新型热塑性聚酰亚胺树脂的热性能研究_王运良

新型热塑性聚酰亚胺树脂的热性能研究_王运良
新型热塑性聚酰亚胺树脂的热性能研究_王运良

聚酰亚胺薄膜及挠性覆铜膜(FCCL)等新材料项目环境分析评估报告书

聚酰亚胺薄膜及挠性覆铜膜(FCCL)等新材料项目环境影响报告书 (简本)

(一)建设项目概况 1.建设项目的地点及相关背景; 2.建设项目主要建设内容、生产工艺、生产规模、建设周期和投资(包括环保投资),并附工程特性表; 3.建设项目选址选线方案比选,与法律法规、政策、规划和规划环评的相符性。 (二)建设项目周围环境现状 1.建设项目所在地的环境现状; 2.建设项目环境影响评价范围。 (三)建设项目环境影响预测及拟采取的主要措施与效果 1.建设项目的主要污染物类型、排放浓度、排放量、处理方式、排放方式和途径及其达标排放情况,对生态影响的途径、方式和范围; 2.建设项目评价范围内的环境保护目标分布情况; 3.按不同环境要素和不同阶段介绍建设项目的主要环境影响及其预测评价结果; 4.对涉及法定环境敏感区的建设项目应单独介绍对环境敏感区的主要环境影响和预测评价结果; 5.按不同环境要素介绍污染防治措施、执行标准、达标情况及效果,生态保护措施及效果; 6.环境风险分析预测结果、风险防范措施及应急预案; 7.建设项目环境保护措施的技术、经济论证结果; 8.建设项目对环境影响的经济损益分析结果;

9.建设项目防护距离内的搬迁所涉及的单位、居民情况及相关措施; 10.建设单位拟采取的环境监测计划及环境管理制度。 (四)公众参与 1.公开环境信息的次数、内容、方式等; 2.征求公众意见的范围、次数、形式等; 3.公众参与的组织形式; 4.公众意见归纳分析,对公众意见尤其是反对意见处理情况的说明; 5.从合法性、有效性、代表性、真实性等方面对公众参与进行总结。 (五)环境影响评价结论 (六)联系方式 建设单位、环评机构的联系人和详细联系方式(含地址、邮编、电话、传真和电子邮箱)。 一、建设项目概况 1、建设项目地点及相关背景 项目名称:高新电子信息材料及制品项目 项目性质:新建 项目地点: 建设背景: HWG新材料有限公司依托中国工程物理研究院雄厚的技术力量,借助该院在五十余年建设系列重大装备和众多国家重大工程中与国内著名研院所形成的良好合作关系和组织完成重大工程的经验,决定在广安经济技术开发区新桥工业园内投资100亿元建设高新电子信息材料产业基地,计划用地1000亩,广安市发改委以“川投资备(51160013060801)0006号”文出具了该项目备案通知书,其建设

聚酰亚胺树脂-名词解释

PI是什么?聚酰亚胺树脂(polyimide 简称PI)耐高温耐磨原材料 聚酰亚胺树脂 简称PI)一、外观:透明液体,黄色粉末,棕色颗粒,琥珀色颗粒 聚酰亚胺树脂液体,聚酰亚胺树脂溶液,聚酰亚胺树脂粉末,聚酰亚胺树脂颗粒,聚酰亚胺树脂料粒,聚酰亚胺树脂粒料,热塑性聚酰亚胺树脂溶液,热塑性聚酰亚胺树脂粉末,热固性聚酰亚胺树脂溶液,热固性聚酰亚胺树脂粉末,热塑性聚酰亚胺纯树脂,热固性聚酰亚胺纯树脂二、聚酰亚胺PI成型方法包括:高温固化、压缩模塑、浸渍、喷涂法、压延法、注塑、挤出、压铸、涂覆、流延、层合、发泡、传递模塑、模压成型。 三、聚酰亚胺PI的应用聚酰亚胺是耐热最好的聚合物之一,又具有很高的机械性能和优异的民性以、耐辐射耐磨性等性能,自问世以来获得迅速发展,广泛用于航空航天、电气电子、机车、汽车、精密机械和自动办公机械等领域。典型的应用范围如:①矿山、医药和纺织工业中要求无油润滑的轴辊、轴套、衬套等;②汽车工业中,靠近发动机的环管、尾气管、刹车片、轴承、活塞环、定时齿轮、压缩机、真空泵和发电机零件、扣件、花键接头和电子联络器等;③发电工业、核工业要求耐辐射的结构零件;④电子工业上做印刷线路板、绝缘材料、耐热性电缆、接线柱、插座;⑤机械工业上做耐高温自润滑轴承、压缩机叶片和活塞环、密封圈、设备隔热罩、止推垫圈、轴衬等;⑥轻工电器行业、精密机械行业,如复印机、打印机等;⑦在航空领域可做发动机供燃系统零件、喷气发动机元件,还可做汽车发动机部件、飞机泡沫保温材料(与聚氨酯PU相比具有阻燃、无毒的优点)。总之,凡是要求材料具有耐高温、耐热氧化、耐辐射、耐腐蚀、自润滑或绝缘(介电)性能,在苛刻环境中工作的零部件,都使用这种材料。

聚酰亚胺科普材料

聚酰亚胺 一、概述 英文名:Polyimide ;简称:PI 。 聚酰亚胺是分子结构含有酰亚胺基团的芳杂环高分子化合物,可分为均苯型PI、可溶性PI、聚酰胺-酰亚胺(PAI)和聚醚亚胺(PEI)四类。聚酰亚胺是目前已经工业化的高分子材料中耐热性最高的品种,具有耐高温、耐低温、机械性能优越、耐有机溶剂、耐辐射、介电性能良好、无毒等诸多特性,可以作为薄膜、涂料、塑料、复合材料、胶粘剂、泡沫塑料、纤维、分离膜、液晶取向剂、光刻胶等产品,被称为“解决问题的能手”,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。在国家《新材料产业“十二五”发展规划》中,聚酰亚胺被列为重点发展的先进高分子材料。 一、性能 1、全芳香聚酰亚胺按热重分析,其开始分解温度一般都在500℃左右。由联苯四甲酸二酐和对苯二胺合成的聚酰亚胺,热分解温度达600℃,是迄今聚合物中热稳定性最高的品种之一。 2、聚酰亚胺可耐极低温,如在-269℃的液态氦中不会脆裂。 3、聚酰亚胺具有优良的机械性能,未填充的塑料的抗张强度都在100Mpa以上,均苯型聚酰亚胺的薄膜(Kapton)为170Mpa以上,而联苯型聚酰亚胺(Upilex S)达到400Mpa。作为工程塑料,弹性膜量通常为3-4Gpa,纤维可达到200Gpa,据理论计算,均苯四甲酸二酐和对苯二胺合成的纤维可达 500Gpa,仅次于碳纤维。

4、一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定,一般的品种不大耐水解,这个看似缺点的性能却使聚酰亚胺有别于其他高性能聚合物的一个很大的特点,即可以利用碱性水解回收原料二酐和二胺,例如对于Kapton薄膜,其回收率可达80%-90%。改变结构也可以得到相当耐水解的品种,如经得起120℃,500 小时水煮。 5、聚酰亚胺的热膨胀系数在2×10-5-3×10-5/℃,南京岳子化工YZPI热塑性聚酰亚胺3×10-5/℃,联苯型可达10-6/℃,个别品种可达10-7/℃。 6、聚酰亚胺具有很高的耐辐照性能,其薄膜在5×109rad快电子辐照后强度保持率为90%。 7、聚酰亚胺具有良好的介电性能,介电常数为3.4左右,引入氟,或将空气纳米尺寸分散在聚酰亚胺中,介电常数可以降到2.5左右。介电损耗为10-3,介电强度为100-300KV/mm,广成热塑性聚酰亚胺为300KV/mm,体积电阻为1017Ω·cm。这些性能在宽广的温度范围和频率范围内仍能保持在较高的水平。 8、聚酰亚胺是自熄性聚合物,发烟率低。 9、聚酰亚胺在极高的真空下放气量很少。 10、聚酰亚胺无毒,可用来制造餐具和医用器具,并经得起数千次消毒。有一些聚酰亚胺还具有很好的生物相容性,例如,在血液相容性实验为非溶血性,体外细胞毒性实验为无毒。 二、合成工艺 聚酰亚胺品种繁多、形式多样,在合成上具有多种途径,主要包

高性能基体树脂 复合材料增韧新途径

高性能基体树脂和复合材料增韧新途径前言:材料复合化是新材料技术的重要发展趋势之一。所谓高性能复合材料,是指具有高比模量、高比强度、优异的耐高温性能及多功能的复合材料。高性能复合材料主要以高性能纤维为增强体的复合材料为主,基体树脂作为高性能复合材料的重要组成部分,其性能及成本对高性能复合材料的设计、制备、性能、加工具有重要意义。 目前通用的高性能树脂基体通常可以分为两大类:热塑性和热固性树脂。高性能热固性树脂是目前使用最广泛的先进复合材料基体,其复合材料具有优异的力学性能,可在恶劣的环境下长期使用。环氧树脂是聚合物基复合材料中应用最广泛的基体树脂之一。EP是一种热固性树脂,具有优异的粘接性、耐磨性、力学性能、电绝缘性能、化学稳定性、耐高低温性,以及收缩率低、易加工成型、较好的应力传递和成本低廉等优点。但环氧树脂固化后交联密度高,呈三维网状结构,存在内应力、质脆、耐疲劳性、耐热性、耐冲击性差等不足,以及剥离强度、开裂应变低和耐湿热性差等缺点,加之表面能高,在很大程度上限制了它在某些高技术领域的应用。因此,对环氧树脂的增韧研究一直是人们改性环氧树脂的重要研究课题之一。 一、高性能基体树脂及其复合 1. 高性能基体树脂 材料是先进科技发展的重要物质基础,以高科技含量的航空航天领域为例,新型航空、航天飞行器的诞生往往建立在先进新材料研制的基础上,航空、航天飞行器性能的突破很大程度上受到材料发展水平的制约[1]。高性能树脂基复合材料以其轻质、高比强、高比模、高耐温和极强的材料一性能可设计性而成为发展中的高技术材料之一,其在航空、航天工业中的应用也显示出了独特的优势和潜力,是航空、航天材料技术进步的重要标志。 目前通用的高性能树脂基体通常可以分为两大类:热塑性和热固性树脂。 典型的高性能热塑性树脂包括热塑性聚酰亚胺、聚酰胺、聚醚砜、液晶聚酯、聚醚醚酮等。由于高性能热塑性树脂一般具有高的熔点和熔体黏度,作为复合材料基体使用时成型工艺性差,高温使用时易发生蠕变,极大地限制了其作为复合材料基体树脂的使用[2]。

聚酰亚胺薄膜的改性、分类与在电子行业中的应用

聚酰亚胺薄膜的改性、分类及其在电子行业中的应用 摘要 聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007。而由于其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手",并认为"没有聚酰亚胺就不会有今天的微电子技术"。由于上述聚酰亚胺在性能上的特点,在众多的聚合物中,很难找到如聚酰亚胺这样具有如此广泛的应用方面,而且在每一个方面都显示了极为突出的性能。 首先是在薄膜上的应用:它是聚酰亚胺最早的商品之一,用于电机的槽绝缘及电缆绕包材料。主要产品有杜邦Kapton,宇部兴产的Upilex系列和钟渊Apical。透明的聚酰亚胺薄膜可作为柔软的太阳能电池底板。其次是在微电子器件中的应用:用作介电层进行层间绝缘,作为缓冲层可以减少应力、提高成品率。作为保护层可以减少环境对器件的影响,还可以对a-粒子起屏蔽作用,减少或消除器件的软误差。再则还可应用在电-光材料中:其用作无源或有源波导材料光学开关材料等,含氟的聚酰亚胺在通讯波长范围内为透明,以聚酰亚胺作为发色团的基体可提高材料的稳定性。 聚酰亚胺作为很有发展前途的高分子材料已经得到充分的认识,在绝缘材料中和结构材料方面的应用正不断扩大。在功能材料方面正崭露头角,其潜力仍在发掘中。

关键词:聚酰亚胺;薄膜;低介电常数;电子工业 1.引言 聚酰亚胺(PI)是重复单元中含有酰亚胺基团的芳杂环高分子化合物,刚性酰亚胺结构赋予了聚酰亚胺独特的性能,如良好的力学性能、耐高温性能、尺寸稳定性、耐溶剂性等,成功应用于航空、航天、电子电器、机械化工等行业。随着微电子工业的不断发展,对相关材料的耐热性能以及介电性能等提出了更高的要求,这为PI材料在微电子领域内的应用起到了极大的推动作用[1]。而随

聚酰亚胺

展开 1 名 词 定 义 2 介 绍 3 概 述 4 分 类

. 1 缩聚型聚酰亚胺 4 . 2 加聚型聚酰亚胺 4 . 3 子类 5 性能 6 质量指标

合 成 途 径 8 应 用 9 展 望 1名词定义 中文名称: 聚酰亚胺 英文名称: polyimide,PI 定义: 重复单元以酰亚胺基为结构特征基团的一类聚合物。具有耐高温、耐腐蚀和优良的电性能。 应用学科: 材料科学技术(一级学科);高分子材料(二级学科);塑料(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 2介绍 聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200~300℃, 无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007,属F至H级绝缘材料。

英文名:Polyimide 简称:PI 聚酰亚胺 聚酰亚胺是指主链上含有酰亚胺环(-CO-N-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。 4分类 4.1缩聚型聚酰亚胺 缩聚型芳香族聚酰亚胺是由芳香族二元胺和芳香族二酐、芳香族四羧酸或芳香族四羧酸二烷酯反应而制得的。由于缩聚型聚酰亚胺的合成反应是在诸如二甲基甲酰胺、N-甲基吡咯烷酮等高沸点质子惰性的溶剂中进行的,而聚酰亚胺复合材料通常是采用预浸料成型工艺,这些高沸点质子惰性的溶剂在预浸料制备过聚酰亚胺 程中很难挥发干净,同时在聚酰胺酸环化(亚胺化)期间亦有挥发物放出,这就容易在复合材料制品中产生孔隙,难以得到高质量、没有孔隙的复合材料。因此缩聚型聚酰亚胺已较少用作复合材料的基体树脂,主要用来制造聚酰亚胺薄膜和涂料。 4.2加聚型聚酰亚胺 由于缩聚型聚酰亚胺具有如上所述的缺点,为克服这些缺点,相继开发出了加聚型聚酰亚胺。目前获得广泛应用的主要有聚双马来酰亚胺和降冰片烯基封端聚酰亚胺。通常这些树脂都是端部带有不饱和基团的低相对分子质量聚酰亚胺,应用时再通过不饱和端基进行聚合。 ①聚双马来酰亚胺 聚双马来酰亚胺是由顺丁烯二酸酐和芳香族二胺缩聚而成的。它与聚酰亚胺相比,性能不差上下,但合成工艺简单,后加工容易,成本低,可以方便地制成各种复合材料制品。但固化物较脆。 ②降冰片烯基封端聚酰亚胺树脂 其中最重要的是由NASA Lewis研究中心发展的一类PMR(for insitu polymerization of monomer reactants, 单体反应物就地聚合)型聚酰亚胺树脂。RMR型聚酰亚胺树脂是将芳香族四羧酸的二烷基酯、芳香族二元胺和5 -降冰片烯-2,3-二羧酸的单烷基酯等单体溶解在一种尝基醇(例如甲醇或乙醇)中,为种溶液可直接用于浸渍纤维。 4.3子类 聚酰亚胺是分子结构含有酰亚胺基链节的芳杂环高分子化合物,英文名Polyimide(简称PI),可分为均苯型P I,可溶性PI,聚酰胺-酰亚胺(PAI)和聚醚亚胺(PEI)四类。

[基体,研究进展,高性能]简说高性能树脂基体的最新研究进展

简说高性能树脂基体的最新研究进展 引言 材料是先进科技发展的重要物质基础。一代材料,一代装备,以高科技含量的航空航天领域为例,新型航空、航天飞行器的诞生往往建立在先进新材料研制的基础上,航空、航天飞行器性能的突破很大程度上受到材料发展水平的制约高性能树脂基复合材料以其轻质、高比强、高比模、高耐温和极强的材料性能可设计性而成为发展中的高技术材料之一,其在航空、航天工业中的应用也显示出了独特的优势和潜力,是航空、航天材料技术进步的重要标志。 目前通用的高性能树脂基体通常可以分为两大类: 热塑性和热固性树脂。典型的高性能热塑性树脂包括热塑性聚酰亚胺、聚酰胺、聚醚砜、液晶聚酯、聚醚醚酮等。由于高性能热塑性树脂一般具有高的熔点和熔体黏度,作为复合材料基体使用时成型工艺性差,高温使用时易发生蠕变,极大地限制了其作为复合材料基体树脂的使用。 高性能热固性树脂是目前使用最广泛的先进复合材料基体,其复合材料具有优异的力学性能,可在恶劣的环境下长期使用。按树脂应用性能特点可分为结构复合材料和功能复合材料热固性树脂。结构用热固性树脂制备的复合材料力学性能较优,一般用于航空航天飞行器的主、次承力结构,包括环氧树脂、双马来酰亚胺树脂、聚酰亚胺树脂等; 功能用热固性树脂制备的复合材料往往具有透波、吸波或抗烧蚀等特性,可作为航空航天飞行器功能结构部件,包括酚醛树脂、氰酸酯树脂等。此外,近年来国内外还发展了一些新型树脂体系,如聚三唑树脂、邻苯二甲腈树脂和有机/无机杂化树脂等。本文主要介绍高性能热固性树脂的研究进展。 1 双马来酰亚胺树脂 双马来酰亚胺树脂作为航空耐高温结构材料的主力树脂,其复合材料的耐高温性能和抗冲击损伤性能是影响应用的关键因素。北京航空材料研究院研制开发了QY260 树脂,该树脂体系经260℃固化后,Tg为325℃,其复合材料在260℃力学性能保留率55%,T300 复合材料冲击后压缩强度为202 MPa,综合性能基本达到美国氰特公司5270 双马来酰亚胺树脂的性能水平. 北京航空材料研究院张宝艳等采用烯丙基双酚A、双酚A 和E51 环氧在催化剂作用下制备一种新型改性剂,并以此改性双马树脂研制了5428、5429、6421 系列双马树脂,其树脂体系具有优异的抗冲击损伤能力,CAI 可达260 MPa。其中5428、5429 适用于热压罐和模压工艺,6421 可适用于RTM 成型工艺。 苏州大学梁国正课题组采用端氨基超支化聚硅氧烷改性双马来酰亚胺树脂,探讨了端氨基超支化聚硅氧烷含量对树脂性能的影响。研究结果表明,少量聚硅氧烷的加入不仅可以显著提高固化物的韧性,而且能有效加快树脂的凝胶时间,同时大幅度提高固化树脂的耐热性、介电性能和耐湿性。 中科院化学所赵彤课题组采用烯( 炔) 丙基醚化酚醛树脂改性双马树脂,研制了一类可

热塑性聚酰亚胺及其改性材料的热性能研究

《材料物理》课程论文 学生姓名:梁东学号:20140530 学院:材料科学与工程学院 专业年级:2014级材料化学2班 题目:热塑性聚酰亚胺及其改性材料的热性能研究指导教师:梁金老师 评阅教师:梁金老师 2016年6月

摘要 聚酰亚胺(PI)是一种高性能聚合物材料,具有优异的机械性能、电性能、耐辐射性能和耐热性能,广泛应用于航空航天、微电子和通讯等高技术领域,成为很有发展前景的材料之一。但多数 PI 具有不溶不熔的特性,加工成型十分困难,一定程度上限制了其应用范围,因此热塑性聚酰亚胺(TPI)成为发展方向之一。TPI 不仅具有优异的综合性能,而且更易于加工,生产效率更高,在经济效益和环保方面都优于传统的热固性聚酰亚胺,成为人们开发研制的热点。 TPI 可通过添加纤维提高力学性能,添加润滑剂提高耐磨性能,亦可与其它聚合物共混,使改性材料具有更优异的性能,应用于高科技领域。目前,对 PI 及其改性材料性能的研究,大多数是关于力学性能和摩擦磨损性能,很少具体研究其热性能。而聚酰亚胺的热性能,如玻璃化转变温度 Tg、热膨胀系数α是其应用于工业各领域重要的评价指标。 针对以上背景,本文首先测定了一种自主研发的 TPI 的玻璃化转变温度并通过改变分子量大小考察玻璃化转变温度与分子量的关系,及热处理温度和热处理时间对玻璃化转变温度的影响。结果表明:玻璃化转变温度随数均分子量的增大而增加,采用 Kanig-Ueberreiter 方程关联玻璃化转变温度与数均分子量,其线性拟合度高;由于聚酰亚胺的结构特点——存在自由端基,在高温可发生固相热环化反应,相应其分子量随处理温度的升高和处理时间的延长而增大,表现为聚合物的玻璃化转变温度有所升高。 为了进一步提高 TPI 的性能,扩大其应用范围,使其能在更加苛刻的环境下使用,TPI 的改性研究主要包括纤维增强的 TPI 树脂基复合材料及聚合物共混改性 TPI。但由于高分子材料的热膨胀系数比纤维、陶瓷等无机材料要大得多,两者复合后,随温度的变化,热应力不仅使高分子和基材剥离,还会产生龟裂和翘曲,模压塑料则产生裂纹等。另外高科技的发展,要求器械内部的空间更小,对材料的热稳定和热膨胀性能提出了更高的要求。 因此,本文在上一步工作的基础上,选出一种分子量的 TPI 树脂,测定其注塑件的热膨胀系数及其各向异性和尺寸稳定性;并考察了所添加的填料种类对热膨胀系数的影响。结果表明:TPI 存在着各向异性,且流向面的热膨胀系 数低。在正常的使用范围内,试样经历一个升降温循环后尺寸基本没发生变

我国高性能聚酰亚胺薄膜关键技术实现产业化讲解

我国高性能聚酰亚胺薄膜关键技术实现产业化 2011年07月13日10:04科学时报我要评论(0 字号:T|T [导读]列车在高速运行的状态下,发电机的温度会升得很高,如果电机绝缘系统耐热等级不够,电机线路之间极易发生短路,造成危险。 6月30日,备受关注的京沪高铁正式开通运营。世界各国也都在积极关注高铁的发展。而新材料是支撑高铁技术的关键。 列车在高速运行的状态下,发电机的温度会升得很高,如果电机绝缘系统耐热等级不够,电机线路之间极易发生短路,造成危险。而高铁的发电机之所以能够安全平稳地正常运行,全部得益于电机绝缘系统采用了一种叫做高性能聚酰亚胺薄膜的绝缘材料。 高性能聚酰亚胺薄膜还有一个别称——“黄金薄膜”。但长期以来,这种材料的研发和生产技术完全被美国和日本等国垄断着。 近日,中科院化学所与深圳瑞华泰薄膜科技有限公司召开新闻发布会宣布:由双方合作研发的高性能聚酰亚胺薄膜已成功实现产业化。 这意味着我国在这一技术领域打破了国外的长期技术垄断,跻身国际先进水平,同时也大大加快了我国航空航天、微电子、新能源、先进制造等领域高端材料应用的国产化进程。 八年攻关,满足产业渴求 高性能聚酰亚胺薄膜性能稳定,形态多样,用途广泛。在-269℃~400℃的范围内具有耐辐射、耐高热、不燃烧、高韧性、低损耗等特点,具有极高的商业价值和战略价值,被广泛应用于微电子、电气绝缘、航空航天等领域。 伴随着超大规模集成电路制造与封装等高新技术的发展,我国对高性能聚酰亚胺薄膜的需求也日益增加。上世纪90年代后期,我国对这种薄膜的年需求量为500吨,到了2010年就已经超过2800吨,每年以25%的速度增长。

详解特种 聚酰亚胺 PI

聚酰亚胺(PI) 概述 聚酰亚胺:英文名Polyimide (简称PI) 聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、 激光等领域。近来,各国都在将聚酰亚胺的研究、开发及利用列入21 世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没 有聚酰亚胺就不会有今天的微电子技术"。 分类 聚酰亚胺可分成缩聚型和加聚型两种。 (1)缩聚型聚酰亚胺缩聚型芳香族聚酰亚胺是由芳香族二元胺和芳香族二酐、芳香族四羧酸 或芳香族四羧酸二烷酯反应而制得的。由于缩聚型聚酰亚胺的合成反应是在诸如二甲基甲酰胺、N -甲基吡咯烷酮等高沸点质子惰性的溶剂中进行的,而聚酰亚胺复合材料通常是采用预浸料成型工 艺,这些高沸点质子惰性的溶剂在预浸料制备过程中很难挥发干净,同时在聚酰胺酸环化(亚胺化)期间亦有挥发物放出,这就容易在复合材料制品中产生孔隙,难以得到高质量、没有孔隙的复合材料。因此缩聚型聚酰亚胺已较少用作复合材料的基体树脂,主要用来制造聚酰亚胺薄膜和涂料。 (2)加聚型聚酰亚胺由于缩聚型聚酰亚胺具有如上所述的缺点,为克服这些缺点,相继开发 出了加聚型聚酰亚胺。目前获得广泛应用的主要有聚双马来酰亚胺和降冰片烯基封端聚酰亚胺。通常这些树脂都是端部带有不饱和基团的低相对分子质量聚酰亚胺,应用时再通过不饱和端基进行聚合。 ①聚双马来酰亚胺聚双马来酰亚胺是由顺丁烯二酸酐和芳香族二胺缩聚而成的。它与聚酰亚 胺相比,性能不差上下,但合成工艺简单,后加工容易,成本低,可以方便地制成各种复合材料制品。但固化物较脆。 ②降冰片烯基封端聚酰亚胺树脂其中最重要的是由NASA Lewis 研究中心发展的一类PMR (for insitu polymerization of monomer reactants, 单体反应物就地聚合)型聚酰亚胺树脂。R MR 型聚酰亚胺树脂是将芳香族四羧酸的二烷基酯、芳香族二元胺和5-降冰片烯-2,3-二羧酸的单烷基酯等单体溶解在一种尝基醇(例如甲醇或乙醇)中,为种溶液可直接用于浸渍纤维。 聚酰亚胺的性能 1、全芳香聚酰亚胺按热重分析,其开始分解温度一般都在500℃左右。由联苯四甲酸二酐和

PI (聚酰亚胺)简介

PI (聚酰亚胺)简介 GCPI(聚酰亚胺)简介 热塑性聚酰亚胺树脂(Polyimide),简称PI树脂)是热塑性工程塑料。它属耐高温热塑性塑料,具有较高的玻璃化转变温度(243℃)和熔点(334℃),负载热变型温度高达260℃(30%玻璃纤维或碳纤维增强牌号),可在250℃下长期使用,与其他耐高温塑料如PEEK、PPS、PTFE、PPO等相比,使用温度上限高出近50℃; PI树脂不仅耐热性比其他耐高温塑料优异,而且具有高强度、高模量、高断裂韧性以及优良的尺寸稳定性;PI树脂在高温下能保持较高的强度,它在200℃时的弯曲强度达24MPa左右,在250℃下弯曲强度和压缩强度仍有12~13MPa;PI树脂的刚性较大,尺寸稳定性较好,线胀系数较小,非常接近于金属铝材料; 具有优异的耐化学药品性,在通常的化学药品中,只有浓硫酸能溶解或者破坏它,它的耐腐蚀性与镍钢相近,同时其自身具有阻燃性,在火焰条件下释放烟和有毒气体少,抗辐射能力强;PI树脂的韧性好,对交变应力的优良耐疲劳性是所有塑料中最出众的,可与合金材料媲美; PI树脂具有突出的摩擦学特性,耐滑动磨损和微动磨损性能优异,尤其是能在250℃下保持高的耐磨性和低的摩擦系数;PI树脂易于挤出和注射成型,加工性能优异,成型效率较高。 此外,PI还具有自润滑性好、易加工、绝缘性稳定、耐水解等优异性能,使得其在航空航天、汽车制造、电子电气、医疗和食品加

工等领域具有广泛的应用,开发利用前景十分广阔。

PI (聚酰亚胺)主要特性 GCPI(聚酰亚胺)主要特性 热塑性聚酰亚胺树脂(PI)的综合性能,非常优秀,它具有抗腐蚀、抗疲劳、耐高温、耐磨损、耐冲击、密度小、噪音低、使用寿命長等特点, 优良的高低温性能(长期-269℃---280℃不变形); 在极广温度范围内保持长期的耐蠕变和耐疲劳性; 在280°C (512°F) 下有足够高的抗拉强度和弯曲模量; 改进的耐压强度; 对化学品、溶剂,润滑油和燃料的超常抗力,密封性好; 固有的阻燃性、无烟尘排放性; 噪音低,自润滑性能好, 可无油自润滑; 热膨胀系数低; 密度小,硬度高; 吸水率低; 良好的电气性; 极好的抗水解性能; 有粉末状或颗粒状两种类型供选,另外还有例如板材,棒材和管材等半成品。 在一些用途中,如果产品的数量不是很多,最为经济和灵活的生产方式是模压型材。高性能塑料型材通过热模压而成,具有比注塑件更好的致密性,同时避免注塑件造成的融接线形成的强度降低等缺陷;高

聚酰亚胺基础知识

聚酰亚胺 聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007,属F至H级绝缘材料 聚酰亚胺是指主链上含有酰亚胺环的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。 缩聚型聚酰亚胺 缩聚型芳香族聚酰亚胺是由芳香族二元胺和芳香族二酐、芳香族四羧酸或芳香族四羧酸二烷酯反应而制得的。由于缩聚型聚酰亚胺的合成反应是在诸如二甲基甲酰胺、N-甲基吡咯烷酮等高沸点质子惰性的溶剂中进行的,而聚酰亚胺复合材料通常是采用预浸料成型工艺,这些高沸点质子惰性的溶剂在预浸料制备过程中很难挥发干净,同时在聚酰胺酸环化(亚胺化)期间亦有挥发物放出,这就容易在复合材料制品中产生孔隙,难以得到高质量、没有孔隙的复合材料。因此缩聚型聚酰亚胺已较少用作复合材料的基体树脂,主要用来制造聚酰亚胺薄膜和涂料。 加聚型聚酰亚胺 由于缩聚型聚酰亚胺具有如上所述的缺点,为克服这些缺点,相继开发出了加聚型聚酰亚胺。目前获得广泛应用的主要有聚双马来酰亚胺和降冰片烯基封端聚酰亚胺。通常这些树脂都是端部带有不饱和基团的低相对分子质量聚酰亚胺,应用时再通过不饱和端基进行聚合。 ①聚双马来酰亚胺 聚双马来酰亚胺是由顺丁烯二酸酐和芳香族二胺缩聚而成的。它与聚酰亚胺相比,性能不差上下,但合成工艺简单,后加工容易,成本低,可以方便地制成各种复合材料制品。但固化物较脆。 ②降冰片烯基封端聚酰亚胺树脂 其中最重要的是由NASA Lewis研究中心发展的一类PMR(for insitu polymerization of monomer reactants, 单体反应物就地聚合)型聚酰亚胺树脂。RMR型聚酰亚胺树脂是将芳香族四羧酸的二烷基酯、芳香族二元胺和5-降冰片烯-2,3-二羧酸的单烷基酯等单体溶解在一种尝基醇(例如甲醇或乙醇)中,为种溶液可直接用于浸渍纤维。

高性能树脂

聚苯醚 一、聚苯醚的结构特点: (1)线性主链上含有-O-,本应增大链的柔曲性,但是由于次苯基芳环,使得链段的内旋转困难,从而使分子链变硬,刚性增大,T g 增高,熔点升高,粘度增大,加工困难。 (2)链的刚性增大,一方面使高聚物受力时变形小,尺寸稳定性好,机械强度高。另一方面刚性大,阻碍了分子的结晶和取向,制品易产生内应力。 (3)两个侧甲基封闭了酚基的二个活性点,使聚合物稳定性增大,导致制品耐热、耐腐蚀性提高。 (4)由于分子链上无极性基团,吸湿性低,具有优良的电绝缘性和尺寸稳定性; (5)分子链中无任何可水解的基团,具有十分突出的耐水性。 二、聚苯醚的性能特点: (1)物理性能纯PPO为琥珀色透明固体。难燃,离火后熄灭,火焰明亮有浓黑烟,熔融后发出花果臭气味。 (2)PPO具有优良的力学性能,拉伸强度和弯曲强度高,优异的抗蠕变性能在所有工程塑料中名列前茅。(在 120℃、10MPa负荷下经500h 后,蠕变值仅0.98%) (3) 聚苯醚具有较高的耐热性,它的玻璃化温度为210℃,分解温度

为350℃,马丁耐热温度为160℃,脆化温度低于-170℃,热变形温度为190℃,最高连续使用温度为120℃,间断使用温度可达205℃。 (4) PPO和 MPPO的耐水性十分突出,蒸煮10 000 h 后,它的拉伸强度、伸长率和冲击强度均没有明显的降低,因此可作为高温下耐水制品使用。对于以水为介质的化学药品(如酸、碱、盐、洗涤剂等),无论是在室温还是在高温下都能抵抗。 三、改性的聚苯醚: 由于加工流动性差、易应力开裂、价格昂贵,目前工业上使用的聚苯醚主要是改性聚苯醚。主要品种:1,聚苯醚/高抗冲聚苯乙烯(HIPS)[加工性能,阻燃性能,耐热性能],2聚苯醚/ABS合金 [耐冲击性、耐应力开裂性],3 聚苯醚/聚苯硫醚合金 [耐热性、加工性]4,聚苯醚/聚酰胺合金[高韧性、尺寸稳定性、耐热性] 四、聚苯醚的成型加工方法: 聚苯醚和改性聚苯醚的主要成型加工方法:注塑(复杂的嵌件),其次是挤塑、吹塑和发泡(耐热,阻燃,隔音)。 五、聚苯醚的加工工艺特性: (1)聚苯醚熔体粘度大,因此加工时应提高温度并适当增加注射压力以提高熔体充模流动能力. (2)聚苯醚的分子链刚性大、玻璃化转变温度高,不易结晶和取向,强迫取向后很难松驰,所以制品内残余内应力高,因此在成型后可通过后处理予以消除 (3)聚苯醚为无定型聚合物,成型收缩率较小,一般为0.2%~

聚酰亚胺薄膜生产工艺及物性

聚酰亚胺薄膜生产工艺及物性 聚酰亚胺薄膜是一种新型的耐高温有机聚合物薄膜 , 是由均苯四甲酸二酐(PMDA)和二氨基二苯醚(ODA)在极强性溶剂二甲基乙酰胺(DMAC)中经缩聚并流涎成膜,再经亚胺化而成.它是目前世界上性能最好的薄膜类绝缘材料,具有优良的力学性能、电性能、化学稳定性以及很高的抗辐射性能、耐高温和耐低温性能 (-269 ℃至+ 400 ℃ )。1959 年美国杜邦公司首先合成出芳 香族聚酰亚胺 ,1962 年试制成聚酰亚胺薄膜 (PI薄膜 ),1965 年开始生产 , 商品牌号为KAPTON。我国 60 年代末可以小批量生产聚酰亚胺薄膜,现在已广泛应用于航空、航海、宇宙飞船、火箭导弹、原子能、电子电器工业等各个领域。 一、薄膜的制造 聚酰亚胺薄膜的生产基本上是二步法,第一步:合成聚酰胺酸,第二步:成膜亚胺化。成膜方法主要有浸渍法(或称铝箔上胶法)、流延法和流涎拉伸法。浸渍法设备简单、工艺简单,但薄膜表面经常粘有铝粉,薄膜长度受到限制,生产效率低,此法不宜发展;流涎法设备精度高,薄膜均匀性好,表面干净平整,薄膜长度不受限制,可以连续化生产,薄膜各方面性能均不错,一般要求的薄膜均可采用此法生产;拉伸法生产的薄膜,性能有显著提高,但工艺复杂生产条件苛刻,投资大,产品价格高,只有高质量薄膜才采用此法。因此本站只介绍流涎法。 流涎法主要设备:不锈钢树脂溶液储罐、流涎嘴、流涎机、亚胺化炉、收卷机 和热风系统等。 制备步骤: 消泡后的聚酰胺酸溶液,由不锈钢溶液储罐经管路压入前机头上的流涎嘴储槽中。钢带以图 所示方向匀速运行,将储槽中的溶液经流涎嘴前刮板带走,而形成厚度均匀的液膜,然后进 入烘干道干燥。 洁净干燥的空气由鼓风机送入加热器预热到一定温度后进入上、下烘干道。热风流动方向 与钢带运行方向相反,以便使液膜在干燥时温度逐渐升高,溶剂逐渐挥发,增加干燥效果。

高性能树脂材料应用与研究

高性能树脂基材料应用 前言 总结复合材料的现实应用有以下几个方面: (1)宇航工业 用作防热及结构材料如火箭喷管、 鼻锥、大面积防热层;卫星构架、天线、太阳能翼片底板、结合部件;机头,机前缘和舱门等制件;望远镜的测量构架,太阳能电池板和无线电天线。 (2)航空工业 用作主承力结构材料,如主翼、尾翼和机体;次承力构件,如方向舵、 起落架、副翼、扰流板、发动机舱、整流罩及座板等,此外还有 C/C 刹车片。 (3)交通运输 用作汽车传动轴、板簧、构架和刹车片等制件;船舶和海洋工程用作制 造渔船、快艇、快艇和巡逻艇,以及赛艇的桅杆、航杆、壳体及划水浆;海底电缆、潜水艇、雷达罩、深海油田的升降器和管道。 (4)运动器材 用作网球、羽毛球、和壁球拍及杆、棒球、曲棍球和高尔夫球杆、自行 车、赛艇、钓杆、滑雪板、雪车等。 (5)土木建筑 幕墙、嵌板、间隔壁板、桥梁、架设跨度大的管线、海水和水轮结构的 增强筋、地板、窗框、管道、海洋浮杆、面状发热嵌板、抗震救灾用补强材料。 (6)其它工业 化工用的防腐泵、阀、槽、罐;催化剂,吸附剂和密封制品等。生体和医疗器材如人造骨骼、牙齿、韧带、X光机的床板和胶卷盒。编织机用的剑竿头和剑竿防静电刷。其它还有电磁屏蔽、电极度、音响、减磨、储能及防静电等材料也已获得广泛应用 一、选题 碳纤维增强尼龙66的研究

聚酰胺(Polymaide,简称PA)俗称尼龙,是五大工程塑料之一,自1889年Gariel和Maass两人首先在实验室合成,已有100多年的历史。尼龙66不仅最先被开发出来,也是目前用量最大的工程塑料品种。因其大分子链中含有酰胺键,能形成氢键,具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小等特点,尼龙66在与其他工程塑料的激烈竞争中稳步迅速增长,从1998年至2002年的5年间,国内五大工程塑料市场需求保持30.3%的增长速度。但是尼龙66存在低温和干态冲击性能差,吸水性大等弱点,使其应用领域受到一定限制,为适应工业发展的需要,国内外研制出更多综合性能优越,可满足特殊要求的改性尼龙材料,使普通工程塑料向高性能的工程塑料和功能塑料发展,对尼龙的增强增韧技术进行了研究,使其进一步高性能化、结构化和工程化。 增强改性是在尼龙66中添加纤维、填料等具有增强作用的材料,使尼龙66的弯曲强度、拉伸强度等性能大幅度提高。具有增强作用的材料有纤维类、片状、针状超细(纳米)无机填料以及有机高聚物等。在PA66树脂中加入玻璃纤维(GF)、碳纤维(CF)、钦酸钾晶须短纤维、芳香族聚酞胺纤维(KF)、无机矿物填料等,不仅保持了PA树脂的耐化学性、良好的加工性等固有优点,而且力学性能、耐热性有了大幅度提高,尺寸稳定性等也有明显改善。

聚酰亚胺简介

聚酰亚胺(英文名Polyimide,简称PI)泡沫,是聚酰亚胺树脂原材料与发泡剂、泡沫稳定剂等助剂通过聚合发泡反应而成的泡沫材料。PI泡沫种类多,密度(5~400kg/m3),具有可设计,绝缘性突出,特别是具有优异的耐高低温(-250~450℃)、耐辐射、难燃、低发烟,以及无有害气体释放等性能,这些独特的性能是传统泡沫塑料所无法比拟的。因此,PI 泡沫材料是一种具有极大应用价值和开发潜力的新型材料,越来越多地用做航空航天、国防军工、微电子等高新技术领域的隔热、减震降噪和绝缘等关键材料。目前,全球只有美国、日本等少数几个国家可以生产聚酰亚胺高分子材料,其高端产品由于应用领域的特殊性(主要运用于航天、超高速飞机制造等军工领域),其技术和产品基本不对中国出口。 主要研发机构,生产商 聚酰亚胺泡沫最早出现于1966年,由杜邦(Dupont)公司利用添加了发泡剂的聚酰胺酸溶液涂膜发泡制得。上世纪70年代,美国NASA 兰利(Langley)研究中心与Unitika America公司合作开发、研究出用于航天飞船绝热保温的聚酰亚胺泡沫材料。 美国、日本、中国等国家的科研院所、企业经过半个世纪的研究发展,已经有一定的性能稳定的商品化产品和实际应用,如美国的Boyd Corporation的Solimide PI泡沫、Monsanto的Skybond PI泡沫、陶氏公司的Rohacell 聚甲基丙烯酰亚胺泡沫都已满足美国DOD-F24 688 军标,被美国防部指定为海军船舶的绝热保温材料,并在民用船舶,如豪华游船、快艇、液化天然气船上也得到广泛的应用。 国内的研发科研机构和生产企业有上海合成树脂研究所、中科院长春应用化学研究所、天晟新材(PI泡沫系列)、中科院宁波材料所(PI微发泡粒子)等。 应用领域 航空 航空飞行器要求所采用的材料在满足其他性能的基础上应尽可能的轻质,以节省燃油,提高载重量。一种海绵状的、轻的PI泡沫材料耐燃温度达800°F,而且即使在该温度下,PI泡沫材料也仅仅是炭化、分解,可使飞行中的事故减少。如果由于外部燃油起火造成事故,该材料还能延长飞机乘客的救生时间2-5分钟。目前波音、洛克希德马丁、通用、空客、道尼尔等航空巨头在其所制造的飞行器上广泛使用PI泡沫。不仅是大型航空飞行器,民用小型飞机也广泛采用PI泡沫作为夹层材料使用。由于PI泡沫优良的性能,其成为飞机等航空飞行器的理想泡沫材料。 航天 在航天飞行器上,如,航天飞机、空间站、火星探测器、登月舱,由于其特殊的作业环境,使得部件上的材料不仅要承受飞行带来的高温,同时还要具备轻质、阻燃、吸声、减震等性能。为此,NASA启动了“高速飞行器计划(High Speed Research Program)”来研制能满足在极端环境下使用的材料,TEEK系列聚酰亚胺泡沫在此过程中应运而生。PI泡沫被用做低温贮箱、透波材料、机身隔热体系、飞行器的座椅,还可将PI制作成蜂窝结构材料等。用PI泡沫-铝-PI泡沫制备的隔热体系能在-217℃和超声速飞行环境204℃中保持良好的隔热性能。 舰艇 目前,美国海军已把PI泡沫用作所有水面战舰和潜艇的隔热、隔声材料,其在民用船舶,如豪华游轮、快艇、液化天然气船上也得到广泛的应用。PI泡沫在舰船上的应用主要有:·有隔热、隔声要求的船侧壳体、舱壁、舱顶;·船上高于37℃的冷却水管线,高温蒸汽管线;·要求作声音透射损失处理的潜艇壳体和框架部件;·为了防止结雾需要进行热和蒸汽隔离处理的潜艇壳体和框架部件;·低温容器的保温。 建筑 PI泡沫相较其它传统的泡沫材料,具有更佳的阻燃性能、耐热性能、隔热性能、吸声

热固性与热塑性PI

热塑性聚酰亚胺 热塑性聚酰亚胺,是新一代的高性能特种工程塑料,比传统的热固性聚酰亚胺有一些优点,最引人注目的是改进了韧性和热加工和成型的能力。在过去几年里,几种新的耐高温热塑性聚酰亚胺已经实现商业化。热塑性聚酰亚胺不仅保留了传统热固性聚酰亚胺的高强度、耐高温、耐化学腐蚀、介电性好、抗辐射等特性,而且提高了可加工性,除可采用热模压成型方法外,也可采用挤出或注射方法成型。热固性聚酰亚胺是化学交联的,固化后不能重新成型(即:交联),而热塑性聚酰亚胺是完全反应的线性聚合物,含有亚胺基团-CONCO-作为聚合物链的一部分。由于热塑性聚酰亚胺在加工期间没有化学交联,它们可以被再模塑和再成型。 热塑性聚酰亚胺主要特性 1、突出的可加工特性:可注塑、挤出、热模压、喷涂成型;加工时无小分子 放出,收缩率小,制件尺寸精度高 2、综合力学性能优异:高模量,耐冲击,抗蠕变,是一种理想的结构功能材 料 3、热变形温度高,耐热性好,在较宽的高低温范围内具有良好的力学强度 4、绝缘性好,介电性能优异 5、化学性质稳定,耐各类油脂、有机溶剂;阻燃、抗老化 6、耐磨损,为一种出色的减摩、增磨基体材料 7、材料纯净:加工和使用过程中无对环境污染小分子物质放出。 化学与性能 由于芳香环结合到聚合物构架中而带来更高的热稳定性,商业化的热塑性聚酰亚胺来源于芳香双胺和芳香二酐。芳香聚酰亚胺的制备通常涉及芳香双胺和芳香二酐的缩聚作用,该作用发生在合适的反应介质中,并生成一中间产物聚酰胺酸。生成的聚酰胺酸可用在一些领域上或者通过热或化学作用转换成具一般结构的线性热塑性聚酰亚胺。 芳香族热塑性聚酰亚胺的主要性质是突出的高玻璃化温度(Tg),显著的耐高温性,韧性,好的电性能,固有的阻燃性和高耐辐射性。但是,由于热塑性聚酰亚胺相对高的Tg和熔融粘度,制造时要求一相对高的加工温度。在有些情况下,加工温度可能超过聚酰亚胺的分解温度。虽然加工温度在其热分解温度以上的线性芳香聚酰亚胺从理论上是热塑性塑料,但它们通常被称为假热塑性聚酰亚胺。在这种情况下,比最终聚酰亚胺更易溶解和熔融的聚酰胺酸中间产物,可能在受热转化成聚酰亚胺以前就变成薄膜或型件。芳香族聚酰亚胺难加工的问题,在某种程度上已经通过在聚合物链中双配和双胺任一或两者的芳环之间引人如酮、醚和六氟异亚丙基基团之类的柔性链而得到解决。改善热塑性聚酰亚胺的可加工性的一种特别有效的芳香族双胺是全氟异亚丙基双胺(4一BDAF)。4-BDAF与芳香二酐反应生成具有如右上图结构的聚酰亚胺。

热塑性树脂

热塑性树脂是指具有线型或分枝型结构的有机高分子化合物。这一类树脂的特点是遇热软化或熔融而处于可塑性状态,冷却后又变坚硬,而且这一过程可以反复进行。典型代表性热塑性树脂如聚烯烃、氟树脂、聚酰胺、聚酯、聚碳酸酯、聚甲醛、聚丙烯-十二烯-苯乙烯(ABS树脂)、聚苯乙烯-丙烯腈(SAN或AS 树脂)等。 这类塑料虽有许多优点,但仍有不少不足之处,如强度、硬度、耐热性、尺寸精度等较低,热膨胀系数较大,力学性能受温度影响较大,蠕变、冷流、耐负荷变形较大等。 用玻璃纤维增强热塑性树脂而制得的热塑性玻璃纤维增强复合材料,不仅可使上述缺点得到不同程度的改善,还可使某些性能达到或超过热固性玻璃纤维增强复合材料的水平,而且仍可以用一般注射方法成型。纤维的含量通常在20%~40%。总的来说,用(玻璃)纤维增强热塑性塑料,可以达到下述效果:①提高拉伸、弯曲、压缩等力学强度及弹性模量,改善蠕变性能;②提高热变形温度;③降低线膨胀系数;④降低吸水率,增加尺寸稳定性;⑤改善热导率;⑥提高硬度;⑦抑制应力开裂;⑧阻迟燃烧性;⑨改善电性能。 玻璃纤维增强热塑性复合材料的不足之处,主要是冲击韧性降低,冲击疲劳韧性有所下降,但带缺口冲击韧性有所提高。 ◆热塑性树脂的基本性能 1、力学性能决定合成树脂力学性能的结构因素有以下五个:①大分子链的主价力;②分子间的作用力;③大分子链的柔韧性;④分子量;⑤大分子链的交联密度。热塑性树脂与热固性树脂在结构上的显著差别在于前者的大分子链为线型结构,而后者的大分子链为体型网状结构。由于这一结构上的差别,使热塑性树脂与热固性树脂相比在力学性能上有以下几个显著特点:①具有明显的力学松弛现象;②在外力作用下,形变的能力较大,即当应变速度不大进,可具有相当大的断裂延伸率;③抗冲击性能好。 2、电学性能热塑性树脂的电性能按其大分子的极性不同可分成以下几类: (1)非极度性的这类树脂如聚乙烯、聚丁二烯、聚四氟乙烯等。 (2)弱极性的这杰树脂如聚苯乙烯、聚异丁烯、天然橡胶等。 (3)极性的这类树脂如聚氯乙烯、聚乙酸乙烯酯、聚酰胺、聚甲基丙烯酸甲酯等。 (4)强极性的这类树脂如聚酯。 非极性树脂具有优异的绝缘性能,对腐蚀性介质稳定,可作为高频率的电解质。弱极性与极性的树脂可用于中频率的电工技术。强极性树脂只能作为低频率的介电体。 ◆复合材料常用热塑性树脂 迄今,几乎所有的热塑性树脂皆可用玻璃纤维或其它纤维增强。下面对增强效果比较显著,并得到广泛应用的树脂作一介绍: 1、聚烯烃 聚烯烃树脂是一类发展最快、品种最多、产量最大的热塑性树脂,主要品种有聚氯乙烯、聚乙烯、聚

相关文档
最新文档