第六节 定积分在几何上的应用
定积分在几何中的应用

变式 1:变速直线运动的物体速度为 v(t ) 1 t 2 ,ห้องสมุดไป่ตู้初 始位置为 x0 1, 求它在前 2 s 内所走的位移及 2 s 末 所在的位置.
知识要点2
如果物体在变力 F ( x) 的作用下做直线运动,并且物 体沿着与 F ( x) 相同方向从 x a 移动到 x b(a b), 则变力 F ( x) 所作的功 b W= F ( x )dx .
a
例 2 在弹性限度内,将一弹簧从平衡位置拉到离平 衡位置 lm 处,求克服弹力所作的功.
o
x x
定积分在几何中的应用
例 3:直线 y=kx 分抛物线 y=x-x 与 x 轴 所围成图形为面积相等的两部分, 求 k 的值.
y
2
x
O
定积分在物理中的应用 如图:以 x 为积分变量,积分区间为 [a , b].
知识要点1
作变速直线运动的物体在时间区间 a , b 上所经过的 路程 S ,等于其速度函数 v v(t )(v(t ) 0) 在时间区 b 间 a , b 上的 定积分 ,即 S v ( t )dt
a
例 1 已知一辆汽车的速度——时间的曲线如图所示 30
求(1)汽车 10 s 行驶的路程; (2)汽车 50 s 行驶的路程; (3)汽车 1 min 行驶的路程.
A B
P
本节 知识 引入 本节 目的 与要 求
在区间 [a , b] 内任取一小区间[ x , x dx ], 功的微元数 dW F ( x )dx 所以
o a
x
x dx
F ( x)
b
x
本节 重点 与难 点
本节 复习 指导
1.7.1定积分在几何中的应用PPT课件

y sin x
S1 S2
S S1 S2
O
S1
4 cos x dx
0
4 sin x dx
0
S2
2
sin
x
dx
2
cos
x
dx
4
4
x
42
有其他 方法吗?
S1=S2
练习
练习 1:计算由曲线 y2 2x和直线 y x 4所围成的图形
的面积.
解: 两曲线的交点
y2 2x
(2,2), (8,4).
S S曲梯形OABC - S曲梯形OABD
y
y2 x
B
C y x2
D
o
Ax
1 xdx 1 x2dx
0
1
S 0 (
0
x - x2 )dx
21 3 x2
x3 1
21
1.
3
0
3 0
3
3
3
归纳
求由曲线围成的平面图形面积的解题步骤:
(1)画草图,求出曲线的交点坐标 (2)将曲边形面积转化为曲边梯形面积 (3)确定被积函数及积分区间 (4)计算定积分,求出面积
)dx
2
b 2
h (
4h 3b2
x
3
)
b
2 0
2 bh 3
1.微积分基本定理---------牛顿-莱布尼茨公式
b
f (x)dx
a
b a
F
'
(
x)dx
F
(
x)
|ba
F
(b)
F
(a)
2.定积分的几何意义:
定积分 b f ( x)dx 的几何意义: a 它是介于 x 轴、函数 f ( x) 的图象及两条直线
定积分的几何应用

定积分的几何应用定积分是微积分中的重要概念,它有着广泛的应用。
其中之一就是在几何学中的应用。
本文将探讨定积分在几何学中的具体应用,并解释其背后的原理和意义。
一、平面图形的面积通过定积分,我们可以计算出复杂平面图形的面积。
假设有一个曲线方程y=f(x),该曲线与x轴所围成的图形为A。
我们可以将A分解成无限个极小的矩形条,然后通过求和的方式来逼近A的面积。
具体而言,我们可以将横轴x划分为n个小区间,每个小区间的宽度为Δx。
然后,在每个小区间中,选择一个x值作为代表点,记作xi。
根据代表点xi和函数f(x)的值,我们可以计算出相应小矩形的高度为f(xi)。
由于每个小矩形的宽度Δx非常小,因此在计算总面积时,可以通过求和的方式逼近。
即可以得到如下的定积分表达式:A = ∫[a,b] f(x) dx其中[a,b]表示x的取值范围。
通过对上述定积分进行求解,即可得到图形A的面积。
二、曲线的弧长除了计算平面图形的面积外,定积分还可以用来计算曲线的弧长。
假设有一个曲线L,其方程为y=f(x)。
我们希望计算出曲线L的弧长。
与计算面积类似,我们同样可以将曲线L分解为无限个极小的线段,然后通过求和的方式来逼近曲线L的弧长。
具体而言,我们可以将横轴x划分为n个小区间,每个小区间的宽度为Δx。
然后,在每个小区间中,选择一个x值作为代表点,记作xi。
根据代表点xi和函数f(x)的值,我们可以计算出相应线段的长度为Δs。
同样地,由于每个小线段的长度Δs非常小,因此在计算总弧长时,可以通过求和的方式逼近。
即可以得到如下的定积分表达式:L = ∫[a,b] √(1 + [f'(x)]^2) dx其中[a,b]表示x的取值范围,f'(x)表示函数f(x)的导数。
通过对上述定积分进行求解,即可得到曲线L的弧长。
三、体积与质量除了平面图形的面积和曲线的弧长外,定积分还可以用来计算体积和质量。
当我们需要计算一个曲线绕某个轴旋转一周所形成的立体的体积时,定积分就派上用场了。
定积分在几何上的应用

定积分在几何上的应用
定积分就是求函数f(X)在区间[a,b]中图线下包围的面积。
即由y=0,x=a,x=b,y=f(X)所围成图形的面积。
这个图形称为曲边梯形,特例是曲边三角形。
绕x轴旋转体体积公式是V=π∫[a,b]f(x)^2dx。
绕y轴旋转体积公式同理,将x,y互换即可,
V=π∫[a,b]φ(y)^2dy。
或者是V=2π∫[a,b]y*f(y)dy,也是绕x轴旋转体积。
绕x轴旋转体的侧面积为A=2π∫[a,b]y*(1+y'^2)^0.5dx,其中y'^2是y对x的导数的平方。
若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。
一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
几何,就是研究空间结构及性质的一门学科。
它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。
几何学发展历史悠长,内容丰富。
它和代数、分析、数论等等关系极其密切。
第五章 定积分的几何应用

) ( r r
d
例 5
求双纽线 a cos 2 所围平面图形
2 2
的面积.
解 由对称性知总面 积=4倍第一象限 部分面积
A 4A1
y x
2 a 2 cos 2
A 40
4
1 2 a cos 2d a 2 . 2
例 6 求心形线r a(1 cos )所围平面图形的 面积 (a 0).
小结
求在直角坐标系下、参数方程形式 下、极坐标系下平面图形的面积. 求旋转体的体积
(注意恰当的选择积分变量有助于简化 积分运算)
思考题
1. 设 曲 线 y f ( x ) 过 原 点 及 点( 2,3) , 且 f ( x ) 为单调函数,并具有连续导数,今在曲线 上任取一点作两坐标轴的平行线,其中一条平 行线与 x 轴和曲线 y f ( x ) 围成的面积是另一 条平行线与 y 轴和曲线 y f ( x ) 围成的面积的 两倍,求曲线方程.
练习题答案 32 一、1、1; 2、 ; 3、2; 3 1 1 4、y ; 5、 e 2 ; 6、 . e 2 3 7 2 二、1、 ln 2 ; 2、 ; 3、 a ; 2 6 5 3 2 2 4、3a ; 5、 ; 6、 a . 2 4 9 e 8 2 三、 . 四、 . 五、 a . 4 2 3
其上相应的窄条左、右曲边分别为 1 2 x y ,x y4 2 4 1 2 A ( y 4 y )dy 18 2 2
由此可见在面积计算中应根据平面区域的具体 特征恰当地选择积分变量找出相应的面积微元可使 计算简化
上述问题的一般情况是
d
y
x ( y)
定积分在几何计算中的应用

定积分在几何计算中的应用定积分是高等数学中的一个重要概念,它在几何计算中有着广泛的应用。
在几何学中,定积分可以用来计算曲线的长度、曲面的面积、体积等等。
下面我们就来看看定积分在几何计算中的应用。
定积分可以用来计算曲线的长度。
对于一条曲线,我们可以将其分成无数个小段,然后对每个小段的长度进行求和,最终得到整条曲线的长度。
这个过程可以用定积分来表示,即:L = ∫a^b √(1+(dy/dx)^2) dx其中,a和b分别表示曲线的起点和终点,dy/dx表示曲线在每个点的斜率。
这个式子的意义是,将曲线分成无数个小段,每个小段的长度为√(1+(dy/dx)^2) dx,然后对所有小段的长度进行求和,最终得到整条曲线的长度。
定积分可以用来计算曲面的面积。
对于一个曲面,我们可以将其分成无数个小面元,然后对每个小面元的面积进行求和,最终得到整个曲面的面积。
这个过程可以用定积分来表示,即:S = ∫∫D √(1+(∂z/∂x)^2+(∂z/∂y)^2) dxdy其中,D表示曲面的投影区域,z表示曲面在每个点的高度,∂z/∂x和∂z/∂y分别表示曲面在每个点在x和y方向上的斜率。
这个式子的意义是,将曲面分成无数个小面元,每个小面元的面积为√(1+(∂z/∂x)^2+(∂z/∂y)^2) dxdy,然后对所有小面元的面积进行求和,最终得到整个曲面的面积。
定积分可以用来计算体积。
对于一个立体图形,我们可以将其分成无数个小体元,然后对每个小体元的体积进行求和,最终得到整个立体图形的体积。
这个过程可以用定积分来表示,即:V = ∫∫∫E dxdydz其中,E表示立体图形的空间区域。
这个式子的意义是,将立体图形分成无数个小体元,每个小体元的体积为dxdydz,然后对所有小体元的体积进行求和,最终得到整个立体图形的体积。
定积分在几何计算中有着广泛的应用,可以用来计算曲线的长度、曲面的面积、体积等等。
这些应用不仅在数学中有着重要的意义,也在实际生活中有着广泛的应用,例如在建筑设计、工程计算等领域中都有着重要的作用。
定积分在几何上的应用
1.7.1 定积分在几何中 的应用
知识链接
1.微积分基本定理: [其中F´(x)=f(x)]
b a
f
(x)dx
F ( x)
|ba
F (b)
F (a)
b
2.定积分 f (x)dx的几何意义: a
当
f(x)0
时,积分
b
f
(x)dx
a
在几何上表示由 y=f (x)、
18
法2:s
4
[(4
2
y)
1 2
y2 ]dy
(4 y
1 2
y2
1 6
y3)
|42
18
课堂小结
求在直角坐标系下平面图形的面积步骤: 1. 作图象; 2. 求交点的横坐标,定出积分上、下限;
3. 确定被积函数,用定积分表示所求的面积, 特别注意分清被积函数的上、下位置;
1
1
x
( x3 x) 2 ( x3 x) 1 8
3
13
1 3
练习
练习 2:计算由曲线 y x3 6x 和 y x2 所围成的图形的面积.
x3
1
2
1
1 .
3
或S
1
(
0
x
-
3 0
3
3
x2
)dx
(
2
x
3 2
3
x3
1
)
1.
0
3 33
0
求两曲线围成的平面图形的面积的一般步骤:
(1)作出示意图;(弄清相对位置关系) (2)求交点坐标;(确定积分的上限,下限) (3)确定积分变量及被积函数; (4)列式求解.
定积分在几何上的应用 主要是平面几何、立体几何和弧长
定积分在几何上的应用非常广泛,主要包括平面几何、立体几何和弧长三个方面。
在平面几何中,定积分可以用来求解面积。
例如,如果有一个曲线y=f(x),那么这条曲线与x轴所夹的面积可以通过对f(x)在x的某个区间[a,b]上进行定积分来求解。
此外,定积分也可以用来求解平面图形的面积,比如矩形、圆形、椭圆形等。
在立体几何中,定积分可以用来求解体积。
例如,如果有一个旋转体,它的基圆半径为r,高为h,那么这个旋转体的体积可以通过对基圆的周长进行定积分来求解。
此外,定积分也可以用来求解其他形状的体积,比如球体、圆锥体、圆柱体等。
在弧长方面,定积分也有应用。
例如,如果有一条曲线的长度为s,那么这条曲线的长度可以通过对曲线的斜率进行定积分来求解。
此外,定积分也可以用来求解其他形状的长度,比如圆弧、摆线等。
总的来说,定积分在几何上的应用非常广泛,它可以用来解决各种与几何量有关的计算问题。
定积分在几何中的应用 课件
类型一 求不分割型图形的面积
例1 试求曲线y=x2-2x+3与y=x+3所围成的图形的面积. 解 如图所示,所求面积为图中阴影部分的面积. 由yy==xx+2-32,x+3, 解得 x1=0,x2=3. 从而所求图形的面积为:S=ʃ30[(x+3)-(x2-2x+3)]dx =ʃ30(-x2+3x)dx= -13x3+32x230=92.
类型二 分割型图形面积的求解 例 2 求由曲线 y= x,y=2-x,y=-13x 所围成图形的面积.
类型三 定积分的综合应用
例3 在曲线y=x2(x≥0)上某一点A处作一切线使之与曲线以及x轴所围 成的面积为 1 ,试求:
12 切点A的坐标以及在切点A处的切线方程.
定积分在几何中的应用
知识点 定积分在几何中的应用
思考 怎样利用定积分求不分割型图形的面积? 答 求由曲线围成的面积,要根据图形,确定积分上下限,用定积分来 表示面积,然后计算定积分即可. 1.当x∈[a,b]时,若f(x)>0,由直线x=a,x=b(a≠b),y=0和曲线y=f(x) 所围成的曲边梯形的面积S=_ʃba_f_(x_)_d_x_.
2.当x∈[a,b]时,若f(x)<0,由直线x=a,x=b(a≠b),y=0和曲线y=f(x) 所围成的曲边梯形的面积Sபைடு நூலகம்-__ʃ_baf_(_x)_d_x_.
答案
3.当x∈[a,b]时,若f(x)>g(x)>0,由直线x=a,x=b(a≠b)和曲线y=f(x), y=g(x)围成的平面图形的面积S=______ʃ_ba[_f_(x_)_-__g_(.x()如]d图x )
( 人教A版)定积分在几何中的应用课件 (共36张PPT)
a
b
D.cf(x)dx-bf(x)dx
b
a
解析:由图可知,x 轴上方阴影部分的面积为cf(x)dx,x 轴下方阴影部分的面 b
积为-bf(x)dx,故 D 正确. a
答案:D
2.图中阴影部分的面积等于________.
解析:根据积分应用可知所求面积为13x2dx=x3|10=1. 0
答案:1
怎样求由多条曲线围成的较为复杂的图形的面积? 由两条或两条以上的曲线围成的较为复杂的图形,在不同的区段内位于上方 和下方的函数有所变化,通过解方程组求出曲线的不同的交点坐标,可以将 积分区间进行细化区段,然后根据图象对各个区段分别求面积进而求和,在 每个区段上被积函数均是由上减下;若积分变量选取 x 运算较为复杂,可以 选 y 为积分变量,这时 y 为自变量,x 是函数,故应把函数表达式变形成用 y 表示 x 的形式.
解方程组yy= =2xx2,,
得xy==00,,
x=2, y=4,
解方程组yy= =xx, 2,
得xy==00,,
x=1, y=1.
所以所求面积为 S=1(2x-x)dx+2(2x-x2)dx
0
1
=1xdx+2(2x-x2)dx
0
1
=12x210 +x2-13x321 =76.
∴此平面图形的面积为76.
课时作业
[自主梳理]
一、利用定积分求曲边多边形的面积
1.在利用定积分求平面图形的面积时,一般要先画出它的草图,再借助图形直观地
确定出 被积函数及积分的上、下限 .
2.若一平面图形是由 y=f1(x),y=f2(x)及 x=a,x=b(a<b)所围成,并且在[a,b]上
f1(x)≤f2(x),则该平面图形的面积 S=