邻补角、对顶角的定义及性质-七年级数学

邻补角、对顶角的定义及性质-七年级数学

邻补角、对顶角的定义及性质-七年级数学

【数学】七年级上册数学-余角和补角(教案及练习题)

余角和补角 一、学习目标 1、体验余角和补角的性质的推导过程,掌握同角或等角的余角相等,同角或等角的补角相 等。 2、理解和运用余角和补角的性质。 二、教材导学 (一)知识回顾: 1、什么是余角和补角? 2、如图,C是直线AB上一点,CD是∠ACB的平分线 ①图中互余的角有_______________________ ②图中互补的角有_______________________ ③图中相等的角有_______________________ (二)自主学习: 根据你所学的补角与余角定义,完成下面问题: 如图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗? 因为∠1与∠2 ;∠3与∠4 , 所以∠2= - ;∠4= - , 又因为∠1=∠3,所以∠2 ∠4。 三、引领学习 (一)强化新知 补角的性质:等角(同角)的补角相等 对于余角有类似的性质: 余角的性质:等角(同角的余角相等 (二)例题示范 例1、如图、已知∠AOC= ∠BOD=90o,指出图中还有哪些角相等, 并说明理由。

小结:利用余角的性质证明两个角相等 小结:复习方位角: (1)认识方位(如图):正东、正南、正西、正北、东南、西南、西北、东北. (2)会以正北、正南方向为基准描述某方向:如北偏东30°,南偏东25°等。 (三)补充拓展 1、如图,C 是直线AB 上一点,CD 是∠ACB 的平分 , ∠2=∠1 (1)∠3与∠4相等吗?为什么? (2)∠ECA 与∠FCB 相等吗?为什么? (3)图中互余的角有哪些?图中互补的角有哪些? 2、如图,回答下列问题: (1)图中有哪几对互余的角? (2)图中哪几对角是相等的角(直角除外)?为什么? 小结:余角性质和补角性质是证明两个角相等的重要依据之一 4 32 1 F E D 西北 西南 东北 东南 东 西 南 北

概率论中数学期望的概念

毕业论文(设计) 题目:概率论中数学期望的概念 姓名: 学号:0411******* 教学院:数学与计算机科学学院 专业班级:数学与应用数学专业2008级1班 指导教师: 完成时间:2012年04月10日 毕节学院教务处制

概率论中数学期望概念 摘要:数学期望是现代概率论中最重要的基本概念之一,无论在理论上还是在应用中都具有重要的地位和作用。但是,数学期望这一概念对许多学者来说却又是一个难点,特别是对概念的理解和对这一数学工具的使用上都很难掌握。本文从离散型随机变量的来源、定义、分布及其理解上详细阐述概率论中的数学期望的概念及其性质,并介绍说明这一数学工具在实际生活中的应用。目的是希望能给更多的学者提供一些参考及帮助。 关键词:离散型;随机变量;分布;函数;期望 Mathematical expection concept

in theory of probability Candidate:Xiong Xiao-ping Major:Mathematics and applied mathematics Student No:0411******* Advisor:Xue Chao-kui(Lecturer) Abstract:Mathematical expectation is the modern theory of probability in the most important one of the basic concept, whether in theory or in the applications has an important position and role. But, mathematical expectation is a difficult concept for many scholars, especially for the understanding of concepts and the mathematical tools to the use of all difficult to master. This article from source of discrete random variable, definition, distribution and understand the detail on the mathematics of the concept of probability theory and its properties expectations, and introduces the mathematical tools that in the actual life application. The main purpose is to give more scholars can provide some reference and help. Keywords:discrete; Random variable, Distribution; Functions; expect

(完整)七年级数学余角和补角习题精选

7.6 余角和补角 [基础训练] 1、如果两个锐角的和是 (即 °),则这两个角互为余角,如果两个角的和 是 即( °),则这两个角互为补角。 2、⑴∵1∠和2∠互余,∴=∠+∠21_____(或2_____1∠-=∠) ⑵∵1∠和2∠互补,∴=∠+∠21_____(或2_____1∠-=∠) 3、若∠α=50o,则它的余角是 ,它的补角是 。 4、7150'?=∠α,则它的余角等于________;β∠的补角是2183102'''?,则β∠=_______ 5.如果∠α=39°31’,∠α的余角∠β =_____,∠α的补角∠γ=_____,∠α-∠β=___. 一个角的补角比余角大 ° 6、若∠β=120o,则它的补角是 ,它的补角的余角是 。 7.已知∠1=200,∠2=300,∠3=600,∠4=1500,则∠2是____的余角,_____是∠4的补角. 8.若∠1+∠2=90°,∠3+∠2=90°,∠1=40°,则∠3=____°, 依据是_______。 5、如图,∠ACB=∠CDB=90o,图中∠ACD 的余角有 个。 6、若∠1与∠2互余,∠3和∠2互补,且∠3=120o,那么 ∠1= 。 余角与补角的性质 7、如果∠1+∠2=90 o,∠2+∠3=90 o,则∠1与∠3的关系为________,其理由是__________ 如果∠1+∠2=180 o,∠2+∠3=180 o,则∠1与∠3的关系为________,其理由是_________ 如果∠1+∠2=90 o,∠2=∠3,∠3+∠4=90 o则∠1与∠3的关系为________,其理由是 __________ 如果∠1+∠2=180 o,∠2=∠3,∠3+∠4=180 o,则∠1与∠3的关系为________,其理由 是__________ 对顶角 对顶角的性质: 8、如图,其中共有________对对顶角。 第8题图 第10题图 第11题图 A C B D

对顶角与邻补角练习

一、选择题 1.如图所示,∠1和∠2是对顶角的图形有( ) 1 2 12 1 2 2 1 个 个 个 个 2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( ? ) ° ° ° ° O F E D C B A O D C B A 60?30? 34 l 3 l 2 l 1 12 (1) (2) (3) 3.下列说法正确的有( ) ①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一 定不是对顶角;④若两个角不是对顶角,则这两个角不相等. 个 个 个 个 4.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠ AOC?的度数为( ) ° ° ° °

5.如图3所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30 C.∠1=∠3=90°,∠2=∠4=60°; D.∠1=∠3=90°,∠2=60°,∠4=30° 二、填空题 1. 如图4所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___. 3 4D C B A 12O F E D C B A O E D C B A (4) (5) (6) 2.如图4所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______. 3.如图5所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的 邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______. 4.如图6所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠ BOD=?______. 5.对顶角的性质是______________________. 6.如图7所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.

邻补角、对顶角练习题

246 对顶角、邻补角(解答题) 1、如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数. 2、如图,当光线从空气中射入水中时,光线的传播方向发生了变化,在物理学中这种现象叫做光的折射,在图中,∠1=43°,∠2=27°,试问光的传播方向改变了多少度? 3、如图,∠1=∠2,∠1+∠2=162°,求∠3与∠4的度数. 4、如图,AB,CD交于O点. (1)如果∠AOD=3∠BOD,那么∠BOD=_________度,∠COB=_________度;(2)如果∠AOC=2x°,∠BOC=(x+90)°,∠BOD=(y+4)°,求x,y的值. 5、如图,直线AB、CD相交于点O,已知:∠AOC=70°,OE把∠BOD分成两部分,且∠BOE:∠EOD=2:3,求∠AOE的度数. 6、如图(1)两条直线相交于一点,有_________对对顶角; 如图(2)三条直线相交于一点,请写出所有对顶角;

如图(3)n条直线相交于一点,有_________对对顶角. 7、如图,直线AB、CD,EF相交于点O,∠1=20°,∠BOC=80°,求∠2的度数. 8、如图,直线AB与CD相交于点O,OD恰为∠BOE的角平分线. (1)图中∠AOD的补角是_________(把符合条件的角都填出来); (2)若∠AOD=140°,求∠AOE的度数. 9、(动手操作实验题)如图所示是小明自制对顶角的“小仪器”示意图: (1)将直角三角板ABC的AC边延长且使AC固定; (2)另一个三角板CDE的直角顶点与前一个三角板直角顶点重合; (3)延长DC,∠PCD与∠ACF就是一组对顶角,已知∠1=30°,∠ACF为多少? 10、如图,直线a,b,c两两相交,∠1=2∠3,∠2=65°,求∠4的度数. 11、如图,直线AB、CD相交于点0,OE平分∠AOC,∠AOD比∠AOE大75°,求∠AOD的度数.

数学期望的性质

知识点4.2 数学期望的性质

1. 随机变量函数的数学期望 定理1设Y 是随机变量X 的函数:Y =g(X)(g 是连续函数). (1)设离散型随机变量X 的分布律为 p k =P{X =x k },k =1,2,?. 若?k=1+∞g x k p k <+∞,则有E Y =E g X =?k=1 +∞g x k p k .

(2)设连续型随机变量X 的密度函数为f(x),若 ? ?∞+∞ g(x)f(x)dx <+∞, 则有 E(Y)=E g X =? ?∞+∞g(x)f(x)dx.

定理2设Z 是随机变量X,Y 的函数:Z =g(X,Y)(g 是连续函数). (1) 设离散型随机变量(X,Y)的分布律为 p ij =P(X =x i ,Y =y j ),(i,j =1,2,?), 若?j=1+∞?i=1+∞ g(x i ,y j )p ij <+∞, 则有 E(Z)=E g X,Y =?j=1+∞?i=1 +∞g x i ,y j p ij .

(2) 设连续型随机变量(X,Y)的密度函数为f(x,y), 若 ? ?∞+∞??∞+∞ g(x,y)f(x,y)dxdy <+∞, 则有 E(Z)=E g X,Y =? ?∞+∞??∞+∞ g(x,y)f(x,y)dxdy.

2. 数学期望的性质 (1)设C是常数,则有E(C)=C. (2)设X是一个随机变量, C是常数,则有E(CX)=CE(X).(3)设X,Y是两个随机变量,则有E(X+Y)=E(X)+E(Y).(4)设X,Y是两个相互独立的随机变量,则有E(XY)=E(X)E(Y). 性质3和4可以推广到有限个随机变量的和及积的情况.

七年级数学上册 余角与补角

余角和补角 一、教学目标 1.知识目标:使学生掌握两个角互为余角和互为补角的概念,理解互余与互补的角的性质 2.能力目标:学会运用类比联想的思维方法思考,并初步学会用代数方法,(主要是列方程)解决几何问题. 3.情感目标:培养学生分析问题和解决问题的能力,以及运算能力。 二、教学重点及难点 重点:使学生掌握两个角互为余角和互为补角的概念. 难点:余角和补角的性质. 三、教学过程 (一)创设情境,自然引入 先观察如图,∠1+∠2与Rt ∠AOB 相等吗?你是怎样判断的? 再观察如图,∠α+∠β与∠AOB 相等吗?你是怎样判断的? (让学生说出自己的方法:可以测量,也可以剪下来拼等等,学生的方法只要合理就应鼓励) (二)设问质疑,探究尝试 教师用多媒体演示∠1+∠2与Rt ∠AOB 重合,再移动一角,问∠1+∠2与Rt ∠AOB 相等吗? 同样∠α+∠β与∠AOB 重合,再移动一角,问∠α+∠β与∠AOB 相等吗? 通过上面的演示,我们看到有时两个角的和是90°,有时两个角的和是180°,也就是两个角之和正好成一直角,或两个角之和正好成一平角,在这种情况下,我们给出两个新的概念: 1、互为余角定义:如果两个锐角的和是一个直角,那么这两个角互为余角.简称互余.用数学式子表示为:因为∠1+∠2=90°,所以∠1与∠2互余.反之,因为∠1与∠2互余,所以∠1+∠2=90°. 2、互为补角定义:如果两个角的和是一个平角,那么这两个角互为补角.简称互补.用数学式子表示为:因为∠1+∠2=180°,所以∠1与∠2互补.反之,因为∠1与∠2互补,所以∠1+∠2=180°. (三)归纳总结,概括知识 1、试举出互余、互补角的例子. 1 2 A O B α β A O B

数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质 1 数学期望(均值)的定义和性质 定义:设离散型随机变量X 的分布律为 {}, 1,2,k k P X x p k === 若级数 1k k k x p ∞=∑ 绝对收敛,则称级数1k k k x p ∞=∑的和为随机变量X 的数学期望,记为()E X 。即 ()1k k k E X x p ∞==∑。 设连续型随机变量X 的概率密度为()f x ,若积分 ()xf x dx ∞?∞? 绝对收敛,则称积分 ()xf x dx ∞?∞?的值为随机变量X 的数学期望,记为()E X 。即 ()()E X xf x dx ∞ ?∞=? 数学期望简称期望,又称为均值。 性质:下面给出数学期望的几个重要的性质 (1)设C 是常数,则有()E C C =; (2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =; (3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推 广至任意有限个随机变量之和的情况; (4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。 2 方差的定义和性质 定义:设X 是一个随机变量,若(){}2E X E X ?????存在,则称(){}2E X E X ?????为X

的方差,记为()D X 或()Var X ,即 性质:下面给出方差的几个重要性质 (1)设C 是常数,则有()0D C =; (2)设X 是一个随机变量,C 是常数,则有 ()()2D CX C D X =,()()D X C D X +=; (3)设X 和Y 是两个随机变量,则有 ()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++?? 特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。 3 协方差的定义和性质 定义:量()(){} E X E X Y E Y ??????????称为随机变量X 与Y 的协方差。记为(),Cov X Y ,即 ()()(){},Cov X Y E X E X Y E Y =?????????? 性质:下面给出协方差的几个重要性质 (1)()(),,Cov X Y Cov Y X = (2)()(),Cov X X D X = (3)()()()(),Cov X Y E XY E X E Y =? (4)()(),,,,Cov aX bY abCov X Y a b =是常数 (5)()()()1212,,,Cov X X Y Cov X Y Cov X Y +=+ 参考文献 [1]概率论与数理统计(第四版),浙江大学

(完整版)余角、补角、对顶角的概念和习题答案

余角和补角和对顶角 余角: 如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。 ∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A 补角: 如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角 ∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A 对顶角: 一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。 两条直线相交,构成两对对顶角。对顶角相等.对顶角与对顶角相等. 对顶角是对两个具有特殊位置的角的名称; 对顶角相等反映的是两个角间的大小关系。 补角的性质: 同角的补角相等。比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。 等角的补角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。 余角的性质: 同角的余角相等。比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。 等角的余角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。 注意: ①钝角没有余角; ②互为余角、补角是两个角之间的关系。如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角; ③互为余角、补角只与角的度数相关,与角的位置无关。只要它们的度数之和等于90°或180°,就一定互为余角或补角。 余角与补角概念认识提示: (1)定义中的“互为”一词如何理解? 如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 ,同样∠2的补角是∠1。 (2)互余、互补的两角是否一定有公共顶点或公共边? 两角互余或互补,只与角的度数有关,与位置无关。 (3)∠1 + ∠2 + ∠3 = 90°(180°),能说∠1 、∠2、∠3 互余(互补)吗? 不能,互余或互补是两个角之间的数量关系。

邻补角、对顶角试题

邻补角、对顶角试题

————————————————————————————————作者:————————————————————————————————日期:

246 对顶角、邻补角(解答题) 1、如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数. 2、如图,当光线从空气中射入水中时,光线的传播方向发生了变化,在物理学中这种现象叫做光的折射,在图中,∠1=43°,∠2=27°,试问光的传播方向改变了多少度? 3、如图,∠1=∠2,∠1+∠2=162°,求∠3与∠4的度数. 4、如图,AB,CD交于O点. (1)如果∠AOD=3∠BOD,那么∠BOD=_________度,∠COB=_________度;(2)如果∠AOC=2x°,∠BOC=(x+90)°,∠BOD=(y+4)°,求x,y的值. 5、如图,直线AB、CD相交于点O,已知:∠AOC=70°,OE把∠BOD分成两部分,且∠BOE:∠EOD=2:3,求∠AOE的度数. 6、如图(1)两条直线相交于一点,有_________对对顶角; 如图(2)三条直线相交于一点,请写出所有对顶角;

如图(3)n条直线相交于一点,有_________对对顶角. 7、如图,直线AB、CD,EF相交于点O,∠1=20°,∠BOC=80°,求∠2的度数. 8、如图,直线AB与CD相交于点O,OD恰为∠BOE的角平分线. (1)图中∠AOD的补角是_________(把符合条件的角都填出来); (2)若∠AOD=140°,求∠AOE的度数. 9、(动手操作实验题)如图所示是小明自制对顶角的“小仪器”示意图: (1)将直角三角板ABC的AC边延长且使AC固定; (2)另一个三角板CDE的直角顶点与前一个三角板直角顶点重合; (3)延长DC,∠PCD与∠ACF就是一组对顶角,已知∠1=30°,∠ACF为多少? 10、如图,直线a,b,c两两相交,∠1=2∠3,∠2=65°,求∠4的度数. 11、如图,直线AB、CD相交于点0,OE平分∠AOC,∠AOD比∠AOE大75°,求∠AOD的度数.

数学期望

§2.2 随机变量的数学期望 每个随机变量都有一个概率分布(分布函数,或分布列、概率密度),这种分布完整地刻画了随机变量取值的统计规律性。由概率分布可以计算出有关随机变量的各个事件的概率。此外,概率分布还可以确定随机变量的各种特征数,比如,数学期望、方差、中位数等,这些特征数都是用以刻画随机变量(或其概率分布)的某一方面的特征。 例如,考虑某种元件的寿命,如果知道了寿命X 的概率分布,就可以计算出寿命在任一指定范围内的概率,对这种元件的寿命状况提供了一幅完整图景。根据这一分布,还可以确定用以反映寿命平均水平的特征数-数学期望,用以刻画寿命值的散布程度(或稳定程度)的特征数-方差.这些特征数虽不能对寿命状况提供完整刻画,但却往往是人们最为关注的一个方面.无论在理论上还是在实用中,这些特征数都有着极重要的意义.尤其是实用中,概率分布虽很“完美”,但难以把握;而特征数则容易把握,并且特征数是以一个“醒目”的数值刻画随机变量的某种特征,是概率分布某个方面的概括,这使得应用方便. 一. 数学期望的定义 定义 设离散型随机变量X 的分布列为 i i p x X P ==)(, ,2,1=i 如果 ∞<∑∞=1 ||i i i p x 则称∑∞=1i i i p x 为X 的数学期望,记为)(X E ,即 ∑∞== 1 )(i i i p x X E 若级数∑∞=1i i i p x 不绝对收敛,则称X 的数学期望不存在。 由以上定义可看出,若X 只取有限个值,则它的数学期望总是存在的。而若X 取可列个值,则它的数学期望不一定存在,是否存在就看级数∑∞=1i i i p x 是否绝对收敛,这个要求的目 的在于使期望值唯一。因为若无穷级数∑∞=1i i i p x 只是条件收敛,则可通过改变这个级数各项 的次序,使得改变后的级数不收敛或收敛到任意指定的值,这意味着这个级数的和存在与否,以及等于多少,与X 的取值的排列次序有关,而)(X E 作为刻画X 取值的平均水平的特征数,具有客观意义,不应与X 的取值的排列次序有关。 由定义,X 的期望值就是其所有可能取值的加权平均,每个可能值的权重就是X 取该值的概率,因此X 的数学期望又称为X 的均值。同时还可看出X 的数学期望完全由X 的概率分布所决定,所以X 的数学期望又叫做X 的分布的数学期望(对一般的随机变量的期望

数学期望的性质

梁烨 0417

数学期望的性质 . )(,.1c c E c =则有是常数设). ()(,,.2X cE cX E c X =则有是常数是一个随机变量设). ()()(,,.3Y E X E Y X E Y X +=+则是两个随机变量设).()()(,,.4Y E X E XY E Y X =则是相互独立的随机变量设4证明()(,)d d ()()d d X Y E XY xyf x y x y xyf x f y x y +∞+∞+∞+∞-∞-∞-∞-∞== ??????+∞∞-+∞ ∞-==) ()(d )(d )(Y E X E y y yf x x xf Y X Note:性质3和4可推广到n 个随机变量的情形.

例12 (,),,().X N Y aX b E Y μσ=+设~求:解(), E X μ=()()()E Y E aX b aE X b a b μ=+=+=+所以 Note :正态分布r.v 的线性组合的期望为其期望的线性组合.

2例). (),(~X E p n b X ,求设:解引入计数随机变量 11,2,,0i i A X i n i A ?==?????第次试验中事件发生第次试验中事件不发生其中.)(p A P =则且分布为p X E X i i =-)(,)10(故.1∑==n i i X X ) ()(21n X X X E X E +???++=12()()()n E X E X E X np =++???+=Note :该解法具有一般性,引入计数变量可简化计算:将一复杂变量分解成n 个相互独立的服从(0-1)分布的变量之和.

余角和补角-七年级数学上册同步练习题

6.3第1课时余角和补角 知识点1余角、补角的概念 1.2017·广东已知∠A=70°,则∠A的补角为() A.110°B.70°C.30°D.20° 2.下列选项中,能与30°角互补的是() 图6-3-1 3.如图6-3-2,点O在直线AB上,若∠1=40°,则∠2的度数是() 图6-3-2 A.50°B.60°C.140°D.150° 4. 如果一个角是36°,那么() A.它的余角是64°B.它的补角是64° C.它的余角是144°D.它的补角是144° 5.现有下列说法:①锐角的余角是锐角;②钝角没有余角;③直角的补角是直角;④两个锐角互余.其中正确说法的个数是() A.4 B.3 C.2 D.1 6.52°34′的余角是__________,补角是__________. 7.若一个锐角的余角与这个角相等,则这个角等于________°. 8.已知∠1和∠2互余,∠2和∠3互补,如果∠1=63°,那么∠3=________°. 9.一个角的补角比它的余角的4倍少15°,求这个角的度数.

知识点2余角、补角的性质 10.若∠1+∠2=90°,∠1+∠3=90°,则________=________,理由是__________________________________;若∠1+∠2=180°,∠3+∠4=180°,∠1=∠3,则________=________,理由是_________________________________________________. 11.若∠1与∠2互补,∠2与∠3互补,∠1=50°,则∠3等于() A.50°B.130°C.40°D.140° 12.如图6-3-3所示,一副三角板(直角顶点重合)摆放在桌面上,若∠AOC=65°,则∠BOD等于() 图6-3-3 A.45°B.55°C.60°D.65° 13.下列说法错误的是() A.若两角互余,则这两角均为锐角 B.若两角相等,则它们的补角也相等 C.互为余角的两个角的补角相等 D.两个钝角不能互补 14.如图6-3-4,已知∠BOC=90°,∠DOA=90°,∠1=50°,求∠2的度数. 图6-3-4

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use

在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X 的概率分布,那么X 的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。 1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品,21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 21 3100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P ,则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞ =1 k k k p x

七年级数学余角和补角试题及答案

# 余角和补角 1、下列说法错误的是 ( ) A 、同角或等角的余角相等 B 、同角或等角的补角相等 C 、两个锐角的余角相等 D 、两个直角的补角相等 2、如果两个锐角的和是 ,则这两个角互为余角,如果两个角的和是 ,则这两个角互为补角。 3、若∠α=50o,则它的余角是 ,它的补角是 。 4、若∠β=110o,则它的补角是 ,它的补角的余角是 。 : 5、如图,∠ACB=∠CDB=90o,图中∠ACD 的余角有 个。 6、若∠1与∠2互余,∠3和∠2互补,且∠3=120o,那么∠1= 。 7、利用三角尺画出下列各角: (1)30o角 (2)30o的余角 (3)30o的补角 一、选择题: 1、一个角的补角是 ( ) A 、锐角 B 、直角 C 、钝角 D 、以上三种情况都有可能 2、一个锐角的补角比这个角的余角大 ( ) ¥ A 、30o B 、45o C 、60o D 、90o 3、如图,∠AOD=∠DOB=∠COE=90o,其中共有互余的角( ) A 、2对 B 、3对 C 、4对 D 、6对 4、若∠1与∠2互补,∠3与∠1互余,∠2+∠3=240o,由∠2是∠1的 ( ) A 、2 5 1 倍 B 、5倍 C 、11倍 D 、无法确定倍数 5、若∠1与∠2互为补角,且∠1<∠2,则∠1的余角是 ( ) A 、∠1 B 、∠1+∠2 C 、 21(∠1+∠2) D 、2 1 (∠2-∠1) 6、32o28’的余角为 ,137o45’的补角是 。 A B D O E D C B A

¥ 7、∠1与∠2互余,∠1=(6x+8)o,∠2=(4x-8)o,则∠1= ,∠2= 。 8、如图,O 是直线AB 一点,∠BOD=∠COE=90o, 则(1)如果∠1=30o,那么∠2= ,∠3= 。 (2)和∠1互为余角的有 。 和∠1相等的角有 。 9、如图,O 是直线BD 上一点,∠BOC=36o,∠AOB=108o, 则与∠AOB 互补的角有 。 10、已知互余两个角的差是30o,则这两个角的度数分别是________________。 ( 11、如图,∠AOC=∠BOD=90o,∠AOD=130o,求∠BOC 的度数。 12、已知一个角的余角比它的补角的4/9还少6o,求这个角。 ( 参考答案: 基础训练: 1 . C 2 . 90o,180o; 3 .40o, 130o; o, 20o ; 5. 2; 6 .30o 7. 略 ; 综合提高: 一.选择题: 1 D 2. D 3. C 4. C 5. D 二.填空题: 6.57o32ˊ, 42o15ˊ 7. 58o ,32o, 8.⑴ 60o,30o⑵ ∠2,∠4,∠3; 9.∠ AOD,∠AOC; 10. 60o,30o; 三.解答题: 4321O E D C B A B O D C A D C B A O

对顶角与邻补角讲练稿

相交线导学案(20150105) 一、自主预习:1、问题1:两条相交直线.形成的小于平角的角有哪几个? 问题2:将所得到的角两两相配共能组成几对角?(每两个角组成一对) 问题3:根据各对角不同的位置怎么将它们分类? 问题4:以∠1和∠2为例分析各对角存在怎样的位置关系? 问题5:类似∠1和∠2,分析∠1和∠3存在怎样的位置关系? 2、 巩固概念练习:1.下列各图中∠1、∠2是邻补角吗?为什么? (1) (2) (3) 2.下列各图中∠1、∠2是对顶角吗?为什么? 3、对顶角性质:对顶角相等。 注意:1、如果两个角互为邻补角,那么它们一定互补,但互补的两个角不一定是邻补角。 2、只有当两条直线相交时,才会产生对顶角。对顶角一定相等,相等的角不一定是对顶角。 巩固练习: 例1.如图,直线a , b 相交, ∠ 1=40°,求∠2, ∠3, ∠4的度数. 解:∵∠1+∠2=180 ( ) ∴∠2=180-∠1= ∴∠3=∠1= ∠4=∠2= ( ) 变式一:若∠1=32°20′,求∠2, ∠3, ∠4的度数. 变式二:若∠1+∠3=50°,则∠3= ,∠2= 。 变式三:若∠2是∠1的3倍,求∠3的度数。 (二)合作探究 1、如图,直线AB 、CD 、EF 相交于O ,(1)右图中∠AOC 的对顶角是 , ∠1邻补角是 。 (2)如图,直线AB 、CD 相交于O ,∠AOC=80°,∠1=30°,求∠2的度数。 解:∵∠DOB=∠ ,(对顶角相等 ) =80°(已知) ∴∠DOB= °(等量代换) 又∵∠1=30° (已知) ∴∠2 = ∠ - ∠ = - = 2、如图,直线AB 、CD 相交于点O (1)若∠AOC+∠BOD=100°,求∠BOC 、∠AOD 的度数; (2)若∠BOC 比∠AOC 的2倍多33°,求∠AOB 、∠AOC 、∠BOC 、∠BOD 的度数。 3、如图,直线AB 、CD 交于点O ,∠BOD=40°, OA 平分∠COE ,求∠DOE 的度数 4、如图,两堵墙围一个角∠AOB,但人不能进入围墙, 我们如何去测量这个角的大小呢?请画图加以说明。 5、 如图,已知OA OB ⊥,OC OD ⊥,试说明180AOD BOC ∠+∠=. 证明:∵OA OB ⊥,OC OD ⊥, ∴90AOB COD ∠=∠=( ) ∴∠AO D +∠BOC=(∠AOB +∠BOD )+(∠COD -∠ ) = . 1 2 1 1 2 2 邻补角:有一条( ),而且另一边( )的两个角叫做邻补角. 对顶角:如果两个角有一个( ), 而且一个角的两边分别是另一角两边的( ),那么这两个角叫对顶角 已知:直线a 与直线b 相交 求证:∠1=∠2 证明:∵ ∠1+∠3=180°(邻补角定义) ∠2+∠3= ( ) ∴ ∠1=∠2 ( ) 括号内填根据 A E 1 2 ) ) O C B D F A D O C B 43 21O D C B A 1 2 (2) (3) (4) 2 1 (1) 1 2 (5) 1 2 1 2 4b a 3 2 1 a 3 2 1E O D C B A A O C B D

数学期望的含义

数学期望的含义是什么? 06月282014年 【知乎用户的回答(24票)】: 简单明了地告诉你结论:期望就是均值。 首先需要明确的一点是:只有随机变量才有期望值。 何谓随机变量?简单地说,一个变量 ,它的取值是随机遇而定的,即我们不能预先知道它取值多少。所以自然地,面对一个如此奇怪充满未知的东西,我们希望用某些工具来刻画它,对它的性质有一点点了解,比如用分布函数,比如用期望方差偏度峰度等诸多统计量。 期望定义: 连续型随机变量: 离散型随机变量: 从数学上来说,这两个奇怪的公式实际上就是求加权平均数。从这个定义告诉我们,期望就是平均数,是随机变量各个取值对取这个值的概率的加权平均。如果我们知道 的分布函数,可以通过这个公式算出来它的期望。 但是现实情况往往不会那么好,对于一个随机变量 ,我们经过很多次观察,获得了一组观察值 ,并且我们对于它的分布不了解,不能直接计算出来期望。所以换一个方法“估计”它的期望。它的期望是多少?它的平均值是多少?我们对这个随机变量的“期待”是多少?在统计学上,这都是一个问题。用同样的思路,那就是取平均了, ,在统计学中,这个样本均值对随机变量期望是无偏估计,即当n充分大的时候,这个估计会和期望“非常非常接近”。 再提到你的例子,扔一个均匀硬币,正面+1分反面-1分,则数学“预期”是0。 设一个随机变量 表示丢硬币的结果,这是一个离散的随机变量,取1和-1的概率都是0.5。其实我们已经知道 的分布了,可以按照公式直接求期望。 但是为了解释清楚什么叫期望,我们还按照上述第二种情况来算。 我们丢了 次硬币,得到了一组观察值 ,这里面有1有-1,肯定没有0。 但是随着

初一数学上册《 余角和补角的性质》

余角和补角的性质 尊敬的各位领导、各位评委: 大家好! 我今天说课的课题是人教版义务教育课程标准实验教科书七年级数学上册第四章第三节《余角和补角》第一课时。下面我从:教材分析、教法与学法及教学手段、教学书设计四部分来说这一节课,其中,教学过程分为:设置问题,以趣激情;以旧探新,引出课题;初步应用,巩固新知;范例教学,练习反馈;知识整理,归纳小结和作业布置六部分。 1、说教材的地位和作用 《图形的初步知识》这一章节是学生进入平面几何大厦的“门槛”。《余角和补角》是《图形的初步知识》的严重组成部分,从线段的概念引出射线的概念进而引入角的概念,在认识了直角、平角,比较角的大小后,就引进了余角、补角的概念及性质;是实验几何逐渐向证明几何的过渡,为以后证明角的相等作铺垫,也是为培养和发展学生的逻辑思维能力、观察分析能力、演绎归纳能力打基础。 2、说教学目标 (1)教学目标 根据上述教学内容的地位和作用以及初一学生现有认知水平确定,我制定如下教学目标: 知识目标:在详尽情境中了解余角与补角,理解余角与补角的性质,通过练习掌握其概念及性质,并能运用他们解决一些简单实际问题。 能力目标:经历、观察、操作,探究等过程,发展学生几何概念,培养学生推理能力和表达能力。 情感目标:培养学生乐于探究、合作的习惯,体验探索胜利,感受到胜利的欢乐,进一步体会“数学就在我的身边”,增强学生用数学解决实际问题的意识。

(2)教学重点和难点 重点:余角和补角的概念教学时可运用文字语言、图形语言、符号语言三结合的训练方法强调概念的本质特征,突出教学重点。难点:关于余角和补角应用常常需要说理,或综合运用代数知识,特别是用代数的方法来计算角的度数,由于学生缺乏经验,是教学中的难点。可通过由浅入深、讨论比较、归纳小结等方法及变化训练突破上述难点。3、说教法 (1)教法分析建构主义教学理论认为:“知识是不能为教师所传授的,而只能为学习者所构建.”也就是说,教学过程不只是知识的(传)授——(接)受过程,也不是机械的告诉与被告诉的过程,而是一个学习者主动学习的过程.因而,考虑到学生的认知水平,本节通过师生之间的相互探讨和交流进行教学,即以探究研讨法为主,结合讲练结合法、谈话法等展开教学.为让学生体验概念产生的过程;以及概念的形成和同化相结合,促进学生对概念的理解;同时让学生主动暴露思维过程,及时得到信息的反馈。我采用对比、类比、尝试教学,让学生始终处于主动学习的状态,课堂上教师起主导作用,让学生有充分的思考机会,使课堂气氛开朗,有新鲜感。 (2)学法指导 根据新课程标准理念,学生是学习的主体,教师只是学习的帮助者,引导者.考虑到这节课主要通过老师的引导让学生自己发现规律,在自己的发现中学到知识,提高能力,我主要引导学生自己观察、归纳,采用自主探究的方法进行学习,并使学生从中体会学习的欢乐。 (3)教学手段 采用多媒体辅助教学,增加课堂容量,提高教学效果。 4.、说设计: 一、导入设计 由数字入手向学生提问:90°和180°在几何中表示哪两个角的度数?然后请学生画出这两个角。并与书上合作学习作比较得出课题。

数学期望在生活中的应用原文

一、数学期望的定义及性质 (一)数学期望分为离散型和连续型 1、离散型 离散型随机变量的一切可能的取值Xi与对应的概率Pi(=Xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(X)。数学期望是最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。如果随机变量只取得有限个值,称之为离散型随机变量的数学期望。它是简单算术平均的一种推广,类似加权平均。E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn)。X1,X2,X3,……,Xn 为这几个数据,P(X1),P(X2),P(X3),……,P(Xn)为这几个数据的概率函数。在随机出现的几个数据中,P(X1),P(X2),P(X3),……,P(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi),则:E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn) = X1*f1(X1) + X2*f2(X2)+ …… + Xn*fn(Xn)。 2、连续型 连续型则是:设连续性随机变量X的概率密度函数为f(X),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。若随机变量X的分布函数F(X)可表示成一个非负可积函数f(X)的积分,则称X为连续随机变量,f(X)称为X的概率密度函数(分布密度函数)。能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为连续型随机变量。 (二)数学期望的常用性质 1.设X是随机变量,C是常数,则E(CX)=CE(X); 2.设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y); 3.设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。 对于第一条性质,假设E(X)你的考试成绩,C为你们全班人数,则你们全班总分的期望等于全班人数乘以个人的期望,这很好理解。 对于第二条性质,E(X)为你的考试成绩,E(Y)是小明的考试成绩,你和他成绩总和的期望当然等于你和他的期望值和。 对于第三条性质,我们一再强调是独立的,也就是相互没有关联,有关联是肯定是不是不等的。

相关文档
最新文档