逻辑联结词、量词专题

合集下载

2020高三数学一轮复习(人教版文):简单的逻辑联结词、全称量词与存在量词

2020高三数学一轮复习(人教版文):简单的逻辑联结词、全称量词与存在量词

第三节简单的逻辑联结词、全称量词与存在量词2019考纲考题考情1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词。

(2)命题p∧q、p∨q、綈p的真假判定(1)全称量词和存在量词①全称量词有:所有的,任意一个,任给一个,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示。

②含有全称量词的命题,叫做全称命题。

“对M中任意一个x,有p(x)成立”用符号简记为:∀x∈M,p(x)。

③含有存在量词的命题,叫做特称命题。

“存在M中元素x0,使p(x0)成立”用符号简记为:∃x0∈M,p(x0)。

(2)含有一个量词的命题的否定1.用“并集”的概念来理解“或”,用“交集”的概念来理解“且”,用“补集”的概念来理解“非”。

2.记忆口诀:(1)“p或q”,有真则真;(2)“p且q”,有假则假;(3)“非p”,真假相反。

3.命题p∧q的否定是(綈p)∨(綈q);命题p∨q的否定是(綈p)∧(綈q)。

一、走进教材1.(选修1-1P26A组T3改编)命题“∀x∈R,x2+x≥0”的否定是()A.∃x0∈R,x20+x0≤0 B.∃x0∈R,x20+x0<0C.∀x∈R,x2+x≤0 D.∀x∈R,x2+x<0解析由全称命题的否定是特称命题知命题B正确。

故选B。

答案 B2.(选修1-1P18A组T1(3)改编)已知命题p:2是偶数,命题q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数是()A.1B.2 C.3D.4解析p和q显然都是真命题,所以綈p,綈q都是假命题,p∨q,p∧q都是真命题。

故选B。

答案 B二、走近高考3.(2017·山东高考)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2。

下列命题为真命题的是()A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)解析因为x>0,所以x+1>1,ln(x+1)>0,所以对于∀x>0,ln(x+1)>0,故p为真命题。

江苏高考数学理一轮复习课件1.3简单的逻辑联结词、全称量词与存在量词

江苏高考数学理一轮复习课件1.3简单的逻辑联结词、全称量词与存在量词


1 解得 0≤a≤ . 2 a+1≥1,
1
答案
1 0, 2
考向一 含有逻辑联结词命题真假的判定
【例1】 (2010· 新课标全国改编)已知命题p1:函数y=2x-2-x在
R上为增函数;p2:函数y=2x+2-x在R上为减函数,则在命 题q1:p1∨p2;q2:p1∧p2,q3:(綈p1)∨p2和q4:p1∧ (綈p2) 中,真命题是________. 解析 法一 因为y=2x与y=-2-x是R上的增函数,所以y=

答案
q1、q4
[方法总结] 判断含有逻辑联结词的命题真假,主要是把其 中单个命题的真假判断清楚,在此基础上再根据含有逻辑 联结词的命题真假判断的准则进行.
【训练1】 已知命题p:所有有理数都是实数,命题q:正 数的对数是负数,则下列命题:①(綈p)∨q;②p∧q;
③(綈q)∧(綈p);④(綈p)∨(綈q),其中是真命题的序号
②“∀x∈(3,+∞ ),x2+ 1> 3x”的否定是“∂ x∈ (3,+ ∞ ), x2+ 1< 3x”; ③“∂x∈ R,x2+ x+ 1= 0”的否定是“∀x∈ R,x2+ x+ 1> 0”;
解析
答案
存在性命题的否定是全称命题.
π ∀x∈0, 2 , tan
ห้องสมุดไป่ตู้
x≤sin x
3. 若命题 p: 关于 x 的不等式 ax+b>0
b 的解集是xx>- , a
命题 q :关于 x 的不等式 (x - a)(x - b)<0 的解集是 {x|a<x<b},则在命题“p∧q”、“p∨q”、“綈 p”、 “綈 q”中,是真命题的有________.

fhmw简单的逻辑联结词、全称量词与存在量词

fhmw简单的逻辑联结词、全称量词与存在量词
③∵p 和 q 中有且仅有一个正确, a≤1 a>1 1 1 ∴ 或1 ,∴a≥8 或 <a≤1. 2 a≤ 或a≥8 < a <8 2 2
2给定命题p:对任意实数x都有ax2 ax 1 0成立, q : 关于x的方程x 2 x a 0有实根,如果p q为真命题。 p q为假命题,求实数a的取值范围
3设p : 实数x满足x 4ax 3a 0, 其中a>0,q:实数
2 2
x满足
{x
x2 x 6 0
x
练习:1“全等三角形的面积一定都相等”的否定:
常见词语的否定形式有: 原 语 是 都是 > 句 否 定 不 不都 ≤ 形 是 是 式
至少 有 一个 一个 也 没有
至多 有 一个 至少 有 两个
对任意 x∈ A 使 p(x)真 存在 x0∈A 使 p(x0)假
助学微博
1.含“或”“且”“非”命题真假的判断 (1)对于“p∧q”命题:一假则假,都真才真.
例 1 已知 c>0,且 c≠1,设 p:函数 y=c 在 R 上单调递减;q:函数
x
1 2 f(x)=x -2cx+1 在 , 上为增函数,若 “p∧q” 为假, “p∨q” 2
为真,求实数 c 的取值范围.
解:∵函数 y=c 在 R 上单调递减,∴0<c<1.即 p:0<c<1. ∵c>0 且 c≠1,∴ p:c>1.
第3节
简单的逻辑联结词、全称量词与
存在量词
2.理解全称量词与存在量 最新考纲 词的意义. 1.了解逻辑联结词 “或” “且” 3.能正确地对含有一个量 “非”的含义. 词的命题进行否定.

2015年高考数学(文)一轮课件:1-3简单的逻辑联结词、全称量词与存在量词

2015年高考数学(文)一轮课件:1-3简单的逻辑联结词、全称量词与存在量词

7 假 □ 8 真 □ 9 假 □ 10 假 □ 11 真 □ 12 真 □ 13 假 □ 14 假 □ 15 真 □ 16 □ ∀ 17 全称量词 □ 18 □ ∃ 19 存在量词 □
20 特称命题 □ 21 全称命题 □ 22 非p且非q □ 23 非p或非q □
●一个关系 逻辑联结词与集合的关系 “或、且、非”三个逻辑联结词,对应着集合运算中的 “并、交、补”,因此,常常借助集合的“并、交、补”的意义 来解答由“或、且、非”三个联结词构成的命题问题.
思维启迪:判定命题p,q的真假,然后对各选项进行逐一判 定.
解析:令u=1-ax,则u=1-ax是减函数,所以y=21-ax在R 上是减函数,p为真命题. 对于命题q:由x2<1,得-1<x<1,故x<a,则“x2<1” 是“x<a”(1<a<2)的充分不必要条件. 因此q为真命题,綈p、綈q均为假命题,所以p∨q为真,p∧
1 综上所述,实数c的取值范围是{c| <c<1}. 2
1 答案:{c|2<c<1}
点评:解决此类问题的关键是首先准确地把每个条件所对应 的参数的取值范围求出来,然后转化为集合交、并、补的运算.
通关训练4
已知p:方程x2+2mx+1=0有两个不相等的正
根;q:方程x2+2(m-2)x-3m+10=0无实根.求使p∨q为真, p∧q为假的实数m的取值范围.
答案:D
考点四
逻辑联结词与命题真设p:函数y=cx在R上单调递 减;q:函数f(x)=x -2cx+1在
2
1 ,+∞ 2
上为增函数,若“p∧q”
为假,“p∨q”为真,求实数c的取值范围.
思维启迪:(1)p,q真时,分别求出相应的c的范围;(2)用补 集的思想求出綈p,綈q分别对应的c的范围;(3)根据“p∧q”为

简单的逻辑联结词、全称量词与存在量词

简单的逻辑联结词、全称量词与存在量词

简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:p q p∧q p∨q非p真真真真假假真假真真真假假真假假假假假真命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词量词名称常见量词表示符号全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、有一个、某个、有些、某些等∃3.全称命题与特称命题命题名称命题结构命题简记全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)特称命题存在M中的一个x0,使p(x0)成立∃x0∈M,p(x0) 4.全称命题与特称命题的否定命题命题的否定∀x∈M,p(x)∃x0∈M,非p(x0)∃x0∈M,p(x0)∀x∈M,非p(x)二、常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.考点一判断含有逻辑联结词命题的真假[典例](1)(2017·山东高考)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A.p∧q B.p∧非qC.非p∧q D.非p∧非q(2)(2019·安徽安庆模拟)设命题p:∃x0∈(0,+∞),x0+1x0>3;命题q:∀x∈(2,+∞),x2>2x,则下列命题为真的是()A.p∧(非q)B.(非p)∧qC.p∧q D.(非p)∨q[解析](1)当x>0时,x+1>1,因此ln(x+1)>0,即p为真命题;取a=1,b=-2,这时满足a>b,显然a2>b2不成立,因此q为假命题.由复合命题的真假性,知B为真命题.(2)对于命题p,当x0=4时,x0+1x0=174>3,故命题p为真命题;对于命题q,当x=4时,24=42=16,即∃x0∈(2,+∞),使得2x0=x20成立,故命题q为假命题,所以p∧(非q)为真命题,故选A.[答案](1)B(2)A[题组训练]1.(2019·惠州调研)已知命题p,q,则“非p为假命题”是“p∧q是真命题”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B充分性:若非p为假命题,则p为真命题,由于不知道q的真假性,所以推不出p∧q是真命题.必要性:p∧q是真命题,则p,q均为真命题,则非p为假命题.所以“非p为假命题”是“p∧q是真命题”的必要不充分条件.2.已知命题p:“若x2-x>0,则x>1”;命题q:“若x,y∈R,x2+y2=0,则xy=0”.下列命题是真命题的是()A.p∨(非q)B.p∨qC.p∧q D.(非p)∧(非q)解析:选B若x2-x>0,则x>1或x<0,故p是假命题;若x,y∈R,x2+y2=0,则x =0,y=0,xy=0,故q是真命题.则p∨q是真命题.考点二全称命题与特称命题[典例](1)命题∀x∈R,e x-x-1≥0的否定是()A.∀x∈R,e x-x-1≤0B.∀x∈R,e x-x-1≥0C.∃x0∈R,e x0-x0-1≤0D.∃x0∈R,e x0-x0-1<0(2)对命题∃x0>0,x20>2x0,下列说法正确的是()A.真命题,其否定是∃x0≤0,x20≤2x0B.假命题,其否定是∀x>0,x2≤2xC.真命题,其否定是∀x>0,x2≤2xD.真命题,其否定是∀x≤0,x2≤2x[解析](1)改全称量词为存在量词,把不等式中的大于或等于改为小于.故选D.(2)已知命题是真命题,如32=9>8=23,其否定是∀x>0,x2≤2x.故选C.[答案](1)D(2)C[题组训练]1.命题“∀x∈R,∃n∈N*,使得n≤x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n>x2B.∀x∈R,∀n∈N*,使得n>x2C.∃x0∈R,∃n∈N*,使得n>x20D.∃x0∈R,∀n∈N*,使得n>x20解析:选D∀改写为∃,∃改写为∀,n≤x2的否定是n>x2,则该命题的否定形式为“∃x0∈R,∀n∈N*,使得n>x20”.2.已知命题p:∃n∈R,使得f(x)=nxn2+2n是幂函数,且在(0,+∞)上单调递增;命题q:“∃x0∈R,x20+2>3x0”的否定是“∀x∈R,x2+2<3x”.则下列命题为真命题的是()A.p∧q B.(非p)∧qC.p∧(非q)D.(非p)∧(非q)解析:选C当n=1时,f(x)=x3为幂函数,且在(0,+∞)上单调递增,故p是真命题,则非p是假命题;“∃x0∈R,x20+2>3x0”的否定是“∀x∈R,x2+2≤3x”,故q是假命题,非q是真命题.所以p∧q,(非p)∧q,(非p)∧(非q)均为假命题,p∧(非q)为真命题,选C.考点三根据命题的真假求参数的取值范围[典例]已知p:存在x0∈R,mx20+1≤0,q:任意x∈R,x2+mx+1>0.若p或q为假命题,求实数m的取值范围.[解]依题意知p,q均为假命题,当p是假命题时,则mx2+1>0恒成立,则有m≥0;当q是真命题时,则Δ=m2-4<0,-2<m<2.因此由p,q均为假命题得{m≥0,m≤-2或m≥2,即m≥2.所以实数m的取值范围为[2,+∞).[变透练清]1.(变条件)若本例将条件“p或q为假命题”变为“p且q为真命题”,其他条件不变,则实数m的取值范围为________.解析:依题意,当p是真命题时,有m<0;当q是真命题时,有-2<m<2,<0,2<m<2,可得-2<m<0.所以m的取值范围为(-2,0).答案:(-2,0)2.(变条件)若本例将条件“p或q为假命题”变为“p且q为假,p或q为真”,其他条件不变,则实数m的取值范围为________.解析:若p且q为假,p或q为真,则p,q一真一假.当p真q<0,≥2或m≤-2,所以m≤-2;当p假q≥0,2<m<2,所以0≤m<2.所以m的取值范围为(-∞,-2]∪[0,2).答案:(-∞,-2]∪[0,2)3.(变条件)若本例将条件q变为:存在x0∈R,x20+mx0+1<0,其他条件不变,则实数m 的取值范围为________.解析:依题意,当q是真命题时,Δ=m2-4>0,所以m>2或m<-2.≥0,2≤m≤2,得0≤m≤2,所以m的取值范围为[0,2].答案:[0,2][课时跟踪检测]1.(2019·西安摸底)命题“∀x>0,xx-1>0”的否定是()A.∃x0≥0,x0x0-1≤0B.∃x0>0,0≤x0≤1C.∀x>0,xx-1≤0D.∀x<0,0≤x≤1解析:选B∵xx-1>0,∴x<0或x>1,∴xx-1>0的否定是0≤x≤1,∴命题的否定是“∃x0>0,0≤x0≤1”.2.下列命题中,假命题的是()A.∀x∈R,21-x>0B.∃a0∈R,y=xa0的图象关于y轴对称C.函数y=x a的图象经过第四象限D.直线x+y+1=0与圆x2+y2=12相切解析:选C对于A,由指数函数的性质可知为真命题;对于B,当a=2时,其图象关于y轴对称;对于C,当x>0时,y>0恒成立,从而图象不过第四象限,故为假命题;对于D,因为圆心(0,0)到直线x+y+1=0的距离等于12,等于圆的半径,命题成立.3.(2019·陕西质检)已知命题p:对任意的x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧q B.(非p)∧(非q)C.(非p)∧q D.p∧(非q)解析:选D由指数函数的性质知命题p为真命题.易知x>1是x>2的必要不充分条件,所以命题q为假命题.由复合命题真值表可知p∧(非q)为真命题.4.(2018·湘东五校联考)下列说法中正确的是()A.“a>1,b>1”是“ab>1”成立的充分条件B.命题p:∀x∈R,2x>0,则非p:∃x0∈R,2x0<0C.命题“若a>b>0,则1a <1b”的逆命题是真命题D.“a>b”是“a2>b2”成立的充分不必要条件解析:选A对于选项A,由a>1,b>1,易得ab>1,故A正确.对于选项B,全称命题的否定是特称命题,所以命题p:∀x∈R,2x>0的否定是非p:∃x0∈R,2x0≤0,故B错误.对于选项C,其逆命题:若1a<1b,则a>b>0,可举反例,如a=-1,b=1,显然是假命题,故C错误.对于选项D,由“a>b”并不能推出“a2>b2”,如a=1,b=-1,故D错误.故选A.5.(2019·唐山五校联考)已知命题p:“a>b”是“2a>2b”的充要条件;命题q:∃x0∈R,|x0+1|≤x0,则()A.(非p)∨q为真命题B.p∧(非q)为假命题C.p∧q为真命题D.p∨q为真命题解析:选D由题意可知命题p为真命题.因为|x+1|≤x的解集为空集,所以命题q 为假命题,所以p∨q为真命题.6.下列说法错误的是()A.命题“若x2-5x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0”B.若命题p:存在x0∈R,x20+x0+1<0,则非p:对任意x∈R,x2+x+1≥0C.若x,y∈R,则“x=y”是“xy”的充要条件D.已知命题p和q,若“p或q”为假命题,则命题p与q中必一真一假解析:选D由原命题与逆否命题的关系,知A正确;由特称命题的否定知B正确;由xy⇔4xy≥(x+y)2⇔4xy≥x2+y2+2xy⇔(x-y)2≤0⇔x=y,知C正确;对于D,命题“p或q”为假命题,则命题p与q均为假命题,所以D不正确.7.(2019·长沙模拟)已知命题“∀x∈R,ax2+4x+1>0”是假命题,则实数a的取值范围是()A.(4,+∞)B.(0,4]C.(-∞,4]D.[0,4)解析:选C当原命题为真命题时,a>0且Δ<0,所以a>4,故当原命题为假命题时,a≤4.8.下列命题为假命题的是()A.存在x>y>0,使得ln x+ln y<0B.“φ=π2”是“函数y=sin(2x+φ)为偶函数”的充分不必要条件C.∃x0∈(-∞,0),使3x0<4x0成立D.已知两个平面α,β,若两条异面直线m,n满足m⊂α,n⊂β且m∥β,n∥α,则α∥β解析:选C对于A选项,令x=1,y=1e,则ln x+ln y=-1<0成立,故排除A.对于B选项,“φ=π2”是“函数y=sin(2x+φ)为偶函数”的充分不必要条件,正确,故排除B.对于C选项,根据幂函数y=xα,当α<0时,函数单调递减,故不存在x0∈(-∞,0),使3x0<4x0成立,故C错误.对于D选项,已知两个平面α,β,若两条异面直线m,n满足m⊂α,n ⊂β且m∥β,n∥α,可过n作一个平面与平面α相交于直线n′.由线面平行的性质定理可得n′∥n,再由线面平行的判定定理可得n′∥β,接下来由面面平行的判定定理可得α∥β,故排除D,选C.9.若命题p的否定是“∀x∈(0,+∞),x>x+1”,则命题p可写为________________________.解析:因为p是非p的否定,所以只需将全称量词变为特称量词,再对结论否定即可.答案:∃x0∈(0,+∞),x0≤x0+110.已知命题p:x2+4x+3≥0,q:x∈Z,且“p∧q”与“非q”同时为假命题,则x =________.解析:若p为真,则x≥-1或x≤-3,因为“非q”为假,则q为真,即x∈Z,又因为“p∧q”为假,所以p为假,故-3<x<-1,由题意,得x=-2.答案:-211.已知p:a<0,q:a2>a,则非p是非q的________条件(填:充分不必要、必要不充分、充要、既不充分也不必要).解析:由题意得非p:a≥0,非q:a2≤a,即0≤a≤1.因为{a|0≤a≤1}{a|a≥0},所以非p是非q的必要不充分条件.答案:必要不充分12.已知命题p:a2≥0(a∈R),命题q:函数f(x)=x2-x在区间[0,+∞)上单调递增,则下列命题:①p∨q;②p∧q;③(非p)∧(非q);④(非p)∨q.其中为假命题的序号为________.解析:显然命题p为真命题,非p为假命题.∵f(x)=x2-x-1 4,∴函数f(x)在区间1 2,+∴命题q为假命题,非q为真命题.∴p∨q为真命题,p∧q为假命题,(非p)∧(非q)为假命题,(非p)∨q为假命题.答案:②③④13.设t∈R,已知命题p:函数f(x)=x2-2tx+1有零点;命题q:∀x∈[1,+∞),1x -x≤4t2-1.(1)当t=1时,判断命题q的真假;(2)若p∨q为假命题,求t的取值范围.解:(1)当t=1=0,1x-x≤3在[1,+∞)上恒成立,故命题q为真命题.(2)若p∨q为假命题,则p,q都是假命题.当p为假命题时,Δ=(-2t)2-4<0,解得-1<t<1;当q≤4t2-1,即4t2-1≥0,解得t≤-12或t≥12,∴当q为假命题时,-12<t<12,∴t -1 2,。

高考一轮复习第1章集合与常用逻辑用语第3讲逻辑联结词全称量词与存在量词

高考一轮复习第1章集合与常用逻辑用语第3讲逻辑联结词全称量词与存在量词

第三讲逻辑联结词、全称量词与存在量词知识梳理·双基自测知识点一简单的逻辑联结词(1)用联结词“且”联结命题p和命题q,记作p∧q,(2)用联结词“或”联结命题p和命题q,记作p∨q,(3)对一个命题p的否定记作¬ p,(4)命题p∧q,p∨q,¬ p的真假判断真值表知识点二全称量词与存在量词1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫做全称命题.(3)全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x).2.存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做特称命题.(3)特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为:∃x0∈M,p(x0).3.含有一个量词的命题的否定(1)(2)p∨q的否定是(¬p)∧(¬ q);p∧q的否定是(¬p)∨(¬ q).重要结论1.逻辑联结词与集合的关系.(1)“或”与集合的“并”密切相关,集合的并集是用“或”来定义的,命题“p∨q”为真有三个含义:只有p成立,只有q成立,p、q同时成立;(2)“且”与集合的“交”密切相关,集合的交集是用“且”来定义的,命题p∧q为真表示p、q同时成立;(3)“非”与集合中的补集相类似.2.常用短语的否定词题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“2023≥2022”是真命题.( √)(2)命题p和¬ p不可能都是真命题.( √)(3)“全等三角形的面积相等”是特称命题.( ×)(4)命题¬(p∧q)是假命题,则命题p,q都是真命题.( √)题组二走进教材2.(选修2-1P23T2改编)下列命题中的假命题是( C )A.∃x0∈R,lg x0=1 B.∃x0∈R,sin x0=0C.∀x∈R,x3>0 D.∀x∈R,2x>0[解析]对于C,任意x∈R,x3∈R,故选C.3.(选修2-1P18A1(3),改编)已知p:2是偶数,q:2是质数,则命题¬p,¬q,p∨q,p∧q中真命题的个数为( B )A.1 B.2C.3 D.4[解析]命题p是真命题,q是真命题,因此命题¬p,¬q都是假命题,p∨q,p∧q都是真命题,故选B.题组三走向高考4.(2020·课标Ⅱ,5分)设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是①③④.①p1∧p4②p1∧p2③(¬ p 2)∨p 3 ④(¬ p 3)∨(¬ p 4)[解析] 对于命题p 1,两两相交且不过同一点的三条直线的交点记为A 、B 、C ,易知A 、B 、C 三点不共线,所以可确定一个平面,记为α,由A ∈α,B∈α,可得直线AB ⊂α,同理,另外两条直线也在平面α内,所以p 1是真命题;对于命题p 2,当三点共线时,过这三点有无数个平面,所以p 2是假命题,从而¬ p 2是真命题; 对于命题p 3,空间两条直线不相交,则这两条直线可能平行,也可能异面,所以p 3是假命题,从而¬ p 3是真命题;对于命题p 4,由直线与平面垂直的性质定理可知,是真命题,从而¬ p 4是假命题.综上所述,p 1∧p 4是真命题,p 1∧p 2是假命题,(¬ p 2)∨p 3是真命题,(¬ p 3)∨(¬ p 4)是真命题,所以答案为①③④.5.(2016·浙江,5分)命题“∀x ∈R ,∃n ∈N *,使得n≥x 2”的否定形式是( D ) A .∀x ∈R ,∃n ∈N *,使得n<x 2B .∀x ∈R ,∀x ∈N *,使得n<x 2C .∃x ∈R ,∃n ∈N *,使得n<x 2D .∃x ∈R ,∀n ∈N *,使得n<x 2[解析] 根据含有量词的命题的否定的概念可知,选D .6.(2015·山东,5分)若“∀x ∈[0,π4],tan x ≤m ”是真命题,则实数m 的最小值为1.[解析] 由已知可得m≥tan x (x∈⎣⎢⎡⎦⎥⎤0,π4)恒成立.设f(x)=tan x (x∈⎣⎢⎡⎦⎥⎤0,π4),显然该函数为增函数,故f(x)的最大值为f ⎝ ⎛⎭⎪⎫π4=tan π4=1,由不等式恒成立可得m≥1,即实数m 的最小值为1.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU 考点一 含逻辑联结词的命题及其真假判断——自主练透例1 (1)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( A )A .(¬ p)∨(¬ q)B .p ∧(¬ q)C .(¬ p)∧(¬ q)D .p ∨q(2)(多选)命题p :若sin x>sin y ,则x>y ;命题q :x 2+y 2≥2xy.下列命题为真命题的是( ACD ) A .p 或q B .p 且q C .qD .¬ p(3)已知命题p :若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q :在空间中,对于三条不同的直线a ,b ,c ,若a⊥b,b⊥c,则a∥c.对以上两个命题,有以下命题:①p ∧q 为真;②p∨q 为假;③p∨q 为真;④(¬ p)∨(¬ q)为假. 其中,正确的是②.(填序号)[解析] (1)命题p 是“甲降落在指定范围”,则¬ p 是“甲没降落在指定范围”,q 是“乙降落在指定范围”,则¬ q 是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”“甲没降落在指定范围,乙降落在指定范围”“甲没降落在指定范围,乙没降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为(¬ p)∨(¬ q).(2)取x =π3,y =5π6,可知命题p 是假命题;由(x -y)2≥0恒成立,可知命题q 是真命题,故¬ p 为真命题,p 或q 是真命题,p 且q 是假命题. (3)命题p 是假命题,这是因为α与γ也可能相交;命题q 也是假命题,这两条直线也可能异面,相交.考点二 含有一个量词的命题——多维探究 角度1 全称命题、特称命题的真假例2 (多选题)( 2021·山东济宁期末)下列命题中真命题是( ACD ) A .∀x ∈R ,2x -1>0 B .∀x ∈N *,(x -1)2>0 C .∃x ∈R ,lg x<1D .∃x ∈R ,tan x =2[解析] 根据指数函数的值域知A 是真命题;取x =1,计算知(x -1)2=0,故B 是假命题;取x =1,计算知lg x =0<1,故C 是真命题;由y =tan x 的值域为R.知D 是真命题.故选ACD .角度2 含一个量词的命题的否定例3 (1)已知命题p :“∃x 0∈R ,ex 0-x 0-1≤0”,则¬ p 为( C ) A .∃x 0∈R ,ex 0-x 0-1≥0 B .∃x 0∈R ,ex 0-x 0-1>0 C .∀x ∈R ,e x-x -1>0 D .∀x ∈R ,e x -x -1≥0(2)(2021·陕西部分学校摸底)命题“∀x ∈R ,xx -1≥0”的否定是( D )A .∃x ∈R ,x 0x 0-1<0B .∃x ∈R ,0<x 0<1C .∀x ∈R ,xx -1≤0D .∃x ∈R ,0<x 0≤1[解析] (1)根据全称命题与特称命题的否定关系,可得¬ p 为“∀x ∈R ,e x-x -1>0”,故选C . (2)∀x ∈R ,x x -1≥0的否定是∃x 0∈R ,使xx -1不大于等于0,包括小于零和无意义,即∃x 0∈R ,0<x 0<1或x 0=1,故选D .名师点拨 MING SHI DIAN BO 全(特)称命题真假的判断方法全称命题特称命题真假 真假真假法一 证明所有对象使命题为真存在一个对象使命题为假存在一个对象使命题为真证明所有对象使命题为假法二否定为假否定为真否定为假否定为真注:当判断原命题的真假有困难时,可通过判断它的逆否命题的真假来实现. 角度3 含参命题中参数的取值范围例 4 已知f(x)=ln(x 2+1),g(x)=⎝ ⎛⎭⎪⎫12x-m ,若对于∀x 1∈[0,3],∃x 2∈[1,2],使得f(x 1)≥g(x 2),则实数m 的取值范围是( A )A .⎣⎢⎡⎭⎪⎫14,+ ∞B .⎝ ⎛⎦⎥⎤-∞,14C .⎣⎢⎡⎭⎪⎫13,+∞ D .⎝⎛⎦⎥⎤-∞,13 [解析] 当x∈[0,3]时,f(x)min =f(0)=0,当x∈[1,2]时,g(x)min =g(2)=14-m ,由f(x)min ≥g(x)min 得0≥14-m ,所以m≥14.[引申1]把本例中“∃x 2∈[1,2]”改为:“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是m≥12. [解析] 当x∈[0,3]时,f(x)min =f(0)=0, 当x∈[1,2]时,g(x)max =g(1)=12-m ,由f(x)min ≥g(x)max 得0≥12-m ,所以m≥12.[引申2]把本例中,∀x 1∈[0,3]改为∃x 1∈[0,3]其他条件不变,则实数m 的取值范围是m≥14-ln_10.[解析] 当x∈[0,3]时,f(x)max =f(3)=ln 10, 当x∈[1,2]时,g(x)min =g(2)=14-m ,由f(x)max ≥g(x)min 得ln 10≥14-m ,所以m≥14-ln 10.答案:m≥14-ln 10[引申3]把本例中,∀x 1∈[0,3],∃x 2∈[1,2]改为∃x 1∈[0,3],∀x 2∈[1,2],其他条件不变,则实数m 的取值范围是m ≥12-ln 10. [解析] 当x∈[0,3]时,f(x)max =f(3)=ln 10, 当x∈[1,2]时,g(x)max =g(1)=12-m ,由f(x)max ≥g(x)max ,得ln 10≥12-m ,所以m≥12-ln 10.答案:m≥12-ln 10名师点拨 MING SHI DIAN BO根据复合命题的真假求参数范围的步骤(1)先求出每个简单命题为真命题时参数的取值范围.(2)再根据复合命题的真假确定各个简单命题的真假情况(有时不一定只有一种情况). (3)最后由(2)的结论求出满足条件的参数取值范围. 〔变式训练1〕(1)(角度1)(多选题)(2020·吉林长春外国语学校高三上期中改编)下列命题中,假命题是( ABD ) A .∃x 0∈R ,sin 2 x 02+cos 2 x 02=12B .∀x ∈(0,π),sin x>cos xC .∀x ∈(0,+∞),x 2+1>x D .∃x 0∈R ,x 20+x 0=-1(2)(角度2)已知命题p :∃x 0∈R ,log 2(3x 0+1)≤0,则( B ) A .p 是假命题;¬ p :∀x ∈R ,log 2(3x+1)≤0 B .p 是假命题;¬ p :∀x ∈R ,log 2(3x +1)>0 C .p 是真命题;¬ p:∀x ∈R ,log 2(3x +1)≤0 D .p 是真命题;¬ p:∀x ∈R ,log 2(3x +1)>0(3)(角度3)已知命题p :“∀x ∈[1,2],x 2-a≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”.若命题“(¬ p)∧q”是真命题,则实数a 的取值范围是( C )A .(-∞,-2)∪{1}B .(-∞,-2]∪[1,2]C .(1,+∞)D .[-2,1](4)(角度3)已知函数f(x)=x 2+2x +a 和g(x)=2x +x +1,对∀x 1∈[-1,+∞),∃x 2∈R 使g(x 1)=f(x 2)成立,则实数a 的取值范围是[-1,+∞).[解析] (1)对于A ,由同角三角函数的平方关系,我们知道∀x ∈R ,sin 2 x 2+cos 2 x2=1,所以A 为假命题;对于B ,取特殊值,当x =π4时,sin x =cos x =22,所以B 为假命题;对于C ,一元二次方程根的判别式Δ=1-4=-3<0,所以原方程没有实数根,所以C 为真命题;对于D ,判别式Δ=1-4=-3<0,所以D 错误.故选A 、B 、D .(2)∵3x>0,∴3x+1>1,则log 2(3x+1)>0,∴p 是假命题,¬ p:∀x ∈R ,log 2(3x+1)>0.故选B . (3)命题p 为真命题时a≤1;命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”为真命题,即方程x 2+2ax +2-a =0有实根,故Δ=4a 2-4(2-a)≥0,解得a≥1或a≤-2.又(¬ p)∧q 为真命题,即¬ p 真且q 真,所以a>1,即a 的取值范围为(1,+∞).故选C .(4)因为f(x)=x 2+2x +a =(x +1)2+a -1, 所以f(x)∈[a-1,+∞).因为g(x)=2x +x +1在[-1,+∞)上单调递增, 所以g(x)∈[-2,+∞).由题意得a -1≤-2, 所以a≤-1,故实数a 的取值范围是(-∞,-1].名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG简易逻辑的综合应用例5 (2019·全国卷Ⅱ,5分)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( A ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙[解析] 依题意,若甲预测正确,则乙、丙均预测错误,此时三人成绩由高到低的次序为甲、乙、丙;若乙预测正确,此时丙预测也正确,这与题意相矛盾;若丙预测正确,则甲预测错误,此时乙预测正确,这与题意相矛盾.综上所述,三人成绩由高到低的次序为甲、乙、丙,选A .名师点拨 MING SHI DIAN BO在一些逻辑问题中,当字面上并未出现“或”“且”“非”字样时,应从语句的陈述中搞清含义,并根据题目进行逻辑分析,找出各个命题之间的内在联系,从而解决问题.〔变式训练2〕(2017·全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( D )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩[解析]由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀、1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.故选D.。

简单的逻辑联结词、全称量词与存在量词

第二讲简单的逻辑联结词、全称量词与存在量词教学目标:1.了解逻辑联结词“或”“且”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.一、知识回顾课前热身知识点1、命题p∧q、p∨q、非p的真假判定p q p∧q p∨q 非p真真真真假真假假真假假真假真真假假假假真知识点2.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M中任意一个x,有p(x)成立”用符号简记为:∀x∈M,p(x).(3)含有存在量词的命题,叫做特称命题.“存在M中元素x0,使p(x0)成立”用符号简记为:∃x0∈M,p(x0).知识点3.含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)∃x0∈M,非p(x0)∃x0∈M,p(x0)∀x∈M,非p(x)例题辨析推陈出新例1已知命题p:(a-2)2+|b-3|≥0(a,b∈R),命题q:x2-3x+2<0的解集是{x|1<x<2},给出下列结论:①命题“p∧q”是真命题;②命题“p∧非q”是假命题;③命题“非p∨q”是真命题;④命题“非p∨非q”是假命题.其中正确的是()A.②③B.①②④C.①③④D.①②③④[自主解答]命题p:(a-2)2+|b-3|≥0(a,b∈R)是真命题,命题q:x2-3x+2<0的解集是{x|1<x<2}也是真命题,故①命题“p∧q”是真命题;②命题“p∧非q”是假命题;③命题“非p∨q”是真命题;④命题“非p∨非q”是假命题.[答案] D变式练习1.(2013·长春名校联考)命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p 或q ”是真命题B .“p 或q ”是假命题C .非p 为假命题D .非q 为假命题 解析:选B ∵当a ·b >0时,a 与b 的夹角为锐角或零度角,∴命题p 是假命题;命题q 是假命题,例如f (x )=⎩⎪⎨⎪⎧-x +1,x ≤0,-x +2,x >0,综上可知,“p 或q ”是假命题.例2(1)下列命题中,真命题是( )A .∃x 0∈⎣⎡⎦⎤0,π2,sin x 0+cos x 0≥2 B .∀x ∈(3,+∞),x 2>2x +1C .∃x 0∈R ,x 20+x 0=-1D .∀x ∈⎝⎛⎭⎫π2,π,tan x >sin x(2)已知a >0,函数f (x )=ax 2+bx +c ,若m 满足关于x 的方程2ax +b =0,则下列选项中的命题为假命题的是( )A .∃x 0∈R ,f (x 0)≤f (m )B .∃x 0∈R ,f (x 0)≥f (m )C .∀x ∈R ,f (x )≤f (m )D .∀x ∈R ,f (x )≥f (m )[自主解答] (1)对于选项A ,sin x +cos x =2sin ⎝⎛⎭⎫x +π4≤ 2,∴此命题不成立;对于选项B ,x 2-2x -1=(x -1)2-2,当x >3时,(x -1)2-2>0,∴此命题成立;对于选项C ,x 2+x +1=⎝⎛⎭⎫x +122+34>0,∴x 2+x =-1对任意实数x 都不成立,∴此命题不成立;对于选项D ,当x ∈⎝⎛⎭⎫π2,π时,tan x <0,sin x >0,命题显然不成立.(2)∵a >0,∴函数f (x )=ax 2+bx +c 在x =-b2a处取得最小值.∴f (m )是函数f (x )的最小值.故C 错误. [答案] (1)B (2)C变式练习2.下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数解析:选D 对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=⎝⎛⎭⎫lg x +122+34≥34>0,因此选项B 是真命题;对于C ,在△ABC 中,A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命题.例3写出下列命题的否定,并判断其真假.(1)p :∀x ∈R ,x 2-x +14≥0;(2)q :所有的正方形都是矩形; (3)r :∃x 0∈R ,x 20+2x 0+2≤0; (4)s :至少有一个实数x 0,使x 30+1=0.[自主解答] (1)非p :∃x 0∈R ,x 20-x 0+14<0,假命题. (2)非q :至少存在一个正方形不是矩形,假命题. (3)非r :∀x ∈R ,x 2+2x +2>0,真命题. (4)非s :∀x ∈R ,x 3+1≠0,假命题.变式练习3.命题“能被5整除的数,末位是0”的否定是________.解析:省略了全称量词“任何一个”,否定为:有些可以被5整除的数,末位不是0. 答案:有些可以被5整除的数,末位不是0例4已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,则实数a 的取值范围是( )A .(-12,-4]∪[4,+∞)B .[-12,-4]∪[4,+∞)C .(-∞,-12)∪(-4,4)D .[-12,+∞)[自主解答] 命题p 等价于Δ=a 2-16≥0,即a ≤-4或a ≥4;命题q 等价于-a4≤3,即a ≥-12.由p或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假.若p 真q 假,则a <-12;若p 假q 真,则-4<a <4.故a 的取值范围是(-∞,-12)∪(-4,4).[答案] C4.已知c >0,且c ≠1,设p :函数y =c x 在R 上单调递减;q :函数f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,若“p 且q ”为假,“p 或q ”为真,求实数c 的取值范围.解:∵函数y =c x 在R 上单调递减,∴0<c <1.即p :0<c <1,∵c >0且c ≠1,∴非p :c >1.又∵f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,∴c ≤12.即q :0<c ≤12,∵c >0且c ≠1, ∴非q :c >12且c ≠1.又∵“p 或q ”为真,“p 且q ”为假, ∴p 真q 假或p 假q 真.①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1.②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅.综上所述,实数c 的取值范围是⎩⎨⎧⎭⎬⎫c |12<c <1.三、归纳总结 方法在握归纳1个规律——含逻辑联结词的命题的真假判断规律(1)p ∨q :p 、q 中有一个为真,则p ∨q 为真,即一真全真; (2)p ∧q :p 、q 中有一个为假,则p ∧q 为假,即一假即假; (3)非p :与p 的真假相反,即一真一假,真假相反.2种方法——含量词的命题的否定及真假判断方法 (1)全称命题真假的判断方法(见例2); (2)特称命题真假的判断方法(见例2);(3)含量词的命题的否定方法是“改量词,否结论”,即把全称量词与存在量词互换,然后否定原命题的结论.2个易错点——命题否定中的两个易错点 (1)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再写出命题的否定. (2)p 或q 的否定为:非p 且非q ;p 且q 的否定为:非p 或非q . 3.常见词语的否定形式正面词语 是 都是> 至少有一个 至多有一个 对任意x ∈A 使p (x )真 否定词语 不是 不都是 ≤一个也没有 至少有两个存在x 0∈A ,使p (x 0)假四、拓展延伸 能力升华例1、(2012·辽宁高考)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则非p 是( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0[解析] 题目中命题的意思是“对任意的x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0都成立”,要否定它,只要找到至少一组x 1,x 2,使得(f (x 2)-f (x 1))(x 2-x 1)<0即可,故命题“∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0”的否定是“∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0”.[答案] C变式练习1.命题“∃x 0∈R ,x 20-2x 0+1<0”的否定是( )A .∃x 0∈R ,x 20-2x 0+1≥0B .∃x 0∈R ,x 20-2x 0+1>0C .∀x ∈R ,x 2-2x +1≥0 D .∀x ∈R ,x 2-2x +1<0解析:选C 因为特称命题p :∃x 0∈A ,P (x 0),它的否定是非p :∀x ∈A ,非P (x ),所以命题“∃x 0∈R ,x 20-2x 0+1<0”的否定是“∀x ∈R ,x 2-2x +1≥0”.2.若命题p :∀x ∈⎝⎛⎭⎫-π2,π2,tan x >sin x ,则命题非p :( ) A .∃x 0∈⎝⎛⎭⎫-π2,π2,tan x 0≥sin x 0 B .∃x 0∈⎝⎛⎭⎫-π2,π2,tan x 0>sin x 0 C .∃x 0∈⎝⎛⎭⎫-π2,π2,tan x 0≤sin x 0 D .∃x 0∈⎝⎛⎭⎫-∞,-π2∪⎝⎛⎭⎫π2,+∞,tan x 0>sin x 0 解析:选C ∀x 的否定为∃x 0,>的否定为≤,所以命题非p 为∃x 0∈⎝⎛⎭⎫-π2,π2,tan x 0≤sin x 0. 五、课后作业 巩固提高一、选择题(本大题共6小题,每小题5分,共30分)1.(2013·长沙模拟)设p 、q 是两个命题,则“复合命题p 或q 为真,p 且q 为假”的充要条件是( ) A .p 、q 中至少有一个为真 B .p 、q 中至少有一个为假 C .p 、q 中有且只有一个为真 D .p 为真,q 为假解析:选C ∵p 或q 为真⇒p 、q 中至少有一个为真;p 且q 为假⇒p 、q 中至少有一个为假, ∴“命题p 或q 为真,p 且q 为假”⇒p 与q 一真一假. 而由C 选项⇒“命题p 或q 为真,p 且q 为假”. 2.下列四个命题中的真命题为( ) A .∃x 0∈Z,1<4x 0<3 B .∃x 0∈Z,5x 0+1=0C .∀x ∈R ,x 2-1=0 D .∀x ∈R ,x 2+x +2>0解析:选D 1<4x 0<3,14<x 0<34,这样的整数x 0不存在,故A 错误;5x 0+1=0,x 0=-15∉Z ,故B 错误;x 2-1=0,x =±1,故C 错误;对任意实数x ,都有x 2+x +2=⎝⎛⎭⎫x +122+74>0. 3.(2013·揭阳模拟)已知命题p :∃x 0∈R ,cos x 0=54;命题q :∀x ∈R ,x 2-x +1>0,则下列结论正确的是( )A .命题p ∧q 是真命题B .命题p ∧非q 是真命题C .命题非p ∧q 是真命题D .命题非p ∨非q 是假命题解析:选C 命题p 是假命题,命题q 是真命题, ∴p ∧q 是假命题,p ∧非q 是假命题,非p ∧q 是真命题,非q ∨非p 是真命题.4.已知命题p :∃x 0∈⎝⎛⎭⎫0,π2,sin x 0=12,则非p 为( ) A .∀x ∈⎝⎛⎭⎫0,π2,sin x =12 B .∀x ∈⎝⎛⎭⎫0,π2,sin x ≠12C .∃x 0∈⎝⎛⎭⎫0,π2,sin x 0≠12D .∃x 0∈⎝⎛⎭⎫0,π2,sin x 0>12解析:选B 依题意得,命题非p 应为:∀x ∈⎝⎛⎭⎫0,π2,sin x ≠12. 5.已知命题p :抛物线y =2x 2的准线方程为y =-12;命题q :若函数f (x +1)为偶函数,则f (x )关于x=1对称.则下列命题是真命题的是( )A .p ∧qB .p ∨(非q )C .(非p )∧(非q )D .p ∨q解析:选D 抛物线y =2x 2,即x 2=12y 的准线方程是y =-18;当函数f (x +1)为偶函数时,函数f (x +1)的图象关于直线x =0对称,函数f (x )的图象关于直线x =1对称(注:将函数f (x )的图象向左平移一个单位长度可得到函数f (x +1)的图象),因此命题p 是假命题,q 是真命题,p ∧q 、p ∨(非q )、(非p )∧(非q )都是假命题,p ∨q 是真命题.6.(2013·南昌模拟)下列命题正确的是( )A .已知p :1x +1>0,则非p :1x +1≤0B .在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,则a >b 是cos A <cos B 的充要条件C .命题p :对任意的x ∈R ,x 2+x +1>0,则非p :对任意的x ∈R ,x 2+x +1≤0D .存在实数x ∈R ,使sin x +cos x =π2成立解析:选B 对于A ,非p 应是x +1≤0,因此A 不正确;对于B ,在△ABC 中,a >b ⇔A >B ⇔cos A <cos B ,因此B 正确;对于C ,命题非p 应是∃x 0∈R ,x 20+x 0+1≤0,因此C 不正确;对于D ,注意到sin x +cos x =2sin ⎝⎛⎭⎫x +π4∈[-2, 2 ],且π2∉[-2, 2 ],因此不存在实数x ∈R ,使sin x +cos x =π2成立,D 不正确.二、填空题(本大题共3小题,每小题5分,共15分)7.命题“对任何x ∈R ,|x -2|+|x -4|>3”的否定是____________.解析:全称命题的否定为特称命题,所以该命题的否定为:∃x 0∈R ,|x 0-2|+|x 0-4|≤3. 答案:∃x 0∈R ,|x 0-2|+|x 0-4|≤38.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”、“p ∧q ”、“非p ”中是真命题的有________.解析:依题意p 假,q 真,所以p ∨q ,非p 为真.答案:p ∨q ,非p9.若命题“∀x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.解析:当a =0时,不等式显然成立;当a ≠0时,由题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,得-8≤a <0.综上,-8≤a ≤0.答案:[-8,0]三、解答题(本大题共3小题,每小题12分,共36分) 10.写出下列命题的否定,并判断真假. (1)q :∀x ∈R ,x 不是5x -12=0的根; (2)r :有些素数是奇数; (3)s :∃x 0∈R ,|x 0|>0.解:(1)非q :∃x 0∈R ,x 0是5x -12=0的根,真命题. (2)非r :每一个素数都不是奇数,假命题.(3)非s :∀x ∈R ,|x |≤0,假命题.11.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0,若“p 且q ”为真命题,求实数a 的取值范围.解:由“p 且q ”为真命题,则p ,q 都是真命题. p :x 2≥a 在[1,2]上恒成立,只需a ≤(x 2)min =1, 所以命题p :a ≤1;q :设f (x )=x 2+2ax +2-a ,存在x 0∈R 使f (x 0)=0, 只需Δ=4a 2-4(2-a )≥0,即a 2+a -2≥0⇒a ≥1或a ≤-2, 所以命题q :a ≥1或a ≤-2. 由⎩⎪⎨⎪⎧a ≤1,a ≥1或a ≤-2得a =1或a ≤-2 故实数a 的取值范围是a =1或a ≤-2.12.已知命题p :存在实数m ,使方程x 2+mx +1=0有两个不等的负根;命题q :存在实数m ,使方程4x 2+4(m -2)x +1=0无实根.若“p ∨q ”为真,“p ∧q ”为假,求m 的取值范围.解:存在实数m ,使方程x 2+mx +1=0有两个不等的负根,则⎩⎪⎨⎪⎧Δ=m 2-4>0,m >0,解得m >2,即m >2时,p 真.存在实数m ,使方程4x 2+4(m -2)x +1=0无实根, 则Δ=16(m -2)2-16=16(m 2-4m +3)<0, 解得1<m <3,即1<m <3时,q 真.因“p ∨q ”为真,所以命题p 、q 至少有一个为真, 又“p ∧q ”为假,所以命题p 、q 至少有一个为假,因此,命题p 、q 应为一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真. 故⎩⎪⎨⎪⎧ m >2,m ≤1或m ≥3,或⎩⎪⎨⎪⎧m ≤2,1<m <3, 解得m ≥3或1<m ≤2.。

第3节 全称量词与存在量词、逻辑联结词“且”“或”“非”


数学
反思归纳
判断含有逻辑联结词命题真假的方法:一是要注意明确简
单命题p、q的真假;二是要注意真值表的记忆与理解,正确判断含有逻
辑联结词命题的真假.
数学
【即时训练】 命题p:函数f(x)=x3-3x在区间(-1,1)内单调递减,命题q:
函数f(x)=|sin 2x|的最小正周期为π ,则下列命题为真命题的是(
全称命题
特称命题
对M中任意一个x,有p(x)成立
存在M中的一个x0,使p(x0)成立
数学
(3)全称命题和特称命题的否定 命题 任意x∈M,p(x) 存在x0∈M,p(x0) 命题的否定 存在x0∈M,﹁p(x0) . 任意x∈M,﹁p(x) .
数学
夯基自测
1.(2015 太原市模拟)下列命题中的假命题是( (A)任意 x∈R,e >0 (C)存在 x0∈R,sin x0=2
0
B
)
+
(B)存在 x0∈R+,| e x -1|≤x0+1
0
(C)任意的 x0∈R+,| e x -1|≤x0+1
0
(D)不存在 x0∈R ,| e x -1|≤x0+1
+
0
解析:全称命题的否定不但要否定结论,而且要对量词进行转换,故选B.
数学
3.(2015河北石家庄一模)命题p:若sin x>sin y,则x>y;命题q:x2+y2≥2xy, 下列命题为假命题的是( B ) (A)p或q (B)p且q (C)q (D)﹁p
解析:(2)对于 p1:当 a>1 时,y=ax-a-x 为增函数,当 0<a<1 时,y=ax-a-x 为减函 数,所以 p1 为假命题; 对于 p2:a2-ab+b2=(a1 3 b)2+ b2≥0,所以 p2 为假命题; 2 4

【数学】高考数学复习:集合与简易逻辑+简单的逻辑联结词、全称量词与存在量词

1.列举法和描述法各适合表示怎样的集合. 【提示】注意集合表示的列举法与描述法在形式 上的区别,列举法一般适合于有限集,而描述法 一般适合于无限集. 2.{∅}和∅是否相同?二者有何区别与联系? 【提示】{∅}表示以空集为元素的集合是单元素 集而∅表示空集,是不含任何元素的集合.集合{∅} 与空集∅的区别与联系;∅⊆{∅},∅∈{∅}.
答案:真
1.对“或”“且”“非”的理解 (1)“或”与日常生活中的用语“或”的意义不同.对于逻辑用语 “或”的理解我们可以借助于集合中的并集的概念:在 A∪B={x|x∈A,或x∈B}中的“或”是指“x∈A”与“x∈B”
中至少有一个成立,可以是“x∈A且x∉B”,也可以是
“x∉A且x∈B”,也可以是“x∈A且x∈B”,逻辑用语中的 “或”与并集中的“或”的含义是一样的.
(2)对“且”的理解,可以联想到集合中的交集的概念:在
A∩B={x|x∈A,且x∈B}中的“且”是指“x∈A”“x∈B”都要
满足的意思,即x既要属于集合A,又要属于集合B. (3)对“非”的理解,可以联想到集合中的补集的概念:若将 命题p对应集合P,则命题非p就对应着集合P在全集U中 的补集∁UP.对于非的理解,还可以从字意上来理解,
题型七:集合运算与解析几何
M {( x, y) y 16 x , y 0} 例7:已知 : N {( x, y) y x b} M 7

(1).已知: A
{( x, y) x y 1},
p或q为假,
答案:A
3.命题“有些负数满足不等式(1+x)(1-9x2)>0”用符号“∃”写
成特称命题为 ( )
答案:∃x∈R且x<0,(1+x)(1-9x2)>0

第一章 集合与常用逻辑用语1-2命题、量词、逻辑联结词


2
4
故 D 真. 答案:D



[例2] (文)已知命题p:∀x∈R,sinx≤1,则 ( ) A.綈p:∃x∈R,sinx≥1 B.綈p:∀x∈R,sinx≥1 C.綈p:∃x∈R,sinx>1 D.綈p:∀x∈R,sinx>1 解析:利用含有量词的命题否定形式知选C. 答案:C


二、填空题 5.(2010·安徽文)命题“存在x∈R,使得x2 +2x+5=0”的否定是____________. [答案] 对∀x∈R,都有x2+2x+5≠0.
D.4
π [解析] 函数 y=sin2x 的图象向右平移3个单位后, π 2π 所得函数为 y=sin2(x-3)=sin(2x- 3 ), ∴命题 P 是假命题, π π 又 y=sin(x+ )cos( -x) 6 3 π π π =sin(x+6)cos[2-(x+6)] π 1 1 π 2 =sin (x+ )= - cos(2x+ ), 6 2 2 3 2π ∴其最小正周期为 T= 2 =π.∴命题 Q 真.




点评:(1)命题的否定是否定命题的结 论.否命题既否定条件也否定结论. (2)全称命题的否定是存在性命题,存在性 命题的否定是全称命题. (3)“A或B”的否定綈(A∨B)为綈A且綈B, “A且B”的否定綈(A∧B)为綈A或綈B.



[例5] 给出以下四个命题: ①若ab≤0,则a≤0或b≤0; ②若a>b,则am2>bm2; ③在△ABC中,若sinA=sinB,则A=B; ④在一元二次方程ax2+bx+c=0中,若b2 -4ac<0,则方程有实数根.其中原命题、 逆命题、否命题、逆否命题全都是真命题的 是 ( ) A.① B.② C.③ D.④
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国名校高中数学优质专题讲练汇编(附详解)
训练目标
(1)逻辑联结词的含义及应用;(2)量词及全称命题、特称命题的概念.
训练题型 (1)含逻辑联结词的命题的真假判断;(2)全称命题、特称命题的真假判断与否定;(3)和命题有关的求参数范围问题.
解题策略 (1)判断含逻辑联结词命题的真假,要先判断每个简单命题的真假;(2)含一个量词的命题的否定规律:改量词,否判断词;(3)和命题有关的参数范围问题,应
先求出每个简单命题为真时参数的范围,再根据每个命题的真假情况求解.
一、选择题
1.(优质试题·浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是( )
A.∀n∈N*,f(n)∉N*且f(n)>n
B.∀n∈N*,f(n)∉N*或f(n)>n
C.∃n0∈N*,f(n0)∉N*且f(n0)>n0
D.∃n0∈N*,f(n0)∉N*或f(n0)>n0
2.(优质试题·肇庆统测)设a,b,c是非零向量,已知命题p:若a·b=0,则a⊥b;命题q:
若a∥b,b∥c,则a∥c.则下列命题中假命题是( )
A.p∧q B.p∨q
C.(綈p)∨q D.(綈p)∨(綈q)
3.若“∃x∈[12,2],使得2x2-λx+1<0成立”是假命题,则实数λ的取值范围为( )
A.(-∞,22] B.[22,3]
C.[-22,3] D.λ=3
4.已知命题p:∀x∈[1,2],x2-a≥0,命题q:∃x∈R,x2+2ax+2-a=0,若“p且q”为真
命题,则( )
A.a=1或a≤-2 B.a≤-2或1≤a≤2
C.a≥1 D.-2≤a≤1
全国名校高中数学优质专题讲练汇编(附详解)
5.已知命题p:∃x0∈R,使sin x0=52;命题q:∀x∈R,都有x2+x+1>0.给出下列结论:
①命题“p∧q”是真命题;②命题“p∧(綈q)”是假命题;③命题“(綈p)∨q”是真命题;
④命题“(綈p)∨(綈q)”是假命题.其中正确的命题是( )
A.②③ B.②④
C.③④ D.①②③
6.(优质试题·临夏期中)下列结论错误的是( )
A.命题“若p,则q”与命题“若綈q,则綈p”互为逆否命题
B.命题p:∀x∈[0,1],ex≥1,命题q:∃x∈R,x2+x+1<0,则p∨q为真
C.若p∨q为假命题,则p,q均为假命题
D.“若am27.(优质试题·葫芦岛期中)已知命题P:不等式lg[x(1-x)+1]>0的解集为{x|0在△ABC中,“A>B”是“cos2A2+π42



B

2+π4
”成立的必要不充分条件,则( )

A.P真Q假 B.P∧Q为真
C.P∨Q为假 D.P假Q真
8.(优质试题·怀仁期中)已知命题p:∀x∈[-1,2],函数f(x)=x2-x的值大于0.若p∨q是真
命题,则命题q可以是( )
A.∃x∈(-1,1),使得cos x<12
B.“-3C.直线x=π6是曲线f(x)=3sin 2x+cos 2x的一条对称轴
D.若x∈(0,2),则在曲线f(x)=ex(x-2)上任意一点处的切线的斜率不小于-1
二、填空题
9.命题p的否定是“对所有正数x,x>x+1”,则命题p可写为________________________.
10.给出以下命题:①∀x∈R,|x|>x;②∃α∈R,sin 3α=3sin α;③∀x∈R,x>sin x;

④∃x∈(0,+∞),(12)x<(13)x,其中正确命题的序号有________.
11.(优质试题·石家庄质检)已知命题p:x2-3x-4≤0,命题q:x2-6x+9-m
2
≤0,若
全国名校高中数学优质专题讲练汇编(附详解)
綈q是綈p的充分不必要条件,则实数m的取值范围是________________.
12.设命题p:函数f(x)=lg(ax2-4x+a)的定义域为R;命题q:不等式2x2+x>2+ax在x
∈(-∞,-1)上恒成立,如果命题“p∨q”为真命题,命题“p∧q”为假命题,则实数a的取值
范围为__________.
全国名校高中数学优质专题讲练汇编(附详解)
答案精析

1.D [由全称命题与特称命题之间的互化关系知选D.]
2.D [对于命题p,由平面向量数量积a·b=0易得a⊥b,则命题p为真命题;对于命题q,
∵a,b,c为非零向量,则q为真命题,
故(綈p)∨(綈q)为假命题,故选D.]
3.A [设命题p:∃x∈[12,2],使得2x2-λx+1<0,由于命题p为假命题,所以綈p为真命

题,即∀x∈[12,2],2x2-λx+1≥0为真命题,即λ≤2x2+1x=2x+1x在区间[12,2]上恒成立,所
以只需满足λ≤(2x+1x)min(x∈[12,2])即可,2x+1x≥22x·1x=22,当且仅当2x=1x,即x=
2
2

∈[12,2]时等号成立,所以λ≤22,故选A.]

4.A [命题p:∀x∈[1,2],x2-a≥0真,则a≤1.
命题q:∃x∈R,x2+2ax+2-a=0真,
则Δ=4a2-4(2-a)≥0,a≥1或a≤-2,
又p且q为真命题,
所以a=1或a≤-2.故选A.]
5.A [∵52>1,∴命题p是假命题,又∵x2+x+1=(x+12)2+34≥34>0,∴命题q是真命题,
由命题真假的真值表可以判断②③正确.]
6.D [命题“若p,则q”的逆否命题是“若綈q,则綈p”,所以命题“若p,则q”与命题“若
綈q,则綈p”互为逆否命题,故A正确;命题p:∀x∈[0,1],e
x
≥1,为真命题,命题q:∃x

∈R,x2+x+1<0,为假命题,则p∨q为真,故B正确;若p∨q为假命题,则p,q均为
假命题,故C正确;“若am2时,由a全国名校高中数学优质专题讲练汇编(附详解)
7.A [由命题P:不等式lg[x(1-x)+1]>0,可知x(1-x)+1>1,
∴0由命题Q知,若cos2A2+π4即sin A>sin B,∴A>B;
反之,在三角形中,若A>B,
则必有sin A>sin B,
即cos2A2+π48.C [对于命题p:函数f(x)=x2-x=x-122-14,则函数f(x)在-1,12上单调递减,在
12,2上单调递增,∴当x=12时,取得最小值,f

1
2
=-14<0,因此命题p是假命题.

若p∨q是真命题,则命题q必须是真命题.∀x∈(-1,1),cos x∈(cos 1,1],而cos 1>cos π3=
1
2
,因此A是假命题;函数f(x)=x+log2x+m在区间12,2上单调递增,若函数f(x)在此区

间上有零点,则f12·f(2)=12-1+m(2+1+m)<0,解得-3f(x)=x+log2x+m在区间12,2上有零点”的充分不必要条件,因此B是假命题;
f(x)=3sin 2x+cos 2x=2sin2x+π6,
当x=π6时,sin2×π6+π6=sin π2=1,因此直线x=π6是曲线f(x)的一条对称轴,是真命题;曲
线f(x)=ex(x-2),f′(x)=ex+ex(x-2)=ex(x-1),当x∈(0,2)时,f′(x)>f′(0)=-1,因此D是
假命题.]
9.∃x0∈(0,+∞),x0≤x0+1
解析 因为p是綈p的否定,所以只需将全称命题变为特称命题,再对结论否定即可.
10.②
解析 当x≥0时,|x|=x,①错;当α=0时,sin 3α=3sin α,②正确;当x=-π2时,x③错;根据指数函数的图象可以判断,当x∈(0,+∞)时,(12)x>(13)x,④错.故正确命题的

相关文档
最新文档