人教版八年级数学导学案有理数乘法的运算律及运用

合集下载

有理数的乘法第2课时 有理数的乘法运算律

有理数的乘法第2课时 有理数的乘法运算律
A.加法交换律 B.乘法交换律 C.乘法结合律 D.乘法对加法的分配律
3.运用分配律计算(-3)×(-8+2-3),有下列四种不同的结果,其中正
确的是(
)
D
A.-3×8-3×2-3×3
B.-3×(-8)-3×2-3×3
C.(-3)×(-8)+3×2-3×3
D.(-3)×(-8)-3×2+3×3
4.(天水中考)下列运算过程中,错误的个数是( B ) ①(3-412)×2=3-412×2; ②-4×(-7)×(-125)=-(4×125×7); ③[3×(-2)]×(-5)=3×2×5. A.0 个 B.1 个 C.2 个 D.3 个
12.下列计算(-55)×99+(-44)×99-99正确的是(
C)
A.原式=99×(-55-44)=-9801
B.原式=99×(-55-44+1)=-9702
C.原式=99×(-55-44-1)=-9900
D.原式=99×(-55-44-99)=-19602
13.计算: (1)1.25×(-2801)×(-8)=____8_21______;
5.算式(16-12-13)×24 的值为( A.-16 B.16 C.24 D.-24
A)
6.计算 25×(-4215)时,可转化为下列算式:
①25×(-4+215);②-25×(4+215);
③-25×(4-215);④25×(-4-215). 其中正确的个数是( B ) A.1 个 B.2 个 C.3 个 D.4 个
方法技能: 1.应用乘法的交换律和结合律时,要连同该项的符号一起“换位”. 2.可以考虑从正、逆两方面来运用乘法对加法的分配律. 易错提示: 运用乘法分配律时,要把括号外面的因数连同符号与括号内的每一项相 乘.

最新人教版八年级数学上册《整式的乘法》导学案2

最新人教版八年级数学上册《整式的乘法》导学案2

最新人教版八年级数学上册《整式的乘法》导学案学习目标:1、理解单项式乘多项式、多项式乘多项式的乘法法则的探究过程2、能准确进行多项式的计算3、能综合应用整式的乘法法则进行变式训练重点:掌握单项式乘多项式、多项式乘多项式的乘法法则,能进行多项式的计算难点:能综合应用整式的乘法法则进行变式训练一、自学指导:(一)复习回顾:1、乘法的分配律_______2、单项式乘法法则是什么?(二)自主探究:1、怎样计算p (a+b+c )?计算过程中用到哪些运算律?2、计算:3a (2b-5c ) (-6a+b )(-3x)3、怎样计算(a+b )(p+q )?计算过程中用到哪些运算律?4、计算:(3x-2)(4x+1) (x-5)(x+6)二.合作探究,生成总结(先自己做,再小组讨论,仍解决不了的问题写在纸条上交给老师)(一)、整式乘法法则的探究根据自主练习总结乘法法则单项式乘以多项式,单项式乘以多项式的法则___________________________ 多项式乘以多项式,多项式乘以多项式的法则___________________________(二)例题讲解练习1、讲解例5、例6例题:2、练习:(1) -6x(2x-3y)⑵ (3x-2)(4x+1)三、达标练习1、计算(1) –6x(2x-3y) (2)、5x(3x )322+-x(3) (x-2y)(5a-3b) (4) 、(3x-2)(4x+1)(5)、(x-5)(x+6) (6)、(8a+5b)(3a-2b)、1 2、先化简再求值:y(x+y)+(x+y)(x-y)-x2, 其中x=-2,y=2 3、已知A=(4a+b)(a-5b) B=2a(2a-10b), 求 A-B。

有理数的乘方的导入

有理数的乘方的导入

课题: 1.5.1有理数的乘方(2) 序号:15学习目标:1、知识和技能:掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算.2、过程和方法:通过例题学习,发展学生观察、归纳猜想、推理等能力.3、情感、态度、价值观:体验获得成功的感受、增加学习自信心学习重点:能正确地进行有理数的加、减、乘、除、乘方的混合运算学习难点:灵活应用运算律,使计算简单、准确.导学方法:课时:1个课时导学过程一、课前预习:阅读教材,完成下列问题:《导学案》教材导读、自主测评二、课堂导学:1、导入1)我们已经学习了哪几种有理数的运算?2)有理数的乘方法则是什么?2、出示任务自主学习阅读教材,完成下列问题:计算(1)-8-3×(-1)7-(-1)8 (2)3 +50÷22×(-)-1(3)-32-(-2)3 ×(-4)÷(4)(-2)2 +(-9)÷(-1)(5)-0.52+4-(6)(-1.25)××8-9÷(1)÷23、合作探究《导学案》难点探究三、展示与反馈:学生展示答案,教师点评指导四、学习小结:在进行有理数混合运算时,一般按运算顺序进行,但有时根据运算律会使运算更简便,因此要在遵守运算顺序外,还要注意灵活运用运算律,使运算快捷、准确.五、达标检测1、课本练习2、《导学案》展题设计课后作业:1、《导学案》深化拓展2、习题1.5第3题板书设计:课后反思:一、素质教育目标(一)知识教学点1.理解有理数乘方的意义.2.掌握有理数乘方的运算.(二)能力训练点1.培养学生观察、分析、比较、归纳、概括的能力.2.渗透转化思想.(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.(四)美育渗透点把记成,显示了乘方符号的简洁美.二、学法引导1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.2.学生学法:探索的性质→练习巩固三、重点、难点、疑点及解决办法1.重点:运算.2.难点:运算的符号法则.3.疑点:①乘方和幂的区别.②与的区别.四、课时安排1课时五、教具学具准备投影仪、自制胶片.六、师生互动活动设计教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.七、教学步骤(一)创设情境,导入新课师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?生:可以记作,读作的四次方.师:呢?生:可以记作,读作的五次方.师:(为正整数)呢?生:可以记作,读作的次方.师:很好!把个相乘,记作,既简单又明确.【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.(二)探索新知,讲授新课1.求个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.巩固练习(出示投影1)(1)在中,底数是__________,指数是___________,读作__________或读作___________;(2)在中,-2是__________,4是__________,读作__________或读作__________;(3)在中,底数是_________,指数是__________,读作__________;(4)5,底数是___________,指数是_____________.【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.生:到目前为止,已经学习过五种运算,它们是:运算:加、减、乘、除、乘方;运算结果:和、差、积、商、幂;教师对学生的回答给予评价并鼓励.【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.2.练习:(出示投影2)计算:1.(1)2,(2),(3),(4).2.(1),,,.(2)-2,,.3.(1)0,(2),(3),(4).学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.师:请同学思考一个问题,任何一个数的偶次幂是什么数?生:任何一个数的偶次幂是非负数.师:你能把上述结论用数学符号表示吗?生:(1)当时,(为正整数);(2)当(3)当时,(为正整数);(4)(为正整数);(为正整数);(为正整数,为有理数).【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.2.已知一个数,会求出它的正整数指数幂,渗透转化思想.3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算.教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n 叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂.说明:(1)举例94来说明概念及读法.(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.(4)乘方是一种运算,幂是乘方运算的结果.(三)应用迁移,巩固提高【例1】(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值.(2)注意(-2)4与-24的区别.根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.【例2】计算:(1)()3;(2)(-)3;(3)(-)4; (4)-;(5)-22×(-3)2; (6)-22+(-3)2.(四)总结反思,拓展升华1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.乘方的含义:(1)表示一种运算;(2)表示运算的结果.乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂.乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.注意(-a)n与-an及()n与的区别和联系.(五)课堂跟踪反馈1.课本P42练习第1、2题.2.补充练习(1)在(-2)6中,指数为,底数为.?(2)在-26中,指数为,底数为.?(3)若a2=16,则a=.?(4)平方等于本身的数是,立方等于本身的数是.?(5)下列说法中正确的是()A.平方得9的数是3B.平方得-9的数是-3C.一个数的平方只能是正数D.一个数的平方不能是负数(6)下列各组数中,不相等的是( )A.(-3)2与-32B.(-3)2与32C.(-2)3与-23D.|2|3与|-23|(7)下列各式中计算不正确的是()A.(-1)2003=-1B.-12002=1C.(-1)2n=1(n为正整数)D.(-1)2n+1=-1(n为正整数)(8)下列各数表示正数的是()A.|a+1|B.(a-1)2C.-(-a)D.||第2课时有理数的混合运算教学目标:1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算.教学难点:有理数的混合运算.教学过程:一、有理数的混合运算顺序:1.先乘方,再乘除,最后加减.2.同级运算,从左到右进行.3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【例1】计算:(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);(2)1-×[3×(-)2-(-1)4]+÷(-)3.强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值.【例2】观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.二、课堂练习1.计算:(1)|-|2+(-1)101-×(0.5-)÷;(2)1÷(1)×(-)÷(-12);(3)(-2)3+3×(-1)2-(-1)4;(4)[2-(-)3]-(-)+(-)×(-1)2;(5)5÷[-(2-2)]×6.2.若|x+2|+(y-3)2=0,求的值.3.已知A=a+a2+a3+…+a2004,若a=1,则A等于多少?若a=-1,则A等于多少?三、课时小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.《小数乘整数教学设计人教版》:小数乘整数教学设计人教版第1篇教学内容:人教版第九册第一单元《小数乘整数》第一课时,做一做。

乘法运算律教案5篇

乘法运算律教案5篇

乘法运算律教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、述职报告、合同协议、演讲致辞、条据文书、心得体会、策划方案、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work summaries, job reports, contract agreements, speeches, documents, insights, planning plans, teaching materials, other sample essays, and more. If you want to learn about different sample formats and writing methods, please stay tuned!乘法运算律教案5篇教案在制定时需要对教学过程进行细致的分析和评估,增强他们的教学反思能力,在教案的撰写过程中需要教师对教学内容进行深入的研究和理解,以下是本店铺精心为您推荐的乘法运算律教案5篇,供大家参考。

有理数的乘法运算律

有理数的乘法运算律
年级:七年级 学科名称:数学 有理数的乘法
授课学校: 授课教师:
有理数乘法运算律:
有理数乘法交换律:两个有理数相乘,交换因 数的位置,积不变。
字母表示法:a×b=b×a
有理数乘法结合律:三个有理数相乘,先把前 两个数相乘,或者先把后两个数相乘,积不变。
字母表示法: (a×b)×c=a×(b×c)
有理数乘法分配律:一个有理数与两个有理 数的和相乘,等于把这个数分别与这两个数 相乘,再把积相加。
4 24
4
解:原式 ( 1) (5 1) ( 1)3.5 ( 1) 2
4 24
4
( 1)(5 1 3.5 2) 42
10 4
0
你学会了吗?
(100)1 (100)1(100)5
2
3
6
巩固练习:用简便方法计算
(1).(2) (7) (5) ( 1) 7
(2).( 1 1 1 ) (12) 234
字母表示法:a×(b+c)=a×b+a×c
例题
例1、计算: 5 3
(1) ( - + )]×(-24)
68
5 6Βιβλιοθήκη (2)(-7)×(- 4 )× 9 × 1
3
4 21
看谁做的对:
(1) 128(1 1 1) 428
(2) (36)(1 1 1) 968
脑筋急转弯
计算: ( 1)(5 1) ( 1)3.5 ( 1) 2
(3).(84) 302 63 302 (20) 302
怎样简便怎样做:
(1)(-1002)×17=(-1000-2)×17=?
(2)
18 9 19
×15=(10-1/19)×15=?

1.8多个有理数相乘及乘法的运算律(1)

1.8多个有理数相乘及乘法的运算律(1)
2、会在乘法运算中熟练地运用乘法的交 换律、结合律以及分配律,使计算简便。
自主学习
1、多个有理数相乘:
(1)计算: 1×1×1×(-1)= -1 1×1×(-1)×(-1)= 1 1×(-1)×(-1)×(-1)= -1 (-1)×(-1)×(-1)×(-1)= 1
(2)通过上面计算结果的正负,发现积的符 号由 负因数的个数 确定。
自主学习 2 乘法的运算律
乘法运算律有几个?分别是什么?
乘法交换律 乘法结合律 乘法分配律
自主学习
☺ 计算
☺ (1)(-4)×8= -32
8×(-4)= -32

(-5)×(-7)= 35
(-7)×(-5)= 35
☺ (2)[(-3)×2]×(-5)= 30

(-3)×[2×(-5)]= 30
1
☺ 用字母表示: a(b+c)=ab+bc 提示:“×”号可以在字母与字母相乘之间写成“·”,或省略不写。
【针对训练2】
1、(-0.125)×20×(-8)×(-0.8)
=[(-0.125)×(-8)]×[20×(-0.8)]
运算中没有运用律
D、交换律和结合律
乘法分配律: 用字母表示: a(b+c)=ab+bc
归纳:
(1)几个不是0的数相乘,积的符号由负因数的 个数决定,负因数的个数是偶数时,积是 正数 ; 负因数的个数是奇数时,积是 负数 。
(2)几个数相乘,如果有一个因数为0,积就 为0 。
练习:
1、(-2012)×(-2013)×2014×0=( 0 )
2、下列各式的乘积的符号为正的是( C ) A、(-2)× 3 × 5 ×(-1)×(-3) B、(-5)×(-6)× 3 ×(-2) C、(-3)×(-3)×(-3)×(-4) D、(-2)×(-3)×(-4)×5

《有理数的乘法》(第2课时)教案 探究版

《有理数的乘法》(第2课时)教案 探究版

《有理数乘法的运算律》教案新课标要求知识与技能1.掌握多个有理数连续相乘的运算方法.2.正确理解乘法交换律,结合律和分配律,能用字母表示运算律的内容.3.能较熟练地运用运算律进行乘法运算.过程与方法1.体验乘法运算律在实际运算中的应用.2.能运用有理数的乘法解决问题.情感与态度通过思考、观察、比较等体验数学的创新思维和发散思维,激发学生的学习兴趣.教学重点理解和掌握乘法交换律、乘法结合律和乘法分配律.教学难点灵活运用乘法的运算律简化运算.教学过程设计一、合作探究1.计算下列各题,并比较它们的结果,你有什么发现?(1)(-6)×5与5×(-6);(2)59310⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭与95103⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭.师生活动:让学生计算,然后在组内交流,验证答案的正确性,讨论两个算式相等有什么发现,最后师生一起总结规律.教师强调a×b也可以写出a·b或ab.当用字母表示乘数时,“×”号可以写成“·”或省略.小结:(1)5×(-6)=-30,(-6)×5=-30,即5×(-6)=(-6)×5.(2)5933102⎛⎫⎛⎫-⨯-=⎪ ⎪⎝⎭⎝⎭,9531032⎛⎫⎛⎫-⨯-=⎪ ⎪⎝⎭⎝⎭,即5995310103⎛⎫⎛⎫⎛⎫⎛⎫-⨯-=-⨯-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.归纳:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等. 乘法交换律:ab =ba .设计意图:学生运用有理数的乘法运算计算两个算式和探究其规律,是让学生在解题的过程中有目的性地思考,为下面引出乘法交换律作铺垫.2.计算下列各题,并比较它们的结果,你有什么发现? (1)[(-4)×(-6)] ×5与(-4)×[(-6)×5]; (2)()17423⎡⎤⎛⎫⨯-⨯- ⎪⎢⎥⎝⎭⎣⎦与()17423⎡⎤⎛⎫⨯-⨯- ⎪⎢⎥⎝⎭⎣⎦. 师生活动:学生自主探究,讨论、交流.师生共同归纳乘法结合律的内容并用数学表达式表示.小结:(1)[(-4)×(-6)] ×5=24×5=120, (-4)×[(-6)×5]=(-4)×(-30)=120. 即[(-4)×(-6)] ×5=(-4)×[(-6)×5]. (2)()()177********⎡⎤⎛⎫⎛⎫⨯-⨯-=-⨯-=⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ()1712814423233⎡⎤⎛⎫⨯-⨯-=⨯= ⎪⎢⎥⎝⎭⎣⎦. 即()()1717442323⎡⎤⎡⎤⎛⎫⎛⎫⨯-⨯-=⨯-⨯- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦. 归纳:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律:(ab )c =a (bc ).设计意图:通过学生的自主探究,感受有理数乘法结合律的推导,培养学生的观察、归纳、总结能力.3.计算下列各题,并比较它们的结果,你有什么发现? (1)()()3232⎡⎤⎛⎫-⨯-+- ⎪⎢⎥⎝⎭⎣⎦与()()()32322⎛⎫-⨯-+-⨯- ⎪⎝⎭;(2)()4575⎡⎤⎛⎫⨯-+- ⎪⎢⎥⎝⎭⎣⎦与()45755⎛⎫⨯-+⨯-⎪⎝⎭.师生活动:让学生独立思考,然后再进行组内的讨论、交流,最后小组长将组内成员的意见、想法汇总,由代表汇报讨论的结果,教师让学生用自己的语言来描述分配律并引导学生用字母来表示分配律.小结:(1)()()()39232922⎡⎤⎛⎫⎛⎫-⨯-+-=-⨯-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,()()()32326392⎛⎫-⨯-+-⨯-=+= ⎪⎝⎭.即()()()()()332323222⎡⎤⎛⎫⎛⎫-⨯-+-=-⨯-+-⨯-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. (2)()4395753955⎡⎤⎛⎫⎛⎫⨯-+-=⨯-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ ()()4575354395⎛⎫⨯-+⨯-=-+-=- ⎪⎝⎭.即()()445757555⎡⎤⎛⎫⎛⎫⨯-+-=⨯-+⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.归纳:一般地,有理数乘法中,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加.分配律:a (b +c )=ab +ac .设计意图:学生通过观察思考主动地进行学习,在共同探索、共同发现的过程中分享成功的喜悦.并使学生感受到集体的力量.培养学生的语言表达能力及从特殊到一般的归纳能力.4.这里为什么只说“和”呢?3×(5-7)能不能利用分配律?师生活动:四人一小组,小组讨论、交流,小组长收集汇总.教师巡查,关注学生是否认真讨论.小结:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”,3×(5-7)可以看成3乘以5与-7的和,当然可利用分配律.设计意图:通过举例说明,突破分配律理解和掌握的难点,并且培养学生合作的精神. 5.上面我们做的题中,你发现了什么?在有理数运算律中,乘法的交换律、结合律以及分配律还成立吗?小结:小学学习的乘法运算律都适用于有理数乘法.我们研究数,总是由数的意义、数的认识(读、写、大小比较等)到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样. 在有理数运算律中,乘法的交换律、结合律以及分配律还成立.设计意图:学生通过观察思考主动地进行学习,在共同探索、共同发现的过程中分享成功的喜悦.并使学生感受到集体的力量.培养学生的语言表达能力及从特殊到一般的归纳能力.二、例题分析 例 计算:(1)()532468⎛⎫-+⨯- ⎪⎝⎭;(2)()457314⎛⎫-⨯-⨯ ⎪⎝⎭. 师生活动:采用大组竞赛的方法,让其中的两个大组采用一般的运算顺序进行计算,另两个大组采用运算律进行计算.教师强调:运算律在运算中有重要作用,它是解决许多数学问题的基础.(1)解法1:()()()53209112424241168242424⎛⎫⎛⎫⎛⎫-+⨯-=-+⨯-=-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解法2:()()()()5353242424209116868⎛⎫⎛⎫⎛⎫-+⨯-=-⨯-+⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)()()4554541077314143233⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯=-⨯⨯-=-⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.设计意图:通过竞赛让学生更深刻地体验到运用运算律可简化运算,同时也增强了学生的竞争意识与集体荣誉感.通过比较,学生会选取用运算律来简化运算,形成知识的正迁移.问题:比较上面(1)中两种解法,它们在运算顺序上有什么区别?解法2用了什么运算律?哪种运算量小?师生活动:教师提出问题,学生观察、比较,小组讨论,小组长收集、汇总,汇报结果. 小结:解法1先做加法运算,再做乘法运算.解法2先做乘法运算,再做加法运算.解法2用了分配律.解法2的运算量小,因为解法1先要计算两个分数的和.设计意图:通过讨论,加深学生对运算律在运算中有重要作用的认识,培养探究精神. 三、练习巩固 1.计算(1)506⎛⎫⨯- ⎪⎝⎭; (2)133⎛⎫⨯- ⎪⎝⎭; (3)()30.3-⨯; (4)1667⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭.解:(1)5006⎛⎫⨯-= ⎪⎝⎭;(2)1133133⎛⎫⎛⎫⨯-=-⨯=- ⎪ ⎪⎝⎭⎝⎭; (3)()()30.330.30.9-⨯=-⨯=-; (4)1616167677⎛⎫⎛⎫⎛⎫-⨯-=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.计算:(1)()384⎛⎫-⨯- ⎪⎝⎭; (2)113023⎛⎫⨯- ⎪⎝⎭;(3)()20.25363⎛⎫-⨯- ⎪⎝⎭; (4)418516⎛⎫⨯-⨯ ⎪⎝⎭.解:(1)()3388644⎛⎫⎛⎫-⨯-=+⨯= ⎪ ⎪⎝⎭⎝⎭;(2)1111303030151052323⎛⎫⨯-=⨯-⨯=-=⎪⎝⎭;(3)()()()()212120.25363636369241534343⎛⎫⎛⎫-⨯-=-⨯-=⨯--⨯-=-+= ⎪ ⎪⎝⎭⎝⎭; (4)41411428885165161655⎛⎫⎛⎫⎛⎫⨯-⨯=-⨯⨯=-⨯⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 设计意图:考查了对有理数乘法运算律的理解和掌握. 四、课堂小结 1.乘法交换律:两个数相乘,交换因数的位置,积相等. 符号表示:ab =ba . 2.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. 符号表示:(ab )c =a (bc ).3.分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 符号表示:a (b +c )=ab +ac .设计意图:鼓励学生用自己的语言加以总结,通过知识反馈,优化学生的认知结构. 五、布置作业 1.计算:(1)11124346⎛⎫+-⨯ ⎪⎝⎭; (2)(-4)×(-5)×0.25; (3)100×(-3)×(-5)×0.01; (4)111369618⎛⎫--⨯⎪⎝⎭; (5)111128428⎛⎫--⨯⎪⎝⎭; (6)()1944⎛⎫⨯-⨯-⎡⎤ ⎪⎣⎦⎝⎭; (7)()32.25 2.325⨯-⨯; (8)()32.1 6.57⎛⎫-⨯⨯- ⎪⎝⎭. 设计意图:加深对乘法交换律、乘法结合律、分配律的理解,培养学生的应用意识和能力.2.如果两个数的乘积为负数,你能说出这两个数的符号分别是什么吗?如果两个数的乘积为正数呢?你能推广到多个数相乘的情形吗?3.用“>”“<”“=”填空: (1)若a <0,则a 2a ; (2)若a <c <0<b ,则a ×b ×c 0.参考答案:1.解:(1)1111112424242486410346346⎛⎫+-⨯=⨯+⨯-⨯=+-= ⎪⎝⎭;(2)(-4)×(-5)×0.25=20×0.25=5;(3)100×(-3)×(-5)×0.01=100×3×5×0.01=100×0.01×3×5=15;(4)11111136363636462496189618⎛⎫--⨯=⨯-⨯-⨯=--=-⎪⎝⎭;(5)11111112812812812832641648428428⎛⎫--⨯=⨯-⨯⨯-⨯=--=⎪⎝⎭;(6)()()()111949494919444⎡⎤⎛⎫⎛⎫⎛⎫⨯-⨯-=⨯-⨯-=⨯-⨯-=⨯=⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦;(7)()()32.25 2.3 2.25 2.30.120.62125⨯-⨯=-⨯⨯=-; (8)()332.1 6.5 2.1 6.50.9 6.5 5.8577⎛⎫⎛⎫-⨯⨯-=+⨯⨯=⨯= ⎪ ⎪⎝⎭⎝⎭. 2.由于“两数相乘,同号得正,异号得负”,所以两数乘积为负数,说明这两数符号是一正一负;如果两数乘积为正数,说明这两数符号或者同时为正,或者同时为负.对于多个数相乘,积的符号由负因数的个数决定:当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正;只要有一个因数为0,积就为0.3.解析:(1)因为1<2,a <0,所以a >2a .(2)因为a <c <0<b ,所以a ,c 为负,b 为正,则a ×b ×c >0. (1)>;(2)>.六、目标检测设计 1.计算:(1)()()()587.2 2.512-×-×-×; (2)-|-0.25|×(-5)×4×125-⎛⎫ ⎪⎝⎭.2.计算:(1)111(8)1248-×-+⎛⎫ ⎪⎝⎭;(2)1131(48)123646--+-×-⎛⎫ ⎪⎝⎭.3.计算:2215130.34(13)0.343737-×-×+×--×.设计意图:考查了对乘法交换律、乘法结合律、分配律的理解与掌握. 目标检测答案:1.(1)53655(8)(7.2)( 2.5)860125212-×-×-×=-×××=-⎛⎫ ⎪⎝⎭; (2)1110.25(5)40.25(5)425255--×-××-=-×-××-=-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.2.(1)111111(8)1(8)(8)1(8)5248248-×-+=-×--×+-×=⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭;(2)1131(48)123646--+-×-⎛⎫ ⎪⎝⎭1131(48)(48)(48)(48)123646=-×--×-+×--×-⎛⎫⎪⎝⎭=443683+-+2223=-.3.2215130.34(13)0.343737-×-×+×--× 2125(13)0.343377=-×++×--⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=-13-0.34 =-13.34.。

1.4.1 有理数的乘法(第2课时)-公开课-优质课(人教版精品)

1.4.1 有理数的乘法(第2课时)-公开课-优质课(人教版精品)

1.4有理数的乘除法(第2课时)一、内容和内容解析1.内容利用有理数乘法法则进行运算,有理数的运算律.2.内容解析本节课的内容有两项:一是有理数乘法法则的应用,总结一些规律,主要是乘积的符号,由此可把有理数相乘转化为正数相乘或含有因数0的积等,并由此给出一般的运算步骤,以提高运算技能;二是有理数乘法的运算律,这些运算律(特别是分配律)是整个代数学的基础.本节课的内容主要用于简化运算,运算律是本章中的核心内容之一.本课的教学重点:有理数的乘法运算律;几个有理数相乘的运算步骤.二、教材解析教科书以“思考”栏目,提出几个不是0的数相乘其积的符号有什么规律的问题,并安排了一组具体数字相乘的题目,让学生采用从特殊到一般的方法,归纳出符号规律.然后安排例题,让学生通过计算,总结出“先定符号,再算绝对值”的运算步骤.再通过“思考”栏目,提出直接得出含有因数0时多个数相乘的结果的任务,实际上,这里强调了“先观察,后计算”的运算习惯问题.对于运算律,教科书采取“直接告知”的方法,指出“像前面那样规定有理数乘法法则后,就可以使交换律、结合律与分配律在有理数乘法中仍然成立”,然后采用具体例子验证的方法,给出有理数乘法运算律的文字表述和符号表示.最后用例子说明了运算律在简化运算中的作用.三、目标和目标解析1.教学目标(1)掌握多个有理数相乘时的运算步骤;(2)掌握有理数乘法运算律,会利用有理数的乘法运算律进行计算.2.目标解析(1)学生知道多个有理数相乘的运算步骤:第一步,观察算式,如果含有因数0,直接得出结果;第二步,确定符号;第三步,利用运算律进行运算.(2)能用文字语言、符号语言表达运算律;能根据算式的特点选用适当的运算律简化运算.四、教学问题诊断分析数系的运算律是整个代数学的基础,也就是说,无论是数的运算还是式(包括整式、分式、根式、指数式等)的运算以及解方程和解不等式,都要以运算律为基础.因此,运算能力的培养,其关键也在于运算律的灵活运用,学生的运算能力往往与此相关.例如:(1)在两个有理数的乘法运算中,确定符号常常与加法法则中的符号规律相混淆;(2)利用分配律计算时,常常漏乘其中的某一个数或弄错符号;(3)把带分数中的整数部分与分数部分看成相乘的关系;(4)忽略了符号;等等.本课的教学难点:多个有理数相乘时,算式特点的观察;运算律的选择和运用.五、教学过程设计1.复习回顾问题1前面我们学习了有理数的乘法法则,你能叙述出法则吗?用法则进行运算时,可以按照怎样的步骤完成?师生活动:学生回答,教师可以强调“先确定符号,再算绝对值”.【设计意图】为多个有理数相乘的步骤做准备.2.引入新课问题2观察下列各式,它们的积是正的还是负的?2×3×4×(-5),2×3×(-4)×(-5),2×(-3)×(-4)×(-5),(-2)×(-3)×(-4)×(-5).师生活动:学生独立完成,学生代表发言.教师通过问“为什么”,引导学生用运算法则说明理由.追问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?在学生归纳的基础上,教师让学生填空:归纳:几个不是0的数相乘,负因数的个数是_______时,积是正数;负因数的个数是_________时,积是负数.【设计意图】让学生用乘法法则说明理由,起到巩固法则的作用;观察多个有理数相乘的算式,归纳积的符号和负因数个数的奇偶数的关系,既培养观察、归纳的能力,又为提高运算技能打基础.问题3你能看出下式的结果吗?你是怎么得到的?7.8×(8.1)×0×(-19.6).学生思考回答.教师引导学生根据已有的知识进行解答,得出几个数相乘,其中有一个因数为0时的特殊规律.学生填空:几个数相乘,如果其中有因数为0,积等于_______.【设计意图】这一规律比较容易,只要提出问题,学生可以顺利作答.3.归纳运算步骤问题4 计算:(1)0.3×(-10)×(-25)×4×0;(2)(-3)×65×⎪⎭⎫ ⎝⎛-59×⎪⎭⎫ ⎝⎛-41; (3)(-5)×6×⎪⎭⎫ ⎝⎛-54×41. 师生活动:学生独立完成,并核对结果.追问:你能总结一下多个有理数相乘时的运算步骤吗?师生活动:学生归纳,教师总结,要得出:第一步,先观察,如果含因数0,直接得0;第二步,确定结果的符号;第三步,算出绝对值.【设计意图】巩固有理数的乘法运算,归纳多个有理数相乘的运算步骤,培养良好的运算习惯.4.探索有理数乘法的运算律问题5 在小学我们已经知道,乘法有交换律、结合律和分配律等运算律,它们可以帮 助我们简化运算.在有理数范围内,这些运算律还成立吗?请大家自己举出一些例子,通过计算验证.师生活动:学生分组,先独立举例计算,再小组交流,再派代表汇报.在学生举例的过程中,教师可以提醒学生注意例子的代表性,即要考虑含有负数的乘法算式.要让学生用自己的语言表述结论.(1)两个数相乘,交换因数的位置,积相等.乘法交换律:ab =ba .(2)三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律:(ab )c =a (bc ).教师说明:a ×b 也可以写为a ·b 或ab .当用字母表示乘数时,“×”号可以写为“·”,或省略.(3)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 分配律:a (b +c )=ab +ac .【设计意图】运算律的得出并不困难,所以在提出问题后,让学生自己通过具体例证探索获得.安排学生自主活动,可以活跃课堂气氛,培养学生的语言表达能力.5.练习巩固练习 用两种方法计算⎪⎭⎫ ⎝⎛21-61+41×12. 解法1:⎪⎭⎫ ⎝⎛21-61+41×12 =⎪⎭⎫ ⎝⎛126-122+123×12 =-121×12 =-1.解法2:⎪⎭⎫ ⎝⎛21-61+41×12 =41×12+61×12-21×12 =3+2-6=-1.思考:比较上面两种解法,它们在运算上有什么区别?解法2用了什么运算律?哪种解法运算量小?师生活动:学生分析,独立完成,选两名学生板书.完成后,教师与学生一起归纳运算律的作用.【设计意图】通过多种方法让学生感受运用运算律可以简化计算.6.小结(1)请你总结有理数乘法运算的基本步骤;(2)有理数乘法有哪些运算律?它们有哪些作用?7.作业习题1.4,第7题(1)(2)(3),第8题(4),第14题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 有理数
1.4 有理数的乘除法
1.4.1 有理数的乘法
第2课时 有理数乘法的运算律及运用
学习目标:1.掌握乘法的分配律,并能灵活的运用.
2.掌握有理数乘法的运算律,并能利用运算律简化乘法运算.
重点:有理数的乘法运算律及其应用.
难点:分配律的运用.
一、知识链接
1.有理数的乘法法则:两数相乘,同号________,异号_______,并把_________相乘.一个数同0相乘,仍得________.
2.进行有理数乘法运算的步骤:
(1)确定_____________;
(2)计算____________.
3.小学学过的乘法运算律:
(1)___________________________________.
(2)___________________________________.
(3)___________________________________.
二、新知预习
1.填空
(1) (-2)×4=_______ , 4×(-2)=________.
(2) [(-2)×(-3)]×(-4)=_____×(-4)=______ , (-2)×[(-3)×(-4)]=(-2)×_____=_______.
(3) (-6)×[4+(-9)]=(-6)×______=_______, (-6)×4+(-6)×(-9)=____+____=_______;
2.观察上述三组式子,你有什么发现?
【自主归纳】 在有理数的范围内,乘法的交换律和结合律,以及乘法对加法的分配律仍然适用.
(1)乘法交换律:两个有理数相乘,交换因数的位置,积不变.
用字母表示为:ab ba =.
(2)乘法结合律:对于三个有理数相乘,可以先把前面两个数相乘,再把结果与第三个数相乘;或者先把后两个数相乘,再把第一个数与所得结果相乘,积不变.
用字母表示为:()()ab c a bc =.
(3)乘法对加法的分配律:一个有理数与两个有理数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.
三、自学自测
计算:(1)44258⨯⨯(-)(-1.)(-); (2)151⨯⨯(-2)(-);(3)31()4085
-⨯.
四、我的疑惑
______________________________________________________________________________________________________________________________________________________
一、要点探究
探究点1:有理数乘法的运算律
第一组:
(1) 2×3=6 3×2=6
2×3 = 3×2
(2) (3×4)×0.25=3 3×(4×0.25)=3
(3×4)×0.25= 3×(4×0.25)
(3) 2×(3+4)=14 2×3+2×4=14
2×(3+4)=2×3+2×4
思考:上面每小组运算分别体现了什么运算律?
第二组:
(1) 5×(-6) = -30 (-6 )×5=-30
5× (-6) = (-6) ×5
(2) [3×(-4)]×(- 5)=(-12)×(-5) =60
3×[(-4)×(-5)]=3×20=60
(3) 5×[3+(-7 )]=5×(-4)=-20 5×3+5×(-7 )=15-35=-20
5×[3+(-7 )] = 5×3+5×(-7 )
结论:
(1)第一组式子中数的范围是________;
(2)第二组式子中数的范围是________;
(3)比较第一组和第二组中的算式,可以发现____________________________.
归纳总结
1.乘法交换律:ab =ba
2.乘法结合律:(ab)c = a(bc)
3.乘法分配律:a(b +c)=ab +ac ,a(b +c +d )=ab +ac +ad
例1 用两种方法计算:(
41+61-21)×12.
练一练:
计算:① (-8)×(-12)×(-0.125)×(-
3
1 )×(-0.1)
② 60×(1-
21-31-4
1) ③ (-43)×(8-13
1 -4 ) ④ (-11)×(-52)+(-11)×
2 5
3 +(-11)×(-51 )
例2 下面的计算有错吗?错在哪里?
(-24)×(
31 - 43 + 61 - 8
5 ) 解:原式=-24×31-24×43+24×61-24×85 =-8-18+4-15
=-41+4
=-37
易错提醒:1.不要漏掉符号;2.不要漏乘.
1.计算:
(1) 60×(1-
21-31- 41) ; (2)5(8)(7.2)( 2.5)12-⨯-⨯-⨯.
2.计算
(1)(-426)×251-426×749; (2)95×(-38)-95×88-95×(-26).
1.计算(-2)×(3-1
2
),用分配律计算过程正确的是( )
A.(-2)×3+(-2)×(-1
2
) B.(-2)×3-(-2)×(-
1
2
)
C.2×3-(-2)×(-1
2
) D.(-2)×3+2×(-
1
2
)
2.计算:
3.计算:
参考答案自主学习
一、知识链接
1.得正得负绝对值0
2.(1)运算顺序(2)得出结果
3. (1)乘法交换律ab=ba (2)乘法结合律(ab)c=a(bc) (3)乘法分配律(a+b)c=ac+bc
二、新知预习
1.(1)-8 -8 (2)6 -24 12 -24 (3)(-5)30 -24 54 30
2.每组式子的两个结果都相同.
三、自学自测
(1)原式=-440. (2)原式=30. (3)原式=7.
课堂探究
一、要点探究
思考:(1)乘法交换律(2)乘法结合律(3)分配律
结论:(1)正数(2)有理数
(3)各运算律在有理数范围内仍然适用
解:原式=-1.
练一练:①原式=-0.4. ②原式=-5. ③原式=-2. ④原式=-22.
解:有错.正确解法为:原式=(-24)×1
3
+(-24)×(-
3
4
)+(-24)×
1
6
+(-24)×(-
5
8
)= -8+18-4+15=21.
【针对训练】
1. 解:(1)原式=-5. (2)原式=-60.
2.解:(1)原式=-426000. (2)原式=-9500.
二、课堂小结
ab=ba (ab)c=a(bc) (a+b)c=ac+bc
负因数的个数奇数负偶数正0
当堂检测
1. A
2. 解:(1)原式=-8500. (2)原式=25. (3)原式=15. (4)原式=-6.
3. 解:(1)原式=1700. (2)原式=0. (3)原式=
4.97. (4)原式=-90.。

相关文档
最新文档