《导数》高考题型归纳及解答策略

《导数》高考题型归纳及解答策略
《导数》高考题型归纳及解答策略

《导数》高考题型归纳及解答策略

一、本知识单元考查题型与方法:

与切线相关问题(一设切点,二求导数=斜率=

21

21

y y x x --,三代切点入切线、曲线联立方程求解);

其它问题(一求导数,二解)('x f =0的根—若含字母分类讨论,三列3行n 列的表判单调区间和极值。结合以上所得解题。)

特别强调:恒成立问题转化为求新函数的最值。导函数中证明数列型不等式注意与原函数联系构造,一对多涉及到求和转化。

关注几点:

恒成立:(1)定义域任意x 有()f x >k,则min ()f x >常数k ; (2)定义域任意x 有()f x

恰成立:(1)对定义域内任意x 有()()f x g x >恒成立,则min ()-()0,f x g x >【】 (2)若对定义域内任意x 有()()f x g x <:恒成立,则max ()-()0f x g x <【】

能成立:(1)分别定义在[a,b]和[c,d]上的函数()()f x g x 和,对任意的1[,],x a b ∈存在2[,],x c d ∈使得

12()()f x g x <,则max max ()()f x g x <

(2)分别定义在[a,b]和[c,d]上的函数()()f x g x 和,对任意的1[,],x a b ∈存在2[,],x c d ∈使得

12()()f x g x >,则min min ()()f x g x >

二、考纲解读

考查知识题型:导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值;证明不等式、求参数范围等

三、热点题型

题型一:利用导数研究函数的极值、最值。

1. 3

2

()32f x x x =-+在区间[]1,1-上的最大值是 2

2.已知函数2)()(2

=-==x c x x x f y 在处有极大值,则常数c = 6 ;

3.函数3

31x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程

1.曲线3

4y x x =-在点()1,3--处的切线方程是 2y x =-

2.若曲线x x x f -=4)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0)

3.若曲线4

y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程:

(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线;

解:(1) 123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,

在曲线点-x x y x x y P 所以切线方程为02

11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为

)

,(00y x A ,则

2

00x y =①又函数的导数为x y 2/

=,

所以过),(00y x A 点的切线的斜率为0/

2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有35

20

00--=x y x ②,由①

②联立方程组得,??????====255

11000

0y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切

线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,

或 题型三:利用导数研究函数的单调性,极值、最值

1.已知函数))1(,1()(,)(2

3f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式;

(Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)由.23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得

过))1(,1()(f P x f y 上点=的切线方程为: ).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即 而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上

故???-=-=+??

?-=-=++3023

323c a b a c a b a 即 ∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③ 由①②③得 a=2,b=-4,c=5 ∴.542)(23+-+=x x x x f (2)).2)(23(443)(2+-=-+='x x x x x f

当;0)(,3

2

2;0)(,23<'<≤->'-<≤-x f x x f x 时当时

13)2()(.0)(,13

2

=-=∴>'≤

b ax x x f ++='由①知2a+b=0。 依题意)(x f '在[-2,1]上恒有)(x f '≥0,即.032≥+-b bx x

①当6,03)1()(,16min ≥∴>+-='='≥=

b b b f x f b

x 时; ②当φ∈∴≥++=-'='-≤=b b b f x f b

x ,0212)2()(,26

min 时;

③当.60,012

12)(,1622

min ≤≤≥-='≤≤-b b b x f b 则时

综上所述,参数b 的取值范围是),0[+∞

2.已知三次函数32()f x x ax bx c =+++在1x =和1x =-时取极值,且(2)4f -=-.

(1) 求函数()y f x =的表达式; (2) 求函数()y f x =的单调区间和极值;

(3) 若函数()()4(0)g x f x m m m =-+>在区间[3,]m n -上的值域为[4,16]-,试求m 、n 应满足的条件. 解:(1) 2()32f x x ax b '=++,

由题意得,1,1-是2320x ax b ++=的两个根,解得,0,3a b ==-.

再由(2)4f -=-可得2c =-.∴3()32f x x x =--.

(2) 2()333(1)(1)f x x x x '=-=+-,

当1x <-时,()0f x '>;当1x =-时,()0f x '=;当11x -<<时,()0f x '<;当1x =时,()0f x '=; 当1x >时,()0f x '>.∴函数()f x 在区间(,1]-∞-上是增函数;

在区间[1,]-1

上是减函数;在区间[1,)+∞上是增函数。函数()f x 的极大值是(1)0f -=,极小值是(1)4f =-.

(3) 函数()g x 的图象是由()f x 的图象向右平移m 个单位,向上平移4m 个单位得到的, 所以,函数()f x 在区间[3,]n m --上的值域为[44,164]m m ---(0m >).

而(3)20f -=-,∴4420m --=-,即4m =. 于是,函数()f x 在区间[3,4]n --上的值域为[20,0]-. 令()0f x =得1x =-或2x =.由()f x 的单调性知,142n --,即36n . 综上所述,m 、n 应满足的条件是:4m =,且36n . 3.设函数()()()f x x x a x b =--.

(1)若()f x 的图象与直线580x y --=相切,切点横坐标为2,且()f x 在1x =处取极值,求实数,a b 的

值;

(2)当b=1时,试证明:不论a 取何实数,函数()f x 总有两个不同的极值点.

解:(1)2()32().f x x a b x ab '=-++ 由题意(2)5,(1)0f f ''==,代入上式,解之得:a=1,b=1.

(2)当b=1时,()0f x '=令得方程2

32(1)0.x a x a -++= 因,0)1(42

>+-=?a a 故方程有两

个不同实根21,x x . 不妨设21x x <,由))((3)(21'x x x x x f --=可判断)('

x f 的符号如下:

当时,1x x <)('x f >0;当时,21x x x <<)('x f <0;当时,2x x >)('

x f >0

因此1x 是极大值点,2x 是极小值点.,当b=1时,不论a 取何实数,函数()f x 总有两个不同的极值点。 题型四:利用导数研究函数的图象

1.如右图:是f (x )的导函数, )(/x f 的图象如右图所示,则f (x )的图象只可能是( D )

(A ) (B ) (C ) (D )

2.函数的图像为143

13

+-=x x y ( A )

3.方程内根的个数为在)2,0(076223=+-x x ( B ) A 、

0 B 、

1 C 、

2 D 、

3 题型五:利用单调性、极值、最值情况,求参数取值范围

1.设函数.10,323

1)(223

<<+-+-

=a b x a ax x x f (1)求函数)(x f 的单调区间、极值.(2)若当]2,1[++∈a a x 时,恒有a x f ≤'|)(|,试确定a 的取值范围.

解:(1)22

()43f x x ax a '=-+-=(3)()x a x a ---,令()0f x '=得12,3x a x a ==

列表如下:

∴()f x 在(a ,3a )上单调递增,在(-∞,a )和(3a ,+∞)上单调递减

x a =时,34

()3

f x b a =-极小,3x a =时,()f x b =极小

(2)22

()43f x x ax a '=-+-∵01a <<,∴对称轴21x a a =<+,∴()f x '在[a+1,a+2]上单调递减

∴22(1)4(1)321Max

f a a a a a '=-+++-=-,22min (2)4(2)344f a a a a a '=-+++-=- 依题|()|f x a '≤?||Max

f a '≤,min ||f a '≤ 即|21|,|44|a a a a -≤-≤ 解得

415a ≤≤,又01a << ∴a 的取值范围是4

[,1)5

2.已知函数f (x )=x3+ax2+bx +c 在x =-2

3

与x =1时都取得极值(1)求a 、b 的值与函数f (x )的

单调区间(2)若对x ∈〔-1,2〕,不等式f (x )

解:(1)f (x )=x3+ax2+bx +c ,f '(x )=3x2+2ax +b

由f '(23-

)=124a b 093-+=,f '(1)=3+2a +b =0得a =1

2

-,b =-2 f '

f '(x ) + 0 - 0 +

f (x ) ↑

极大值 ↓ 极小值 ↑

所以函数f (x )的递增区间是(-∞,-

3)与(1,+∞),递减区间是(-2

3

,1) (2)f (x )=x3-12x2-2x +c ,x ∈〔-1,2〕,当x =-23时,f (x )=22

27

+c

为极大值,而f (2)=2+c ,则f (2)=2+c 为最大值。

要使f (x )f (2)=2+c ,解得c <-1或c >2 题型六:利用导数研究方程的根 1.已知平面向量a =(3,-1). b =(

21,2

3). (1)若存在不同时为零的实数k 和t ,使x =a +(t2-3)b ,y =-k a +t b ,x ⊥y , 试求函数关系式k=f(t) ;

(2) 据(1)的结论,讨论关于t 的方程f(t)-k=0的解的情况. 解:(1)∵x ⊥y ,∴x y ?=0 即[a +(t2-3) b ]·(-k a +t b )=0. 整理后得-k 2

a +[t-k(t2-3)] a

b ?+ (t2-3)·2

b =0

∵a b ?=0,2

a =4,2

b =1,∴上式化为-4k+t(t2-3)=0,即k=

4

1

t(t2-3) (2)讨论方程41t(t2-3)-k=0的解的情况,可以看作曲线f(t)= 41

t(t2-3)与直线y=k 的交点个数.

于是f ′(t)= 4

3(t2-1)= 43

(t+1)(t-1).

t (-∞,-1) -1 (-1,1) 1 (1,+ ∞) f ′(t) + 0 - 0 + F(t)

极大值

极小值

当t=-1时,f(t)有极大值,f(t)极大值=2. 当t=1时,f(t)有极小值,f(t)极小值=-2

1

函数f(t)=4

1

t(t2-3)的图象如图13-2-1所示,

可观察出:

(1)当k >

21或k <-21

时,方程f(t)-k=0有且只有一解; (2)当k=21或k=-21

时,方程f(t)-k=0有两解;

(3) 当-21<k <2

1

时,方程f(t)-k=0有三解.

题型七:导数与不等式的综合

1.设ax x x f a -=>3

)(,0函数在),1[+∞上是单调函数.

(1)求实数a 的取值范围;(2)设0x ≥1,)(x f ≥1,且00))((x x f f =,求证:00)(x x f =.

解:(1) ,3)(2a x x f y -='='若)(x f 在[)+∞,1上是单调递减函数,则须,3,02x a y ><'即这样的实数a

不存在.故)(x f 在[)+∞,1上不可能是单调递减函数.

若)(x f 在[)+∞,1上是单调递增函数,则a ≤23x , 由于[)33,,12

≥+∞∈x x 故.从而0

(2)方法1、可知)(x f 在[)+∞,1上只能为单调增函数. 若1≤)(00x f x <,则

,))(()(000矛盾x x f f x f =< 若1≤)(),())((,)(000000x f x x f x f f x x f <<<即则矛盾,故只有0

0)(x x f =成立.

2:

00)(,)(x u f u x f ==则,,

,03

030x au u u ax x =-=-∴两式相减得

00330)()(x u u x a u x -=--- 020200,0)1)((x a u u x x u x =-+++-∴≥1,u ≥1,

30,32020≤<≥++∴a u u x x 又,01202

0>-+++∴a u u x x

2.已知a 为实数,函数2

3()()()2

f x x x a =++(1)若函数()f x 的图象上有与x 轴平行的切线,求a 的取

值范围(2)若'(1)0f -=,(Ⅰ)求函数()f x 的单调区间

(Ⅱ)证明对任意的12(1,0)x x ∈-、,不等式125

|()()|16

f x f x -<恒成立 解:

3233()22f x x ax x a =++

+,23'()322

f x x ax ∴=++ 函数()f x 的图象有与x 轴平行的切线,'()0f x ∴=有实数解

2344302a ∴?=-??≥,292a ≥,所以a 的取值范围是33

2][222

-∞-+∞(,,)

'(1)0f -=,33202a ∴-+=,94a =,2931

'()33()(1)222f x x x x x ∴=++=++

由'()0,1f x x ><-或12x >-;由1

'()0,12

f x x <-<<-

()f x ∴的单调递增区间是1(,1),(,)2-∞--+∞;单调减区间为1

(1,)2--

易知()f x 的最大值为25(1)8f -=,()f x 的极小值为149()216f -=,又27

(0)8f =

()f x ∴在[10]-,上的最大值278M =,最小值49

16

m =

∴对任意12,(1,0)x x ∈-,恒有1227495

|()()|81616

f x f x M m -<-=-=

题型八:导数在实际中的应用

1.请您设计一个帐篷。它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥(如右

图所示)。试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐篷的体积最大?

解:设OO1为x m ,则41<

由题设可得正六棱锥底面边长为:22228)1(3x x x -+=--,(单位:m ) 故底面正六边形的面积为:(436??

22)28x x -+=)28(2

3

32x x -+?,

(单位:2m ) 帐篷的体积为:)

(V 228233x x x -+=

)(]1)1(31[+-x )1216(2

33x x -+=(单位:3m ) 求导得)312(2

3

V '2x x -=

)(。令0V'

=)(x ,解得2-=x (不合题意,舍去),2=x , 当21<)(x ,)(x V 为增函数;当42<

2.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:313

8(0120).12800080

y x x x =

-+<≤

已知甲、乙两地相距100千米。

(I )当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (II )当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? 解:(I )当40x =时,汽车从甲地到乙地行驶了100

2.540

=小时, 要耗没313

(

40408) 2.517.512800080

?-?+?=(升)。

(II )当速度为x 千米/小时时,汽车从甲地到乙地行驶了

100

x

小时,设耗油量为()h x 升, 依题意得3213100180015

()(

8).(0120),1280008012804

h x x x x x x x =-+=+-<≤ 33

22

80080'()(0120).640640x x h x x x x

-=-=<≤ 令'()0,h x =得80.x = 当(0,80)x ∈时,'()0,()h x h x <是减函数; 当(80,120)x ∈时,'()0,()h x h x >是增函数。

∴当80x =时,()h x 取到极小值(80)11.25.h = 因为()h x 在(0,120]上只有一个极值,所以它是最小值。

答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。当汽车以80千米/小时的速度

匀速行驶时,从甲地到乙地耗油最少,最少为11.25升。

题型九:导数与向量的结合

1.设平面向量3113(

),().2222

a b =-=,,若存在不同时为零的两个实数s 、t 及实数k ,使且b t s k t ⊥+-=-+=,)(2

(1)求函数关系式()S f t =;(2)若函数()S f t =在[)∞+,

1上是单调函数,求k 的取值范围。 解:(1)).

2

3,21(),21,23(

=-=10a b a b ==?=, 2

2

2

2223,0000x y x y a t k b sa tb sa t t k b t st sk a b s t k t s f t t kt ⊥?=??+--+=??-+--+?=∴-+-===-又,得

()()

,即()-()。(),故()。

(2)

[)上是单调函数,,)在(且)(∞+-='132t f k t t f

则在[)+∞,1上有00)(≤'≥')(

或t f t f 由3)3(3030)(min 222≤?≤?≤?≥-?≥'k t k t k k t t f ; 由2

2

3030)(t k k t t f ≥?≤-?≤'。

因为在t ∈[)+∞,1上23t 是增函数,所以不存在k ,使23t k ≥在[)+∞,1上恒成立。故k 的取值范围是3≤k 。

程序框图文科高考真题

程序框图专题 1.阅读如图所示的程序框图,运行相应的程序,若输入x的值为1,则输出y的值为() A.2 B.7 C.8 D.128 第1题图第2题图 2.阅读上边的程序框图,运行相应的程序,则输出i的值为() A.2 B.3 C.4 D.5 3.执行如图所示的程序框图,输出的k值为() A.3 B.4 C.5 D.6 4.执行如图所示的程序框图,输出S的值为()

3 2 B. 3 2C.- 1 2 D. 1 2 A.-

第3题图第4题图第5题图5.执行如图所示的程序框图,则输出s的值为() A.3 4 B. 5 6 C. 11 12 D. 25 24 6.执行下面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=() A.20 3 B. 16 5 C. 7 2 D. 15 8

第6题图第7题图 7.执行上面的程序框图,如果输入的x,t均为2,则输出的S=() A.4 B.5 C.6 D.7 8.执行如图所示的程序框图,输出S的值为() A.3 B.-6 C.10 D.12 第8题图 答案 1.C[当x=1时,执行y=9-1=8.输出y的值为8,故选C.] 2.C[运行相应的程序.第1次循环:i=1,S=10-1=9; 第2次循环:i=2,S=9-2=7;

第3次循环:i =3,S =7-3=4; 第4次循环:i =4,S =4-4=0;满足S =0≤1, 结束循环,输出i =4.故选C.] 3.B [第一次循环:a =3×12=3 2,k =1; 第二次循环:a =32×12=3 4,k =2; 第三次循环:a =34×12=3 8,k =3; 第四次循环:a =38×12=316<1 4,k =4. 故输出k =4.] 4.D [每次循环的结果为k =2,k =3,k =4,k =5>4,∴S =sin 5π6=1 2.] 5.D [s =12+14+16+18=2524,即输出s 的值为25 24.] 6.D [当n =1时,M =1+12=32,a =2,b =3 2; 当n =2时,M =2+23=83,a =32,b =8 3; 当n =3时,M =32+38=158,a =83,b =15 8; n =4时,终止循环.输出M =15 8.] 7.D [k =1,M =1 1×2=2,S =2+3=5; k =2,M =2 2×2=2,S =2+5=7; k =3,3>t ,∴输出S =7,故选D.] 8.C [当i =1时,1<5为奇数,S =-1,i =2; 当i =2时,2<5为偶数,S =-1+4=3,i =3; 当i =3时,3<5为奇数,S =3-33=-5,i =4; 当i =4时,4<5为偶数,S =-6+42=10,i =5; 当i =5时,5≥5,输出S =10.]

2020年高考文科数学《导数的综合应用》题型归纳与训练

a - a (- ),( , +∞) 单调递增, 在 (- ( 2020 年高考文科数学《导数的综合应用》题型归纳与训练 【题型归纳】 题型一 含参数的分类讨论 例1 已知函数 f ( x ) = ax 3 - 12 x ,导函数为 f '( x) , (1)求函数 f ( x ) 的单调区间; (2)若 f '(1)= -6, 求函数f ( x ) 在[—1,3]上的最大值和最小值。 【答案】略 【解析】(I ) f '( x ) = 3ax 2 - 12 = 3(ax 2 - 4) ,(下面要解不等式 3(ax 2 - 4) > 0 ,到了分类讨论的时机,分 类标准是零) 当 a ≤ 0时, f '( x ) < 0, f ( x )在(-∞, +∞) 单调递减; 当 a > 0时,当x 变化时, f '( x ), f ( x ) 的变化如下表: x (-∞, - 2 ) 2 2 2 , ) a a 2 a ( 2 a , +∞) f '( x ) + 0 — + f ( x ) 极大值 极小值 此时, f ( x )在(-∞, - 2 2 6 a 2 2 , ) 单调递减; a a (II )由 f '(1) = 3a -12 = -6, 得a = 2. 由(I )知, f ( x )在(-1, 2) 单调递减 ,在( 2 ,3)单调递增。 【易错点】搞不清分类讨论的时机,分类讨论不彻底 【思维点拨】分类讨论的难度是两个, 1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理, 由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不 重复一遗漏。还要注意一点的是,最后注意将结果进行合理的整合。 题型二 已知单调性求参数取值范围问题 例 1 已知函数 f ( x) = 1 3 x 3 + x 2 + ax - 5 , 若函数在[1,+∞) 上是单调增函数,求 a 的取值范围

高考数学题型全归纳

2010-2016高考理科数学题型全归纳题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围 题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系

题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质 题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像

程序框图高考真题

程序框图高考真题 一、选择题(本大题共16小题,共分) 1.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程 序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=() A.7 B. 12 C. 17 D. 34 2.执行如图的程序框图,如果输入的a=-1,则输出的S=() A. 2 B. 3 C. 4 D. 5 3.阅读如图所示的程序框图,运行相应的程序,则输出s的值为() A. -1 B. 0 C. 1 D. 3 4.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执 行该程序框图,若输入a,b分别为14,18,则输出的a=() A. 0 B. 2 C. 4 D. 14

5.执行如图所示的程序框图,则输出s的值为() A. 10 B. 17 C. 19 D. 36 6.执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足() A. y=2x B. y=3x C. y=4x D. y=5x 7.执行如图程序框图,如果输入的a=4,b=6,那么输出的n=( ) A. 3 B. 4 C. 5 D. 6

8.如图所示的程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和 两个空白框中,可以分别填入() A. A>1000和n=n+1 B. A>1000和n=n+2 C. A≤1000和n=n+1 D. A≤1000和n=n+2 9.执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为 A. 5 B. 4 C. 3 D. 2 10.执行如图所示的程序框图,输出的S值为() A. 2 B. C. D. 11.若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断 框中的条件可能为() A.x>3 B. x>4 C. x≤4 D. x≤5

高考数学题型全归纳:数学家高斯的故事(含答案)

数学家高斯的故事 高斯(Gauss,1777—1855)、著名的德国数学家。1777年4月30日出生在德国的布伦兹维克。父亲是一个砌砖工人,没有什么文化。 还在少年时代、高斯就显示出了他的数学才能。据说、一天晚上,父亲在计算工薪账目、高斯在旁边指出了其中的错误、令父亲大吃一惊。10岁那年、有一次老师让学生将1、2、3、…连续相加、一直加到100、即1+2+3+…+100。高斯没有像其他同学那样急着相加、而是仔细观察、思考、结果发现: 1+100=101、2+99=101、3+98=101、…、50+51=101一共有50个101、于是立刻得到: 1+2+3+…+98+99+100=50×101=5050 老师看着小高斯的答卷、惊讶得说不出话。其他学生过了很长时间才交卷、而且没有一个是算对的。从此、小高斯“神童”的美名不胫而走。村里一位伯爵知道后、慷慨出钱资助高斯、将他送入附近的最好的学校进行培养。 中学毕业后、高斯进入了德国的哥廷根大学学习。刚进入大学时、还没立志专攻数学。后来听了数学教授卡斯特纳的讲课之后、决定研究数学。卡斯特纳本人并没有多少数学业绩、但他培养高斯的成功、足以说明一名好教师的重要作用。 从哥廷根大学毕业后、高斯一直坚持研究数学。1807年成为该校的数学教授和天文台台长、并保留这个职位一直到他逝世。 高斯18岁时就发明了最小二乘法、19岁时发现了正17边形的尺规作图法、并给出可用尺规作出正多边形的条件、解决了这个欧几里得以来一直悬而未决的问题。为了这个发现、在他逝世后、哥廷根大学为他建立了一个底座为17边形棱柱的纪念像。

对代数学、高斯是严格证明代数基本定理的第一人。他的《算术研究》奠定了近代数论的基础、该书不仅在数论上是划时代之作、就是在数学史上也是不可多得的经典著作之一。高斯还研究了复数、提出所有复数都可以用平面上的点来表示、所以后人将“复平面”称为高斯平面、高斯还利用平面向量与复数之间的一一对应关系、阐述了复数的几何加法与乘法、为向量代数学奠定了基础。1828年高斯出版《关于曲面的一般研究》、全面系统地阐述了空间曲面的微分几何学。并提出了内蕴曲面理论。高斯的数学研究几乎遍及当时的所有数学领域、而且在不少方面的研究走在了时代的前列。他在数学历史上的影响可以和阿基米德、牛顿、欧拉并列。 高斯一生共有155篇论文。他治学严谨、把直观的概念作为入门的向导、然后试图在完整的逻辑体系上建立其数学的理论。他为人谨慎、他的许多数学思想与结果从不轻易发表、而且、他的论文很少详细写明思路。所以有的人说:“这个人、像狐狸似的、把沙土上留下的足迹、用尾巴全部扫掉。”

程序框图练习题及答案经典doc

程序框图练习题 一、选择题 1 .(2013年高考北京卷(理))执行如图所示的程序框图,输出的S 值为 ( ) A .1 B . 2 3 C . 1321 D . 610 987 C 框图首先给变量i 和S 赋值0和1. 执行 ,i=0+1=1; 判断1≥2不成立,执行,i=1+1=2; 判断2≥2成立,算法结束,跳出循环,输出S 的值为 . 故选C . 2 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))某程序框图如 图所示,若该程序运行后输出的值是5 9 ,则 ( ) A .4=a B .5=a C .6=a D . 7=a

A :由已知可得该程序的功能是 计算并输出S=1+ +…+ =1+1﹣ =2﹣ . 若该程序运行后输出的值是,则 2﹣=. ∴a=4, 故选A . 3 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图所示,程序 框图(算法流程图)的输出结果是 ( ) A .1 6 B . 2524 C . 34 D . 1112 D .12 11,1211122366141210=∴=++=+++ =s s ,所以选D (第5题图)

的程序框图,如果输出3s =,那么判断框内应填入的条件是 ( ) A .6k ≤ B .7k ≤ C .8k ≤ D .9k ≤ B 【命题立意】本题考查程序框图的识别和运行。第一次循环,2log 3,3s k ==,此时满足条件,循环;第二次循环,23log 3log 42,4s k =?==,此时满足条件,循环;第三次循环, 234log 3log 4log 5,5s k =??=,此时满足条件,循环;第四次循环,2345log 3log 4log 5log 6,6s k =???=,此时满足条件,循环;第五次循环,23456log 3log 4log 5log 6log 7,7s k =????=,此时满足条件,循环;第六次循环,234567log 3log 4log 5log 6log 7log 83,8s k =?????==,此时不满足条件,输出3s =, 所以判断框内应填入的条件是7k ≤,选B. 5 .(2013年高考江西卷(理))阅读如下程序框图,如果输出5i =,那么在空白矩形框中应 填入的语句为 ( ) A .2*2S i =- B .2*1S i =- C .2*S i = D .2*4S i =+ C 本题考查程序框图的识别和运行。由条件知当3i =时,10S <,当5i =时,10S ≥。当5i =时,A,B 不成立。当3i =时,D 不合适,所以选C.

高考数学题型归纳完整版

第一章集合与常用逻辑用语 第一节集合 题型1-1 集合的基本概念 题型1-2 集合间的基本关系 题型1-3 集合的运算 第二节命题及其关系、充分条件与必要条件 题型1-4 四种命题及关系 题型1-5 充分条件、必要条件、充要条件的判断与证明 题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围 第三节简单的逻辑联结词、全称量词与存在量词 题型1-7 判断命题的真假 题型1-8 含有一个量词的命题的否定 题型1-9 结合命题真假求参数的取值范围 第二章函数 第一节映射与函数 题型2-1 映射与函数的概念 题型2-2 同一函数的判断 题型2-3 函数解析式的求法 第二节函数的定义域与值域(最值) 题型2-4 函数定义域的求解 题型2-5 函数定义域的应用 题型2-6 函数值域的求解 第三节函数的性质——奇偶性、单调性、周期性题型2-7 函数奇偶性的判断 题型2-8 函数单调性(区间)的判 断 题型2-9 函数周期性的判断 题型2-10 函数性质的综合应用 第四节二次函数 题型2-11 二次函数、一元二次方程、 二次不等式的关系 题型2-12 二次方程的实根分布及 条件 题型2-13 二次函数“动轴定区间” “定轴动区间”问题 第五节指数与指数函数 题型2-14 指数运算及指数方程、指 数不等式 题型2-15 指数函数的图象及性质 题型2-16 指数函数中恒成立问题 第六节对数与对数函数 题型2-17 对数运算及对数方程、对 数不等式 题型2-18 对数函数的图象与性质 题型2-19 对数函数中恒成立问题 第七节幂函数 题型2-20 求幂函数的定义域 题型2-21 幂函数性质的综合应用 第八节函数的图象 题型2-22 判断函数的图象 题型2-23 函数图象的应用 第九节函数与方程 题型2-24 求函数的零点或零点所 在区间 题型2-25 利用函数的零点确定参 数的取值范围 题型2-26 方程根的个数与函数零 点的存在性问题 第十节函数综合 题型2-27 函数与数列的综合 题型2-28 函数与不等式的综合 题型2-29 函数中的信息题 第三章导数与定积分 第一节导数的概念与运算 题型3-1 导数的定义 题型3-2 求函数的导数 第二节导数的应用 题型3-3 利用原函数与导函数的关 系判断图像 题型3-4 利用导数求函数的单调性 和单调区间 题型3-5 函数的极值与最值的求解 题型3-6 已知函数在区间上单调或 不单调,求参数的取值范围 题型3-7 讨论含参函数的单调区间 题型3-8 利用导数研究函数图象的

高考数学导数题型归纳(_好)

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=-- 2 ()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330g m g m <-? ?<--

高考数学导数题型归纳(文科)-

文科导数题型归纳 高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常 数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330 g m g m <-? ?<--

程序框图--文科(高考真题)

程序框图专题 1.阅读如图所示的程序框图,运行相应的程序,若输入x的值为1,则输出y 的值为( ) A.2 B.7C.8 D.128 第1题图第2题图 2.阅读上边的程序框图,运行相应的程序,则输出i的值为( ) A.2 B.3 C.4 D.5 3.执行如图所示的程序框图,输出的k值为() A.3 B.4 C.5 D.6 4.执行如图所示的程序框图,输出S的值为( ) A.-错误! B. 错误! C.-错误! D.错误! 第3题图第4题图第5题图 5.执行如图所示的程序框图,则输出s的值为( )

A.错误! B.错误! C.错误!D.错误! 6.执行下面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=() A.\f(20,3) B.错误! C.错误! D.错误! 第6题图第7题图 7.执行上面的程序框图,如果输入的x,t均为2,则输出的S=() A.4 B.5 C.6D.7 8.执行如图所示的程序框图,输出S的值为( ) A.3 B.-6 C.10 D.12 第8题图 答案 1.C [当x=1时,执行y=9-1=8.输出y的值为8,故选C.]

2.C [运行相应的程序.第1次循环:i =1,S =10-1=9; 第2次循环:i =2,S =9-2=7; 第3次循环:i=3,S =7-3=4; 第4次循环:i =4,S =4-4=0;满足S =0≤1, 结束循环,输出i =4.故选C.] 3.B [第一次循环:a =3×1 2=\f (3,2),k =1; 第二次循环:a =错误!×错误!=错误!,k =2; 第三次循环:a =错误!×错误!=错误!,k =3; 第四次循环:a =3 8×错误!=错误!<错误!,k =4. 故输出k=4.] 4.D [每次循环的结果为k =2,k=3,k =4,k =5>4,∴S =sin 错误!=12.] 5.D [s=\f (1,2)+\f(1,4)+\f (1,6)+18=25 24 ,即输出s 的值为 \f(25,24).] 6.D [当n =1时,M =1+错误!=错误!,a =2,b =错误!; 当n =2时,M =2+2 3=错误!,a =错误!,b =错误!; 当n =3时,M =错误!+错误!=错误!,a =错误!,b =错误!; n =4时,终止循环.输出M =错误!.] 7.D [k =1,M =错误!×2=2,S =2+3=5; k =2,M=错误!×2=2,S =2+5=7; k =3,3>t ,∴输出S=7,故选D.] 8.C [当i =1时,1<5为奇数,S =-1,i =2; 当i =2时,2<5为偶数,S =-1+4=3,i =3; 当i =3时,3<5为奇数,S =3-33=-5,i =4; 当i =4时,4<5为偶数,S =-6+42=10,i=5; 当i=5时,5≥5,输出S =10.]

高考数学题型全归纳

题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系 题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件 题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质

题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像 题型43、利用导数求函数的单调区间 题型44、含参函数的单调性(区间) 题型45、已知含参函数在区间上单调或不单调或存在单调区间,求参数范围题型46、函数的极值与最值的求解 题型47、方程解(函数零点)的个数问题 题型48、不等式恒成立与存在性问题

高考必考题---程序框图历年高考题整理

宁夏海南理

__________________________________________________ 18.(2012辽宁)执行如图所示的程序框图,则输出的S 的值是 19.(2012北京)执行如图所示的程序框图,输出的S 值为 20.(2012天津)阅读程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为 21.(2012陕西)下图是计算某年级500名学生期末考试(满分为100分)及格率q 的程序框图,则图中空白框内应填入 ( )A. q=N M B q=M N C q=N M N + D.q=M M N + 22.(2012江西)下图是某算法的程序框图,则程序运行后输出的结果是_________。 23.(2012湖南)如果执行如图3所示的程序框图,输入1x =-,n =3,则输出的数S = __ __. 24.(2012年湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果S =__________. 25. (2011·陕西高考理科·T8)右图中,1x ,2x ,3x 为某次考试三个评阅人对同一道题的独立评分, p 为该题的最终得分,当16x =,29x =,8.5p =时,3x 等于 23.阅读下图所示的程序框图,其中f ′(x )是f (x )的导数.已知输入f (x )=sin x ,运行相应的程序,输出的结果是 24. 22题 15题 16题 17题 k=0,S=1 k <3 开始 结束 是 否 k=k+1 输出S S=S ×2k 19题 第4题34 18题 开 始 输入x |x|>1 1 ||-=x x x = 2x+1 输出x 结 束 是 否 21题 24题 23题 开始 S =S·x +i +1 输入x , n S =6 i ≥0? 是 否 输出S 结束 i =n -1 i =i -1 25题

(完整word版)高考导数题型归纳

高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y =在0x x =处的切线方程。 方法:)(0x f '为在0x x =处的切线的斜率。 题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。 方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。 例 已知函数f (x )=x 3﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x ) (2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于m x ,0的方程有三个不同实数根问题。(答案:m 的范围是()2,3--) 练习 1. 已知曲线x x y 33 -= (1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。答案:(03=+y x 或027415=--y x ) (2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。 2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1) 题型3 求两个曲线)(x f y =、)(x g y =的公切线。 方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。()(,22x f x );

高考数学题型全归纳

高考数学题型全归纳 1高考数学必考七个题型 第一,函数与导数 主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。 第二,平面向量与三角函数、三角变换及其应用 这一部分是高考的重点但不是难点,主要出一些基础题或中档题。 第三,数列及其应用 这部分是高考的重点而且是难点,主要出一些综合题。 第四,不等式 主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。 第五,概率和统计 这部分和我们的生活联系比较大,属应用题。 第六,空间位置关系的定性与定量分析 主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。 第七,解析几何 高考的难点,运算量大,一般含参数。 高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。 针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。 2高考数学题型全归纳 题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系

题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系 题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件 题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质 题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间

十年高考真题分类汇编(2010-2019) 数学 专题16 算法与程序框图 (含答案)

十年高考真题分类汇编(2010—2019)数学 专题16算法与程序框图 1.(2019·全国3·理T9文T9)执行下边的程序框图,如果输入的ε为0.01,则输出s的值等于( ) A.2-1 24B.2-1 25 C.2-1 26D.2-1 27 2.(2019·天津·理T4文T4)阅读右边的程序框图,运行相应的程序,输出S的值为( ) A.5 B.8 C.24 D.29 3.(2019·全国1·理T8文T9)下图是求1 2+1 2+12 的程序框图,图中空白框中应填入( ) A.A=1 2+A B.A=2+1 A C.A=1 1+2A D.A=1+1 2A

4.(2018·全国2·理T7文T8)为计算S=1-1 2+1 3 ?1 4 +…+1 99 ?1 100 ,设计了右侧的程序框图,则在空白框中应填 入() A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4 5.(2018·北京·理T3文T3)执行如图所示的程序框图,输出的s值为( ) A.1 2B.5 6 C.7 6 D.7 12 6.(2018·天津·理T3文T4)阅读下边的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为( )

A.1 B.2 C.3 D.4 7.(2017·全国2·理T8文T10)执行下面的程序框图,如果输入的a=-1,则输出的S=( ) A.2 B.3 C.4 D.5 8.(2017·全国3·理T7文T8)执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为( ) A.5 B.4 C.3 D.2

9.(2017·北京·理T3文T3)执行如图所示的程序框图,输出的s 值为( ) A.2 B.32 C.53 D.85 10.(2017·天津·理T3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为( ) A.0 B.1 C.2 D.3 11.(2017·山东·理T6)执行两次右图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为( ) A.0,0 B.1,1 C.0,1 D.1,0

数学高考大题题型归纳必考

数学高考大题题型归纳必考题型例题

数学高考大题题型归纳必考题型例题 1数学高考大题题型有哪些 必做题: 1.三角函数或数列(必修4,必修5) 2.立体几何(必修2) 3.统计与概率(必修3和选修2-3) 4.解析几何(选修2-1) 5.函数与导数(必修1和选修2-2) 选做题: 1.平面几何证明(选修4-1) 2.坐标系与参数方程(选修4-4) 3.不等式(选修4-5) 2数学高考大题题型归纳 一、三角函数或数列 数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。 二、立体几何 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

2019《导数》题型全归纳

2019届高三理科数学《导数》题型全归纳 学校:___________姓名:___________班级:___________ 一、导数概念 29.函数,若满足,则__________. 二、导数计算(初等函数的导数、运算法则、简单复合函数求导) 1.下列式子不正确的是( ) A. B. C. D. 2.函数的导数为() A. B. C. D. 3.已知函数,则() A. B. C. D. 33.已知函数,为的导函数,则的值为______. 34.已知,则__________. 三、导数几何意义(有关切线方程) 31.若曲线在点处的切线方程为_________. 30.若曲线在点处的切线与曲线相切,则的值是_________. 32.已知,过点作函数图像的切线,则切线方程为__________. 4.已知曲线f(x)=lnx+在点(1,f(1))处的切线的倾斜角为,则a的值为()A. 1 B.﹣4 C.﹣ D.﹣1 1

5.若曲线y=在点P处的切线斜率为﹣4,则点P的坐标是() A.(,2) B.(,2)或(﹣,﹣2) C.(﹣,﹣2) D.(,﹣2) 6.若直线与曲线相切于点,则( ) A. 4 B. 3 C. 2 D. 1 7.如果曲线在点处的切线垂直于直线,那么点的坐标为()A. B. C. D. 8.直线分别与曲线交于,则的最小值为() A. 3 B. 2 C. D. 四、导数应用 (一)导数应用之求函数单调区间问题 9.函数f(x)=x-lnx的单调递减区间为( ) A. (0,1) B. (0,+∞) C. (1,+∞) D. (-∞,0)∪(1,+∞) 10.函数f(x)=2x2-ln x的单调递减区间是( ) A. B.和 C. D.和 11.的单调增区间是 A. B. C. D. 12.函数在区间上( ) A.是减函数 B.是增函数 C.有极小值 D.有极大值 13.已知函数在区间[1,2]上单调递增,则a的取值范围是

高考数学题型全归纳:数列要点讲解(含答案)

数列 一、高考要求 1.理解数列的有关概念,了解递推公式是给出数列的一种方法, 并能根据递推公式写出数列 的前n 项. 2.理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前 n 项和的公式. 并能运用这些知识来解决一些实际问题. 3.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明”这一思想方法. 二、热点分析 1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n 项和公式、极限的四则运算法则、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目. 2.有关数列题的命题趋势(1)数列是特殊的函数,而不等式则是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的 代数推理是近年来高考命题的新热点(2)数列推理题是新出现的命题热点.以往高考常 使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。 (3)加强了数列与极限的综合考查题 3.熟练掌握、灵活运用等差、等比数列的性质。等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如2435 46225a a a a a a ,可以利用等比数列的性质进行转化:从而有2 23355225a a a a ,即235()25a a . 4.对客观题,应注意寻求简捷方法 解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法 5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜

相关文档
最新文档