峰,为苯甲酸 根离子;正离子模式时有很多杂质峰,说明苯甲酸适用负离子模 式。

药物分析技术进展175557

药物分析技术及进展 色谱联用技术(hyphenated techniques in chromatography,HTC)是将具有高分离效能的色谱技术与能够获得丰富化学结构信息的光谱技术相结合的现代分析技术。目前,各种色谱联用技术在药品质量研究工作中发挥着重要作用。 色谱作为分离手段,光谱充当鉴定工具,两者取长补短,已成为当今分析领域中复杂成分样品分析的主要方法。例如,气相色谱-质谱联用(GC-MS)、高效液相色谱-质谱联用(HPLC-MS)、高效液相色谱-核磁共振波谱联用(HPLC-NMR)、气相色谱-傅立叶变换红外光谱联用(GC-FTIR)、以及毛细管电泳-质谱联用(CE-MS)等。本章围绕几种应用较广泛的色谱联用技术及其在药物分析中的应用予以简述。 一、气相色谱-质谱联用技术 气相色谱与有机质谱的联用系统(GC-MS)是最早实现(1957年)的联用仪。70年代,GC-MS已开始作为商品出售;80年代,已开始普及应用;迄今技术日臻成熟,广泛应用于医药卫生、石油化工、环境保护和生命科学等领域。目前气-质联用在联用技术应用中十分活跃,它的成功应用能使样品的分离、鉴定和定量一次完成,毛细管气相色谱与质谱联用的检测限已达10-9g~10-12g水平。对于药物分析的发展也起到了很大的促进作用,例如GC-MS在合成产物的确证,有机合成反应中副产物的鉴定,中药未知成分的鉴定,药物代谢物的研究等方面均是最重要的工具之一。 该方法利用了质谱仪扫描快、灵敏度高的特点,而且用电子轰击离子源(EI)所获得的质谱,碎片信息量大,重复性好。因此GC-MS 联用仪多具有10万或几十万张质谱的数据库,以供比对定性。气相色谱仪可以看作是质谱仪的进样系统,相反也可以把质谱仪看作是色谱仪的检测器。因质谱仪灵敏度高、特征性强、要求分析试样必需是高度纯净物(除MS-MS联用技术外),色谱技术为质谱分析提供了色

化学发光免疫分析技术及其应用研究进展 蒋恩彬

化学发光免疫分析技术及其应用研究进展蒋恩彬 发表时间:2014-12-25T08:59:42.297Z 来源:《防护工程》2014年第9期供稿作者:蒋恩彬 [导读] 由于化学发光免疫分析技术具有灵敏度高、适用范围广泛等特点,所以受到了人们的认可。 蒋恩彬 重庆热展建筑工程咨询服务中心重庆 400012 [摘要]本文主要对化学发光免疫分析技术及其应用研究进展进行了分析,首先对化学发光免疫分析技术的相关概念进行了分析;然后从临床检验和兽医学应用化学发光免疫分析技术进行了分析;最后对化学发光免疫分析技术进行了新进展研究,希望对有关人士有所帮助。 [关键词]化学发光免疫分析、临床检验、兽医学 一、前言 由于化学发光免疫分析技术具有灵敏度高、适用范围广泛等特点,所以受到了人们的认可,在医学、药品等众多领域得到广泛的应用。同时化学发光免疫分析主要利用了化学发光测定技术和免疫反应,化学发光测定技术传统的免疫分析,需要的培育时间比较长。 二、化学发光免疫技术的工作原理 1、检测器的检测原理 化学反应的检测过程中,一些化学基团在处于被氧化状态之后,会形成一个激发态,在回归至基态的过程中,会发射出光子,实质上就是免疫反应与化学反应有机结合在一起之后形成的一种分析方法,即微量倍增技术。微量倍增技术在临床检验中的应用,主要是通过粒径比较小的颗粒磁粉增大复合物表面的面积,提升复合物的吸附量,加强表面能,以此加快反应速度。 2、基本原理 化学发光免疫技术,反应过程主要包括两类,即化学发光反应与免疫反应。化学发光免疫技术的工作原理,主要是在抗体或者抗原上对化学发光物质或者其它一系列处于发光状态的酶标记物进行标记,使其产生免疫反应,使抗体与抗原能够特异性结合,产生一种复合物,然后在该复合物中加入发光底物或者氧化剂,使复合物可以发光。根据待测物质具备的浓度与仪器监测中获取的发光强度之间存在的线性关系,实现浓度的合理测定。 三、化学发光免疫分析的分类 化学发光免疫分析根据应用于免疫分析体系中的方式不同,可以分为以下三类: 1、直接标记发光物质的免疫分析这种分析方式是用吖啶酯直接标记抗体,作为抗原,然后与待测标本中相应抗体发生免疫反应,就会形成固相包被抗体一待测抗原一吖啶酯标记抗体复合物,到这一步后再加入双氧水氧化剂,这样环境就会呈碱性,吖啶酯就会在不需要催化剂的情况下分解、发光。 2、酶催化化学发光免疫分析标本中的抗原在发生免疫反应时所用的标记物为发光的酶,这种化学发光免疫分析方法是酶催化化学发光免疫分析。 3、电化学发光免疫分析,这种分析过程包括电化学和化学发光两个过程,具体是以三丙胺(TPA)为电子供体,用电化学发光剂三联吡啶钌标记抗体(抗原),在电场中因电子转移而发生特异性化学发光反应。 四、化学发光免疫分析技术的应用 1、化学发光免疫分析在临床检验中的应用 就目前而言,化学发光免疫分析技术已经成为替代RIA的首选技术,且已经被广泛地应用于基础和临床医学的各个领域。下面就简要地谈谈化学发光免疫分析技术在临床检验中的几个应用。 (1)应用于传染性疾病的病原诊断作为评价和治疗机体免疫功能重要指标的重要血清学标志物乙型肝炎病毒表面抗原、抗体,以前诊断是否感染乙肝病毒用的是常规酶法,常规酶法的缺陷是可能使得部分低病毒含量携带者漏检。但是化学发光免疫分析具有高灵敏度和线性范围宽的特点,在传染性疾病的病原诊断方面其检测灵敏度比常规酶法高,Bowser等在测定感染人类免疫缺陷病毒的围产期儿童体内的单纯疱疹病毒、乙型肝炎病毒甲型肝炎病毒、及丙型肝炎病毒时给出了证明。 (2)应用于肿瘤标志物的分析肿瘤标志物包括蛋白质、酶、癌基因产物、激素等,它是由肿瘤细胞合成释放或机体对肿瘤细胞反应而产生的一类物质。在患者的细胞中,血液中以及组织中都存在肿瘤标志物。化学发光免疫分析可以用于寻找新的肿瘤标志物,也可以进行体外早期辅助诊断和对术后的监测,对恶性肿瘤患者的具有重要意义。Mac等达到了对食管癌患者的诊断和病情监测,他们采用的方法就是检测血清中癌胚抗原的浓度、cyfra21-1的浓度、鳞状细胞癌抗原的浓度。 (3)应用于心脏疾病的特征标记物测定临床上的心脏疾病常常采用同工酶定量测定,标记物为肌酸激酶和肌钙蛋白T\肌红蛋白。Dutra等运用心肌肌钙蛋白受体分子制成了免疫传感器,可用于临床上早期检测心肌梗死。有关资料显示,同时检测了肌酸激酶同工酶和肌红蛋白,相关系数分别为cTnT0.953-0.982;CK—MB0.835-0.999;肌红蛋白0.776-0.992,具有很好的相关性可用于检测临床标本。 2、化学发光免疫分析技术在兽医学中的应用 化学发光免疫分析技术在兽医学中的应用还处于早期阶段,因此没有得到较多的应用。主要原因则是化学发光免疫分析技术在兽医学的应用中会跨越化学、兽医以及生物学科方面的知识,而这样加大了化学发光免疫分析技术的应用难度,因此没有在兽医学中得到较多的应用。但是化学发光免疫分析技术仍然是兽医学中一项疾病快速检测的方法,即通过化学发光免疫分析技术可以精准快速的判定动物所发生疾病的原因,而且通过这项技术的运用还可以监测动物体内的疾病发生概率。化学发光免疫分析技术在我国没有较多的应用到兽医学中,而且技术也没有国外先进,这进一步制约了化学发光免疫分析技术在我国的应用。国外化学发光免疫分析技术在兽医学中的应用较多,比如国外利用化学发光免疫分析技术来进行动物肠道病毒检测试验、猪肉中沙门菌抗体检测以及评价胰岛素浓度对奶牛繁殖性能的影响,并且取得了较好的成果。 五、化学发光免疫分析技术的新研究进展 化学发光免疫分析技术运用的重点就是检测内部微观化学反应的情况,而为了达到更好的检测效果就需要发光物质发光时间更加持久发光更加明亮,而这可以通过标记新的标记物来得以实现。各国科学家都致力于研究标记物的发光时间以及发光强度,标记物发光需要特定酶的催化,这需要科学家通过长时间的实践才能够证明哪一种标记物在哪一种酶的催化下才能够达到长时间的发光以及高强度的发光,

相关文档
最新文档