第二平面体系的几何组成分析
郑州大学远程结构力学练习及答案本科闭卷

第二章平面体系的几何组成分析多余约束的存在要影响体系的受力性能和变形性能,是有用的。
连接两刚片的两根不共线的链杆相当于一个单铰(瞬铰)的约束作用。
X 相当于(4— 1) =3个单铰,相当于 6个约束。
X 为链杆,去除二元体后剩下体系如题答图 所示,有一个自由度。
X AB 杆不能既作为刚片川的一部 分又作为刚片i 、n 连接链杆。
去除二元体 后剩下的体系如题答图所示,有一个自由 度。
2、单项选择题将三刚片组成无多余约束的几何不变体系,必要的约束数目是几个A 2B 3C 4D 6三刚片组成无多余约束的几何不变体系,其联结方式是A 以任意的三个铰相联C 以三对平行链杆相联 瞬变体系在一般荷载作用下A 产生很小的内力 C 产生很大的内力从一个无多余约束的几何不变体系上去除二元体后得到的新体系是A 无多余约束的几何不变体系B 有多余约束的几何不变体系练习题: 1、判断题多余约束是体系中不需要的约束。
瞬变体系在很小的荷载作用下会产生很大的内力,所以不能作为结构使用。
两根链杆的约束作用相当于一个单铰。
每一个无铰封闭框都有三个多余约束。
连接四个刚片的复铰相当于四个约束。
图示体系是由三个刚片用三个共线的铰 图示体系是由三个刚片用三个共线的铰A\、BABC 相连,故为瞬变体系。
ABC 相连,故为瞬变体系。
(C )(D )(C (D (C (C (C) ) ) ) )1、判断题题图CBC 杆使用两次。
将刚片川视以不在一条线上三个铰相联 以三个无穷远处的虚铰相联不产生内力 不存在静力解答C图示体系是 A 瞬变体系BC 无多余约束的几何不变体系C 几何可变体系图示体系属于A 静定结构几何瞬变体系B 超静定结构 题图C图示体系属于A 无多余约束的几何不变体系 C 有多余约束的几何可变体系 不能作为建筑结构使用的是无多余约束的几何不变体系 几何不变体系C一根链杆 (C有多余约束的几何不变体系 瞬变体系有多余约束的几何不变体系 几何可变体系图示体系是A 瞬变体系 BC 无多余约束的几何不变体系下列那个体系中的1点不是二元体 (B ) 有一个自由度和一个多余约束的可变体系有两个多余约束的几何不变体系 (C )2、单项选择题 D B 2.5 A 2.6 C 2.3 C 题图2.4 A D ____ D 铰A 是相当于两个单铰的复铰, 体系是三个刚片用四个单铰相连,用了 8 个约束,有两个多余约束。
结构力学之平面体系的几何组成分析 ppt课件

B
书写:二元体A-C-B。
PPT课件
22
(二)二元体规则: 增加或去掉二元体不改变原体系的几何 组成性质。
C
A
B
PPT课件
23
例五、 分析图示体系的几何构造:
解:
A
B
D
E
基本铰结三角形ABC符合 三刚片规则,是无多余约
G
C
F
束的几何不变体系;依次
在其上增加二元体A-D-C、 C-E-D、C-F-E、E-G-F后, 体系仍为几何不变体,且 无多余约束。
一、几何构造特性: (一)无多余联系的几何不变体系称为静定 结构。
PPT课件
40
静定结构几何组成的特点是:
任意取消一个约束,体系就变成了 几何可变体系。
PPT课件
41
(二)有多余联系的几何不变体系称为超静 定结构。
特点: 某些约束撤除以后,剩余体系仍
为几何不变体系。
PPT课件
42
二、静力特性: (一)静定结构: 在荷载作用下,可以依据 三个静力平衡条件确定全 部支座反力和内力,且解 答唯一。
用
表示。
几何不变部分
刚片
PPT课件
5
三、自由度:
确定体系位置所需要的独立坐标数目。
点:
y
2
y
o
A( x, y )
平面内点的自由度为
2
PPT课件
x
x
6
刚片:
平面内刚片的自由度为
3
y
( x, y )
y
o
A
3
x
x
PPT课件
7
四、约束(联系): 减少自由度的装置。
[精品]平面体系的几何组成分析
![[精品]平面体系的几何组成分析](https://img.taocdn.com/s3/m/dfa18f6dbf1e650e52ea551810a6f524ccbfcb80.png)
四、约束(联系)
1、约束:凡能减少自由度的装置。
2、一根链杆相当于一个约束(图3)。
y
o
x
(图3)
y
o
x
x
y
3、一个简单铰相当于两个约束(图4)。
y
o
x
(图4)
y
o
x
x
y
4、联结n个刚片的复铰相当于(n-1)个简单铰,减少(n-1)×2个约束(图5)。
(图5)
F
A
B
C
实饺:几何可变
虚饺:几何瞬变
2、三根链杆相互平行
实饺
虚饺
三饺共线(瞬变)
三个刚片上用不在同一直线上的三个铰两两相联结,形成无多余约束的几何不变体系。
三、三个刚片间的联结(规则三):
第四节 几何组成分析的方法、步骤和举例
一、方法 一般先考察体系的计算自由度,若W0,则体系为几何可变,不必进行 几何组成分析;若W0,则应进行几何组成分析。
三、举例
例题1
结论: 无多余约束几何不变体系
第五节 体系几何组成与静定性的关系
一、几何可变体系 一般无静力解答。
二、无多余联系的几何不变体系 静力解答唯一确定。
三、几何瞬变体系 其平衡方程或者没有有限值解答,或在特殊情况下,解答不确定。
四、具有多余联系的几何不变体系 静力解答有无穷多组解。
二、两个刚片之间的联结(规则二):
两个刚片上用一个铰和一根不通过此铰的一根链杆相连结,形成无多余约束的几何不变体系(或:两个刚片上用三根不交于一点、也不全平行的三根链杆相连结 ,形成无多余约束的几何不变体系)。
特殊情况: 1、三根链杆交于一点
平面体系的几何组成分析课件

All Rights Reserved
第17页/共52页
2.3 平面体系的计算自由度
All Rights Reserved
【例2-1】试求图示体系的计算自由度W。
(1)h m1 (3)h m2
m3 (3)h
其中:m为个刚片个数;g为单刚结个数,h为单铰结个数, r为与地 基之间加入的支杆数。
All Rights Reserved
第15页/共52页
2.3 平面体系的计算自由度
在应用公式时,应注意以下几点: (1) 地基是参照物,不计入m中。
(2) 计入m的刚片,其内部应无多余约束。如果遇到内部有多余 约束的刚片,则应把它变成内部无多余约束的刚片,而把它的附加约 束在计算体系的“全部约束数”d时考虑进去。
第27页/共52页
2.4 平面几何不变体系的基本组成规则
二元体规则
用两根不共线的链杆联结(发展)一个新结点的构造,称为二元 体。于是,规则Ⅰ也可用二元体的组成表述为:
在一个刚片上,增加一个二元体,仍为几何不变,且无多余约
束的体系。
A
A
A
①
②
①
②
①
②
由二元体的性质可知:在一个体系上依次加上(或取消)若干 个二元体,不影响原体系的几何可变性。这一结论常为几何组成分 析带来方便。
规则Ⅱ (表述之二):两个刚片用三个链杆相连,且三根链 杆不全交于一点也不全平行,则组成内部几何不变且无多余约束 的体系。
All Rights Reserved
第29页/共52页
2.4 平面几何不变体系的基本组成规则
平面体系几何组成分析的方法(静定的概念)(建筑力学)

例题分析
例1.分析图示体系的几何构造性。 解析:(1)计算自由度
W 4244 0
自由度为0,说明体系具有成为几何不变体系的最少约束数目。 进一步判断,依次去掉二元体DFE、BDC、BEC、BCA后,整个体系只剩下 地基了,为几何不变体系。由于去掉二元体并不改变原体系的几何构造性,因此 原体系也是几何不变体系。
二元体规则是非常好用的规则,特别是去二元体,可以大大简化体系 构件数目,使判断简化,其主要有以下几个技巧:
(1)根据需要进行链杆与刚片之间的转化,巧妙使用二元体; (2)当体系比较复杂时,可以先考虑其中的一个它部分之间的连接关系, 判定整个体系的几何构造性。
例题分析
例2.分析图示体系的几何构造性。 解析:(1)计算自由度
W 72 113 0
自由度为0,说明体系具有成为几何不变体系的最少约束数目。 体系没有二元体,但体系本身是有二元体的,去掉所有二元体,只剩下一个 杆件,所以体系本身几何不变,再考虑其与地基的连接方式,判定体系几何不变。
总结与技巧
示例
例1.分析图示体系的几何构造性。
解析:(1)计算自由度
W 7277 0
体系具有成为几何不变体系的最少约束数目,需进一步判断。 (2)依次去掉二元体FAB、IED、FBJ、IDC如图所示。 (3)三角形GCH看作刚片Ⅰ,地基看作特殊刚片Ⅱ。 (4)刚片Ⅰ、Ⅱ之间通过三根链杆相连,三链杆汇交
郑州大学远程 结构力学 练习及答案 本科 闭卷

3.2对图示体系进行几何组成分析。
3.1(a)依次去掉二元体A,B,C,D剩下右图所示的并排简支梁,故原体系为无多余约束的几何不变体系。
3.1(b)先去除基础,刚片Ⅰ有两个多余约束,刚片Ⅱ有四个多余约束,ⅠⅡ用一个铰一根链杆,故原体系为有6个多余约束的几何不变系。
2.9桁架计算的结点法所选分离体包含几个结点(A)
A单个B最少两个C最多两个D任意个
2.10桁架计算的截面法所选分离体包含几个结点(B)
A单个B最少两个C最多两个D任意个
2.11图示结构有多少根零杆(C)
A5根B6根C7根D8根
2.12图示结构有多少根零杆(D)
A5根B6根C7根D8根
2.13图示结构有多少根零杆(A)
C有两个自由度D可减少一个自由度
2.9图示体系是(D)
A瞬变体系B有一个自由度和一个多余约束的可变体系
C无多余约束的几何不变体系D有两个多余约束的几何不变体系
2.10图示体系是(B)
A瞬变体系B有一个自由度和一个多余约束的可变体系
C无多余约束的几何不变体系D有两个多余约束的几何不变体系
2.11下列那个体系中的1点不是二元体(C)
A静定结构B超静定结构C常变体系D瞬变体系
2.6图示体系属于(C)
A无多余约束的几何不变体系B有多余约束的几何不变体系
C有多余约束的几何可变体系D瞬变体系
2.7不能作为建筑结构使用的是(D)
A无多余约束的几何不变体系B有多余约束的几何不变体系
C几何不变体系D几何可变体系
2.8一根链杆(D)
A可减少两个自由度B有一个自由度
3.2试绘制下列刚架的内力图。
3.3试绘制下列刚架的弯矩图。
体系的几何组成分析-结构力学
结论:无多余约束的几何不变体系
(3)平面内三个刚片的连接
刚片Ⅱ B
铰A 刚片Ⅲ 链杆2
C
刚片Ⅰ
规律3 三个刚片用三个 铰两两相连,且三个铰 不在一直线上,则组成 无多余约束的几何不变 体系。
对象:刚片I、Ⅱ和Ⅲ 联系:铰A(Ⅱ和Ⅲ )、B ( I和Ⅱ)、C(I和Ⅲ ),三铰不共线 结论:无多余约束的几何不变体系
• 体温低于 35 ℃为体温过低: 危重患 者、 极度衰弱的患者失去产生足够热 量的能力 ,导致体温
• 低温治疗: 临床上由于病情需要,常 采用人工冬眠或物理降温作为治疗措 施
作业
、发热的类型有哪几种 、发热常用的处置方法有哪些
➢ 杆件与杆件之间的连接—结点
单铰结点 2个约束
链杆 1个约束
单刚结点 3个约束
2.2 自由度和约束
2.2 自由度和约束
教学目标:
掌握自由度的基本概念 掌握约束的定义与分类
教学内容:
自由度 约束
知识点
自由度
✓等于体系的独立运动方式。
✓等于体系运动时可以独立改
y
变的坐标数目。
B
y
A
x x
一个点在平面内有两个自由度。
工程结构的自由度等于零
y
y
x x
一个刚片在平面内有三个自由度。
解:三角形法则,得刚片Ⅰ 、Ⅱ 对象:刚片Ⅰ、Ⅱ 联系:铰A,链杆1,不共线 结论:几何不变,无多余约束
例5: 分析体系的几何组成。
B
C
A
ⅠⅡ
解:去二元体,得
对象:刚片Ⅰ、Ⅱ、Ⅲ 联系:铰A,B、C,不共线 结论:几何不变,无多余约束
Ⅲ
例6: 分析体系的几何组成。
结构力学-几何组成分析
复铰 等于多少个 单铰?
1连接n个刚片的复铰 = (n-1)个单铰
体系的计算自由度:
结 构 力 学 第 二 章
bicea
计算自由度等于刚片总自由度数 减总联系数
W = 3m-(2h+b) m---刚片数(不包括地基) h---单铰数 b---单链杆数(含支杆)
结 构 力 学 第 二 章
bicea
结 构 力 学 第 二 章
bicea
除去联系后,体系的自由度并不 改变,这类联系称为多余联系。
图中上部四根杆 和三根支座杆都是 必要的联系。 下部正方形中任意 一根杆,除去都不增 加自由度,都可看作 多余的联系。
结 构 力 学 第 二 章
bicea
例3: 计算 图示 体系 的自 由度
W=0,但 布置不当 几何可变。 上部有多 余联系, 下部缺少 联系。
找虚铰 无多几何不变
无多几何不变
Ⅱ
O12
结 构 力 学 第 二 章
bicea
找 刚 片 O 、 找 虚 铰
23
Ⅲ
Ⅰ
O13
行吗?
瞬变体系
它可 变吗?
结 构 力 学 第 二 章
bicea
F
G
E
D
找刚片 无多几何不变
结 构 力 学 第 二 章
bicea
F
G E
D
如何变静定? 唯一吗?
C
结 构 力 学 第 二 章
bicea
结 构 力 学 第 二 章
bicea
可选小论文题之一 “体系组成分析的计 算机方法” 做这一小论文的 找我要参考资料
结 构 力 学 第 二 章
bicea
可选小论文题之一 “论三刚片六杆 连接体系的可变性” 或 “体系组成分析的计 算机方法”
结构力学-平面体系的几何组成分析知识重点及习题解析
《结构力学》平面体系的几何组成分析知识重点及习题解析一、基本概念1.1、几何不变体系若不考虑材料变形,在任意荷载作用下几何形状和位置均能保持不变的体系。
1.2、几何可变体系即使不考虑材料变形,在很小的荷载作用下,也会发生机械运动而不能保持原有几何形状和位置的体系。
1.3、瞬变体系原可发生形状或位置的改变,但经微小位移后即转化为几何不变的体系。
1.4、刚片平面杆件体系中的几何不变的部分,也可以是一根杆件或大地等。
1.5、虚铰连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰,不过这个铰的位置随着链杆的转动而改变,这种铰称为虚铰。
1.6、自由度物体运动时可以独立变化的几何参数的数目,也即确定物体位置所需的独立坐标数目。
1.7、约束减少自由度的装置,称为联系或约束。
1.8、必要约束能改变体系自由度的约束,也即使体系成为几何不变而必须的约束。
1.9、多余约束不能减少体系自由度的约束。
1.10、计算自由度并非体系的真实自由度,而是体系的自由度数目减约束数目。
计算公式如下:W=3m-(2h+r)式中W一计算自由度;m一刚片数;h—单铰数,连接n个杆件的复铰相当于n-1个单铰;r—支座链杆数。
对于铰结链杆体系,还可用如下公式计算:W=2j-(b+r)式中j一结点数;b一杆件数二、几何不变体系的基本组成规则2.1、三刚片规则三个刚片用不在不同一条直线上的三个单铰两两铰连,组成的体系是几何不变的。
2.2、二刚片规则两个刚片用一个铰和一根不通过此铰的链杆相连,为几何不变体系;或者两个刚片用三根不全平行也不交于同一点的链杆相连,为几何不变体系。
2.3、二元体规则在一个体系上增加或拆除二元体,不会改变原有体系的几何构造性质。
三、几何构造与静定性的关系所谓体系的静定性,是指体系在任意荷载作用下的全部反力和内力是否可以根据静力平衡条件确定。
静定结构的几何构造特征是几何不变且无多余约束,而有多余约束的几何不变体系则是超静定结构。
《建筑力学》课件 (3)
(b)
(c)
4.铰结点 铰结点可分为单铰和复铰。 凡连接两个刚片的铰结点称为单铰。如图(d)所示,铰A连接两个
刚片Ⅰ和Ⅱ,刚片原来各自有3个自由度,总计有6个自由度。
连接多于两个刚片的铰结点称为复铰。如图(e)所示,铰A连接3 个刚片Ⅰ,Ⅱ,Ⅲ。
如果在平面体系中增加一个约束 而相应地增加体系的自由度,则此约 束称为必要约束;如果在平面体系中 增加一个约束而不减少体系的自由 度,则此约束称为多余约束。
实例分析
【例9-3】 对图(a)中体系作几何组成分析。 【解】
首先以地基及杆AB为二刚片,由铰A 和链杆1联结,链杆1延长线不通过铰A, 组成几何不变部分,如图(b)所示。以 此部分作为一刚片,杆CD作为另一刚 片,用链杆2,3及BC链杆(联结两刚片 的链杆约束,必须是两端分别连接在所研 究的两刚片上)连接。三链杆不交于一点 也不全平行,符合两刚片规则,故整个体 系是无多余约束的几何不变体系。
图(d)
第三节 几何不变体系的基本组成规则
如图所示,如果两个刚片用两根链杆连接,则这两根链杆的作用和一 个位于两杆交点的铰的作用完全相同,常称该铰为虚铰。
虚铰的位置在这两根链杆的交点上,如图(a)中的点O。如果连接 两个刚片的两根链杆并没有相交,则虚铰在这两根链杆延长线的交点 上,如图(b)中的点O。
(a)
(b)
图(c)中体系是在图(b)体系上又增加一根水平的支座链杆3, 链杆3明显是多余约束。故图(c)中体系是有一个多余约束的几何不 变体系。
(c)
图(d)中体系是用在一条水平直线上的两根链杆1和2把点A链接在 地基上,且保持几何不变的约束数目是够的。但是这两根水平链杆对限 制点A的水平移动,有一根是多余的,而对限制点A的竖向移动都不起 作用。在两根链杆处于水平线上的瞬间,点A可以发生很微小的竖向位 移到A′处,此时,链杆1和2不在一条直线上,点A′就不继续向下移动 了。这种在某一瞬间,可发生微小几何变形的体系,称为瞬间可变体 系,简称瞬变体系。瞬变体系是约束数目刚好,但由于约束的布置不恰 当,而形成的瞬间变形。瞬变体系也是不能用作建筑结构。