北京市第41中学初一上第四章几何图形初步测试题及答案

合集下载

2024年-人教版数学七年级上册第四章几何图形初步单元测试

2024年-人教版数学七年级上册第四章几何图形初步单元测试

第四章 几何图形初步 单元测试一、选择题(每小题3分,共36分) 1.下列四个式子中,是方程的是( ) A.1+2+3+4=10 B.2x-3 C.x=1 D.2x-3>02.已知x=2是关于x 的方程3x+a=0的一个解,则a 的值是() A.-6 B.-3 C.-4 D.-53.下列变形,正确的是( ) A.4x-5=3x+2变形得4x-3x=-2+5 B.3314321132+=-+=-x x x x 变形得 C.6213)3(2)1(3+=-+=-x x x x 变形得 D.3x=2变形得x=324.下列方程中,是一元一次方程的是() A.20085213==+x x B.x x 3132=+ C.322=+y y D.10036=-y x5.下列四个方程:✍121=-x ;✍212+=-x x ✍;2)1(21=+x ✍.12312-=+x x 其中解为x=3的方程有() A. 1个 B.2个 C.3个 D.4个 6.把方程2133123+-=-+x x x 去分母,正确的是() A.)1(318)12(218+-=-+x x x B.)1(3)12(3+-=-+x x x C.)1(18)12(18+-=-+x x x D.)1(33)12(23+-=-+x x x7.若关于x 的方程mx+11=2(m-x)-5x 的解满足|x+2|=0,则m 的值为() A.34 B.34- C.43 D.43-8.若关于x 的方程2x=-4和x=1-k 的解相同,则k k -2的值是() A.6 B.0 C.-6 D.-139.一项工程甲单独做需要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列出的方程是()A.1504040=++x x B.1504040=⨯+xx C.15040=+x x D.15040404=++xx 10.某车间22名工人生产自行车架和车轮,每人每天平均生产1200个自行车架或2000个自行车轮,一个自行车架要配两个自行车轮。

人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)一、选择题1.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒D解析:D【分析】 根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + C解析:C【分析】由条件可知EC+DF=m-n ,又因为E ,F 分别是AC ,BD 的中点,所以AE+BF=EC+DF=m-n ,利用线段和差AB=AE+BF+EF 求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E 是AC 的中点,F 是BD 的中点,∴AE=EC ,DF=BF ,∴AE+BF=EC+DF=m-n ,∵AB=AE+EF+FB ,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.5.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 6.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.7.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC =83AB 可求出BC 的长,根据中点的定义可求出BD 的长,利用线段的和差关系求出AD 的长即可.【详解】∵BC =83AB ,AB=6cm , ∴BC=6×83=16cm , ∵D 是BC 的中点,∴BD=12BC=8cm , ∵反向延长线段AB 到C ,∴AD=BD-AB=8-6=2cm ,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.8.22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 9.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.10.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题11.如图,点C、D在线段AB上,D是线段AB的中点,AC=13AD ,CD=4cm ,则线段AB的长为_____cm【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC=13AD ,CD=4cm ,求出AD,再根据D是线段AB的中点,即可求得答案.【详解】∵AC=13AD ,CD=4cm ,∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】 本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________. 【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.14.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.15.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD【分析】根据线段之间的和差关系进行解答即可得答案.【详解】(1)AC=AD-CD=AB+BC ,(2)BC+CD=BD=AD-AB,(3)AD=AC+CD,故答案为:CD;BC;BD;AD;CD【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.16.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.17.如图,点C是线段AB的中点,点D,E分别在线段AB上,且ADDB=23,AEEB=2,则CDCE的值为____.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE=11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.18.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a和b的大小,结果可能有种情况,它们是_______________.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.19.如图所示,能用一个字母表示的角有________个,以点A为顶点的角有________个,图中所有大于0°小于180°的角有________个.37【分析】根据角的概念和角的表示方法依题意求得答案【详解】能用一个字母表示的角有2个:∠B∠C;以A为顶点的角有3个:∠BAD∠BAC∠DAC;大于0°小于180°的角有7个:∠BAD∠BAC∠D解析:3 7【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】能用一个字母表示的角有2个:∠B,∠C;以A为顶点的角有3个:∠BAD,∠BAC,∠DAC;大于0°小于180°的角有7个:∠BAD,∠BAC,∠DAC,∠B,∠C,∠ADB,∠ADC.故答案为2,3,7.【点睛】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1.角+3个大写英文字母;2.角+1个大写英文字母;3.角+小写希腊字母;4.角+阿拉伯数字.20.已知∠A=67°,则∠A的余角等于______度.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.解析:(1)射线OC的方向是北偏东70°;(2)∠COE=70°;(3)∠AOD=90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOC=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COE的度数;(3)根据射线OD平分∠COE,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA的方向是北偏东15°,射线OB的方向是北偏西40°即∠NOA=15°,∠NOB=40°,∴∠AOB=∠NOA+∠NOB=55°,又∵∠AOB=∠AOC,∴∠AOC=55°,=°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.24.如图,点C为线段AD上一点,点B为CD的中点,且6cmBD=.AC=,2cm(1)图中共有多少条线段?(2)求AD的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.25.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数.解析:(1)135°;(2)54°【分析】(1)利用OC 平分∠AOE ,可得∠AOC =12∠AOE =12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB ,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE 平分∠COF ,可得∠COE=∠EOF=12∠COF=32x°,即可得出. 【详解】(1)∵∠AOE=90°,OC 平分∠AOE ,∴∠AOC =12∠AOE =12×90°=45°, ∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.26.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。

七年级数学上册 第四章 几何图形初步练习题

七年级数学上册 第四章 几何图形初步练习题

DC BAββββαααα第3题图第四章 几何图形初步练习题一、选择题一、下面左侧是用八块完全相同的小正方体搭成的几何体,从上面看该几何体取得的( ) 二、如图,关于直线AB ,线段CD ,射线EF ,其中能相交的是( ) 3、如图,四个图形是由立体图形展开取得的,相应的立体图形按序是( )A. 正方体、圆柱、三棱柱、圆锥B. 正方体、圆锥、三棱柱、圆柱C. 正方体、圆柱、三棱锥、圆锥D. 正方体、圆柱、四棱柱、圆锥 4、以下说法中正确的选项是( )A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长 五、如图,将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( )六、点E 在线段CD 上,下面四个等式①CE =DE ;②DE =21CD ;③CD =2CE ; ④CD =21DE.其中能表示E 是线段CD 中点的有( ) A. 1个 B. 2个 C. 3个 D. 4个 二、填空题一、 ________度________分;1224'=________。

二、要在墙上固定一根木条,至少要 个钉子,依照的原理是 。

3、如图,假设D 是AB 中点,E 是BC 中点,假设AC=8,EC=3,AD =_________。

4、已知线段AB ,延长AB 到C ,使BC =2AB ,D 为AB 的中点,假设BD =3cm ,那么AC 的长为 cm. 三、作图题第25题图E A /DC B ADCBA一、依照以下语句,画出图形. 已知四点A 、B 、C 、D. (1) 画直线AB ;(2) 连接AC 、BD ,相交于点O ; (3) 画射线AD 、BC ,交于点P .2、A 、B 是河流l 两旁的两个村落,现要在河边修一个抽水站向两村供水,问抽水站修在什么地址才能使所需的管道最短?请在图中表示出抽水站点P 的位置,并说明你的理由:四、计算题一、 如图,D 是AB 的中点, E 是BC 的中点,BE=51AC=2cm, 求线段DE 的长。

人教版七年级上册数学 第四章 几何图形的初步 专题训练(含答案)

人教版七年级上册数学   第四章   几何图形的初步   专题训练(含答案)

人教版七年级上册数学第四章几何图形的初步专题训练一、单选题1.用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是七边形;③可能是直角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①② B.①④C.①②④ D.①②③④2.如图,梯形绕虚线旋转一周所形成的图形是()A. B. C. D.3.下列几何体中,是棱锥的为()A. B. C. D.4.下列几何体的侧面展开图形状不是矩形的是()A.圆柱B.圆锥C.棱柱D.正方体5.下图中射线OA与OB表示同一条射线的是( )A. B.C.D.6.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A.两条直线相交,只有一个交点 B.两点确定一条直线 C.两点之间线段最短 D.直线比线段长7.如图,O 是直线AB 上一点,OD 平分∠BOC ,OE 平分∠AOC ,则下列说法错误的是( )A .∠DOE 为直角B .∠DOC 和∠AOE 互余 C .∠AOD 和∠DOC 互补 D .∠AOE 和∠BOC 互补8.如图,直线AB 与CD 相交于点,60O AOC ∠=,一直角三角尺EOF 的直角顶点与点O 重合,OE 平分AOC ∠,现将三角尺EOF 以每秒3的速度绕点O 顺时针旋转,同时直线CD 也以每秒9的速度绕点O 顺时针旋转,设运动时间为t 秒(040t ≤≤),当CD 平分EOF ∠时,t 的值为( ) A .2.5 B .2.5或30 C .30 D .2.5或32.59.如图所示,海岛B 在海岛A 的方向是( ).A .北偏西20°B .南偏东20°C .北偏西70°D .南偏东70°10.定义:△ABC 中,一个内角的度数为α,另一个内角的度数为β,若满足290αβ+=︒,则称这个三角形为“准直角三角形”.如图,在Rt △ABC 中,∠C=90°, AC=8,BC=6,D 是BC 上的一个动点,连接AD ,若△ABD 是“准直角三角形”,则CD 的长是( )A .127B .2413C .83D .135二、填空题11.如图,在线段AB 上有两点C 、D ,AB =28 cm ,AC =4 cm ,点D 是BC 的中点,则线段 AD =________cm .12.笔尖在纸上快速滑动写出一个又一个字,用数学知识可以理解为___________.13.桌面上有一个正六面体骰子,若将骰子沿如图所示的方向顺时针滚动,每滚动90°为1次,则滚动2020次后,骰子朝下一面的点数是___.14.将一副三角板如图摆放,若∠BAE=135°17′,则∠CAD 的度数是__________.三、解答题15.如图,长度为12cm 的线段AB 的中点为M ,C 点在线段MB 上,且2BC MC =,求线段AC 的长;16.已知如图是一个长方体无盖盒子的展开图,16,3,24AB cm CD cm IH cm ===.求:(1)求盒子的底面积.(2)求盒子的容积.17.如图,已知数轴上点A 表示的数为6,B 是数轴上一点,且AB =10,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,(1)写出数轴上点B 所表示的数 ;(2)求线段AP 的中点所表示的数(用含t 的代数式表示);(3)M 是AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,说明理由;若不变,请你画出图形,并求出线段MN 的长.18.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数19.如图1,将一副直角三角尺的顶点叠一起放在点O 处,90BOA ∠=,60COD ∠=,OC 与OB 重合,在OD 外AOB ∠,射线OM 、ON 分别是AOC ∠、BOD ∠的角平分线(1)求MON ∠的度数;(2)如图2,若保持三角尺AOB 不动,三角尺COD 绕点逆时针旋转(060)n n <<时,其他条件不变,求MON ∠的度数(提示:旋转角BOC n ∠=)(3)在旋转的过程中,当120AOC BOD ∠+∠=时,直接写出BOC ∠的值答案一、选择1.B 2.D 3.D 4.B 5.B 6.B 7.D 8.D 9.D 10.C二、填空11.16 12.点动成线 13.4 14.三、解答15.8cm16.(1)2143()cm ;(2)3429()cm17.(1)-4;(2)63t - ;(3)不变,MN 的长度为5.18.∠BOE 的度数为60°19.(1)75;(2)75º;(3)15︒。

人教版数学七年级(上)第4章《几何图形初步》单元综合练习卷(含答案)

人教版数学七年级(上)第4章《几何图形初步》单元综合练习卷(含答案)

人教版数学七年级(上)第4章《几何图形初步》单元综合练习卷(含答案)一.选择题1.下列说法:①直线AB和直线BA是同一条直线;②平角是一条直线;③两点之间,线段最短;④如果AB=BC,则点B是线段AC的中点.其中正确的有()A.1个B.2个C.3个D.4个2.下列四个图形中是如图展形图的立体图的是()A.B.C.D.3.如图,若CB=4,DB=7,且D是AC的中点,则AC的长为()A.3B.6C.9D.11 4.下列图形中不是正方体的平面展开图的是()A.B.C.D.5.钟表在2点半时,其时针和分针所成的角是()A.60°B.75°C.105°D.120°6.将一副三角板按如图所示的位置摆放,其中∠α和∠β一定互余的是()A.B.C.D.第 1 页共33 页7.下列说法正确的有()句.①两条射线组成的图形叫做角;②同角的补角相等;③若AC=BC,则C为线段AB的中点;④线段AB就是点A与点B之间的距离;⑤平面上有三点A、B、C,过其中两点的直线有三条或一条.A.0B.1C.2D.3 8.下列标注的图形名称与图形不相符的是()A.球B.长方体C.圆柱D.圆锥9.点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB中点的是()A.AM=BM B.AB=2AM C.BM=AB D.AM+BM=AB10.如图是小明画的正方体表面展开图,由7个相同的正方形组成.小颖认为小明画的不对,她剪去其中的一个正方形后,得到的平面图就可以折成一个正方体.小颖剪去的正方形的编号是()A.7B.6C.5D.411.将一张长方形纸片按如图所示的方式折叠,EC,ED为折痕,折叠后点A′,B′,E在同一直线上,则∠CED的度数为()第 2 页共33 页A.90°B.75°C.60°D.95°12.一个六棱柱模型如图所示,底面边长都是5cm,侧棱长为4cm,这个六棱柱的所有侧面的面积之和是()A.20cm2B.60cm2C.120cm2D.240cm2二.填空题13.一个棱柱有20个顶点,每条侧棱长6cm,底面每条边长是2m,则所有侧棱长是.14.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于.15.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是.16.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.17.按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b)c= .第 3 页共33 页18.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.三.解答题19.如图,已知A、O、B三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.20.有一个养鱼专业户,在如图所示地形的两个池塘里养鱼,他每天早上要从住处P分别前往两个池塘投放鱼食,试问他怎样走才能以最短距离回到住地?(请用尺规作图,保留作图痕迹,不写作法)第 4 页共33 页21.将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.观察并回答下列问题:(1)其中三面涂色的小正方体有个,两面涂色的小正方体有个,各面都没有涂色的小正方体有个;(2)如果将这个正方体的棱n等分,所得的小正方体中三面涂色的有个,各面都没有涂色的有个;(3)如果要得到各面都没有涂色的小正方体125个,那么应该将此正方体的棱等分.22.已知,如图,点C在线段AB上,且AC=6cm,BC=14cm,点M、N分别是AC、BC的中点.(1)求线段MN的长度;(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.23.读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;第 5 页共33 页(2)过点P作PR⊥CD,垂足为R.24.数学课上,李老师出示了如下框中的题目.如图1,在∠AOB的内部有一条射线OC把∠AOB分成两个角,射线OM、ON分别平分∠AOC、∠BOC,试探究∠MON与∠AOB之间的数量关系,并说明理由.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论:①请你在下表中填上当∠AOB为60°、90°、120°时∠MON的大小:②探索发现:无论∠AOB的度数是多少,∠MON与∠AOB的数量关系是不变的,请你直接写出结论:∠MON ∠AOB.(2)特例启发,解答题目:如图2,如果∠AOB=α,请你求∠MON的大小(用α表示).(3)拓展结论,设计新题:如图3,把一张报纸的一角斜折过去,使A点落在E点处,BC为折痕,BD是∠EBM的平分线,求∠CBD的度数.第 6 页共33 页第7 页共33 页参考答案一.选择题1.解:①∵直线AB和直线BA是同一条直线,∴①正确;②∵角是角,线是线,∴平角是一条直线,∴②错误;③两点之间,线段最短,∴③正确;④∵如果A、B、C三点不共线,则AB=BC不能得出点B是线段AC的中点,∴④错误.故选:B.2.解:因为含小黑正方形的面不能与含大黑正方形的面相邻,两个小黑正方形不能在同一行,所以B,C不是左边展形图的立体图;两个小黑正方形在大黑正方形的对面”,那么A图中,正好是大黑正方形在上面,那么小黑正方形就在底面,A符合;故选:A.3.解:∵CB=4,DB=7,∴DC=DB﹣CB=7﹣4=3,∵D是AC的中点,∴AC=DC×2=3×2=6.故选:B.4.解:A、是正方体的展开图,不合题意;B、是正方体的展开图,不合题意;C、不能围成正方体,故此选项正确;D、是正方体的展开图,不合题意.故选:C.第8 页共33 页5.解:时针转过的角度是(2+)×30°=75°,分钟转过的角度是30×6°=180°,所以钟表在2点半时,其时针和分针所成的角是180°﹣75°=105°,故选:C.6.解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β互余,故本选项正确;C、∠α与∠β不互余,故本选项错误;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:B.7.【解答】解:①由一个点出发的两条射线组成的图形叫角,故①错误;③若AC=BC,此时点C在线段AB的垂直平分线上,故③错误;④线段AB的长度是点A与点B之间的距离,故④错误;故选:C.8.解:长方体是立体图形,选项B中缺少遮挡的虚线,所以B图形名称与图形不相符.故选:B.9.解:A、由AM=BM可以判定点M是线段AB中点,所以此结论正确;B、由AB=2AM可以判定点M是线段AB中点,所以此结论正确;C、由BM=AB可以判定点M是线段AB中点,所以此结论正确;D、由AM+BM=AB不可以判定点M是线段AB中点,所以此结论不正确;因为本题选择不能判定点M是线段AB中点的说法,故选:D.10.解:根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是5.故选:C.11.解:由题意知∠AEC=∠CEA′,∠DEB=∠DEB′,则∠A′EC=∠AEA′,∠B′DE=∠B′EB,第9 页共33 页所以∠CED=∠AEB=×180°=90°,故选:A.12.解:六棱柱的侧面积为:4×5×6=120(cm2).故选:C.二.填空题(共6小题)13.解:∵一个棱柱有20个顶点,每条侧棱长6cm,∴底面为10边形,有10条侧棱,∴所有侧棱长的和是10×6=60cm,故答案为:60cm.14.解:∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2﹣∠1=12°,可得:5x﹣12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°15.解:∵点B、O、D在同一直线上,∠COD=150°,∴∠COB=180°﹣150°=30°,∵OB平分∠AOC,∴∠AOC=2×30°=60°,故答案为:60°.16.解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.第10 页共33 页17.解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“﹣1”相对,面“c”与面“2”相对,“﹣3”与面“b”相对,∵相对面上的两个数都互为相反数,∴a=1,b=3,c=﹣2,则(a+b)c=(1+3)﹣2=.故答案为:.18.解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.三.解答题(共6小题)19.解:(1)∵A、O、B三点共线,∠AOD=42°,∴∠BOD=180°﹣∠AOD=138°;(2)∵∠COB=90°,∴∠AOC=90°,∵∠AOD=42°,∴∠COD=48°,∵OE平分∠BOD,∴∠DOE=∠BOD=69°,∴∠COE=69°﹣48°=21°.20.解:如图所示:PD→DE→EP才能以最短距离回到住地.第11 页共33 页21.解:(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体.观察其中三面被涂色的有8个,两面涂色的有12个;各面都没有涂色的有1个,故答案为:8,12,1;(2)根据正方体的棱三等分时三面被涂色的有8个,有1个是各个面都没有涂色的,正方体的棱四等分时三面被涂色的有8个,有8个是各个面都没有涂色的,∴正方体的棱n等分时三面被涂色的有8个,有(n﹣2)3个是各个面都没有涂色的,故答案为:8,(n﹣2)3;(3)由(2)得将这个正方体的棱n等分,有(n﹣2)3个是各个面都没有涂色的,即(n﹣2)3=125,n﹣2=5,n=7,故答案为7.22.解:(1)∵AC=6cm,BC=14cm,点M、N分别是AC、BC的中点,∴MC=3cm,NC=7cm,∴MN=MC+NC=10cm;第12 页共33 页(2)MN=(a+b)cm.理由是:∵AC=acm,BC=bcm,点M、N分别是AC、BC的中点,∴MC=cm,NC=cm,∴MN=MC+NC=(a+b)cm.23.解:每对一问得(3分)如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(3分)(2)过点P作PR⊥CD,垂足为R.(6分)24.解:(1)①∵∠MOC=∠AOC,∠NOC=∠BOC,∴∠MON=∠MOC+∠NOC=∠AOC+∠BOC=∠AOB,当∠AOB=60°时,∠MON=×60°=30°,当∠AOB=90°时,∠MON=×90°=45°,当∠AOB=120°时,∠MON=×120°=60°;②由①知,∠MON=∠AOB,故答案为:①30°,45°,60°;②;第13 页共33 页(2)由(1)②知,∠MON=∠AOB,∴∠MON=α;(3)∵A点落在E点处,BC为折痕,∴∠CBA=∠CBE=∠ABE,∵D是∠EBM的平分线,∴∠EBD=∠DBM=∠MBE,∴∠CBE+∠EBD=(∠ABE+∠MBE)=∠ABM=×180°=90°.第14 页共33 页第 15 页 共 33 页人教版七年级上册第四章几何图形初步单元检测试题(含答案)一、单选题(共10题;共30分)1.如图,图中的长方形共有( )个.A. 9B. 8C. 5D. 4 2.如图所示几何图形中,是棱柱的是( )A. B. C. D.3.如图,是一个几何体的表面展开图,则该几何体是( ) A. 正方体 B. 长方体 C. 三棱柱 D. 四棱锥4.如图,∠AOC >∠BOD ,则( )A. ∠AOB >∠CODB. ∠AOB=∠CODC. ∠AOB <∠CODD. 以上都有可能5.如图所示,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC 的度数为( )A. 30°B. 40°C. 50°D. 60°6.如图,线段CD 在线段AB 上,且CD=2,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A. 28B. 29C. 30D. 317.将一个圆分割成四个大小相同的扇形,则每个扇形的圆心角是( )度. A.45 B.60 C.90 D.1208.若∠AOB=90°,∠BOC=40°,则∠AOC 的度数为( )A. 50°B. 50° 或120°C. 50°或130°D. 130° 9.直棱柱的侧面都是( )A. 正方形B. 长方形C. 五边形D. 菱形 10.如果时钟上的时针、分针和秒针都是匀速地转动,那么从3时整(3:00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有 ( ) A. 1次 B. 2次 C. 3次 D. 4次二、填空题(共8题;共24分)11.已知∠α=36°14′25″,则∠α的余角的度数是________.12.如果一个六棱柱的一条侧棱长为5cm ,那么所有侧棱之和为________ cm13.(1)102°43′32″+77°16′28″=________;(2)98°12′25″÷5=________.14.如图,∠AOB 中,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,若∠AOB=135°,则∠EOD=________°.15.(1)32°43′30″=________°;(2)86.47°=________ °________′________″16.已知:点A、B、C在同一直线上,若AB=12cm,BC=4cm,且满足D、E分别是AB、BC的中点,则线段DE的长为________cm.17.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露.的面涂上颜色,那么涂颜色面的面积之和是________cm218.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B(________);C(________);D(________);E(________).三、解答题(共6题;共42分)19.如图,OC平分∠BOD,∠AOD=110°,∠COD=35°,求∠AOB的度数.20.直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2与∠3的度数。

人教版数学七年级上册第第四章 几何图形初步 基础检测题含答案

人教版数学七年级上册第第四章 几何图形初步  基础检测题含答案

人教版数学七年级上册第第四章基础检测题含答案4.1几何图形一、选择题(每小题3分,共30分)1.如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.B.C.D.2.如图所示的几何体从正面(箭头方向)看到的平面图形是()3.下列说法正确的是()①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形.A.①②B.①③C.②③D.①②③4.如图是一个正方体纸盒侧面展开图,折成正方体后相对的面上的两个数互为相反数,则A、B、C表示的数为()A.0,﹣5,B.,0,﹣5C.,﹣5,0D.5,,05.如下图,下列图形全部属于柱体的是()6.骰子是一种特别的数字立方体(见右图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()A.B.C.D.7.如图所示的几何体,从上面看得到的平面图形是()8.下列图形中为三棱柱的表面展开图的是()A.B.C.D.9.图(1)是一个正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是( )A.家B.乡C.是D.伊4 的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余10.如图,将3下的部分(小正方形之间至少要有一条边相连)恰好能...折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是()A.7B.6C.5D.4二、填空题(每小题3分,共30分)11.写出一个主视图、左视图、俯视图都相同的几何体:.12.一个矩形绕着它的一边旋转一周,所得到的立体图形是.13.一个棱锥的棱数是12,则这个棱锥的面数是.14.一个几何体的从三个方向看到的平面图形,如图所示,则这个几何体的名称是____________.第14题图第15题图第16题图15.如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为8,则x+y =.16.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是.17.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?(填序号).18.一个立体图形的三视图如图所示,请你根据图中给出的数据求出这个立体图形的表面积为.第18题图第19题图第20题图19.如图,从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如所示的零件,则这个零件的表面积为20.如图,用小木块搭一个几何体,它的从正面看和从上面看如图所示.问:最少需要__________个小正方体木块.三、解答题(共40分)21.(9分)如图所示由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.从正面看从左面看从上面看22.(6分)下面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数.23.(12分)如图,一个多面体的展开图中,每个面内的大写字母表示该面,被剪开的棱边所注的小写字母可表示该棱.(1)说出这个多面体的名称 ;(2)写出所有相对的面 _ ;(3)若把这个展开图折叠起来成立体时,被剪开的棱b 与 重合,f 与 重合.24.(13分)将一个正方体表面全部涂上颜色把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体,我们把仅有i 个面涂色的小正方体的个数记为i x ,例如:通过观察我们可以发现仅有3个面涂色的小正方体个数83=x ,仅有2个面涂色的小正方体个数122=x ,仅有1个面涂色的小正方体个数61=x ,6个面均不涂色的小正方体个数10=x ;(1)如果把正方体的棱四等分,同样沿等分线把正方体切开,得到64个小正方体,那么=3x ________,=2x _______,=1x _______,=0x _________;(2)如果把正方体的棱n 等分(n 大于3),然后沿等分线把正方体切开,得到3n 个小正方体,且满足184232=-x x ,请求出n 的值.参考答案1.C2.B3.C∴不能说它是一个长方形,∵有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱∴它是棱柱.教科书的表面是一个长方形.故选C.4.A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点求出A、B、C的值,然后代入进行计算即可求解.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴A与0是相对面,B与5是相对面,C与﹣是相对面,∵折成正方体后相对的面上的两个数互为相反数,∴A=0,B=﹣5,C=.故选:A.5.C【解析】A选项中含有三棱锥,就是锥体;B选项中含有圆锥,就是锥体;D选项中含有圆台,就是台体.6.A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A.4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;B.1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C.3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;D.1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选A.7.B.【解析】根据所看位置,找出此几何体的三视图即可.解:从上面看得到的平面图形是两个同心圆,故选:B.8.B【解析】利用棱柱及其表面展开图的特点解题.解:A、C、D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故不能围成三棱柱;B、中间三个长方形能围成三棱柱的侧面,左、右两个三角形围成三棱柱的上、下两底面,故能围成三棱柱,是三棱柱的表面展开图.故选B.9.C.【解析】由图1可得,“伊”和“乡”相对;“春”和“我”相对;“是”和“家”相对;由图2可得,小正方体从图2的位置依次翻到第4格时,“家”在下面,则这时小正方体朝上面的字是“是”.10.C.【解析】根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是5.故选C.11.球或正方体.【解析】试题分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:球的三视图都为圆;正方体的三视图为正方形;所以应填球或正方体.12.圆柱体【解析】本题是一个矩形绕着它的一边旋转一周,根据面动成体的原理即可解.解:以矩形的一边所在直线为旋转轴,形成的旋转体叫做圆柱体.故答案为圆柱体.13.7.【解析】因为一个棱锥的棱数是12,可得多面体为六棱锥,所以多面体的面数为714.三棱柱.【解析】根据图中三视图的形状,符合条件的只有三棱柱,因此这个几何体的名称是三棱柱.15.10.【解析】∵“4”与“y”是对面,“x”与“2”是对面,∴x=6,y=4.∴x+y=10.【解析】从3个图形看,和1相邻的有2,4,5,6,那么和1相对的就是3.则和2相邻的有1,3,4,5,那么和2相对的就是6.则和5相对的就是4.再将数字1和5对面的数字相加即可.解:根据三个图形的数字,可推断出来,1对面是3;2对面是6;5对面是4.∴3+4=7.则数字1和5对面的数字的和是7.故答案为:7.17.②.【解析】本题中圆柱的俯视图是圆,可以堵住圆形空洞,它的正视图和左视图是长方形,可以堵住方形空洞,据此选择即可.解:圆柱的俯视图是圆,可以堵住圆形空洞,它的正视图和左视图是长方形,可以堵住方形空洞,故圆柱是最佳选项,故答案为②.18.8π.【解析】从三视图可以看正视图以及俯视图为矩形,而左视图为圆形,可以得出该立体图形为圆柱,再由三视图可以圆柱的半径,长和高求出体积.解:∵正视图和俯视图是矩形,左视图为圆形,∴可得这个立体图形是圆柱,∴这个立体图形的侧面积是2π×3=6π,底面积是:21ππ⋅=,∴这个立体图形的表面积为6π+2π=8π;故答案为:8π.【解析】挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.20.10【解析】根据俯视图可以判定就至少需要7个,再根据主视图上面还需要3个,则最少需要10个.21.见解析【解析】分别画出三视图即可解:如图:22.(1)正方体;(2)P与X,Q与Y,R与Z;(3)i;g【解析】根据正方体的展开图我们就可以得到答案,自己也可以动手叠一下试试看.解:(1)这个多面体是正方体.(2)相对的面有三对:P与X,Q与Y,R与Z.(3)将会重合的棱有b与i,f与g23.见解析【解析】如图,A-A’、B-B’、C-C’是相对面,填入互为相反数的两个数即可.解:如图所示:(答案不唯一,符合即可)4.2直线、射线、线段一.选择题1.下列说法正确的是()A.射线P A和射线AP是同一条射线B.射线OA的长度是3cmC.直线ab,cd相交于点PD.两点确定一条直线2.如图,C为AB的中点,D是BC的中点,则下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.CD=BC D.AD=BC+CD 3.平面上有A、B、C三点,经过任意两点画一条直线,可以画出直线的数量为()A.1条B.3条C.1条或3条D.无数条4.如图,线段CD在线段AB上,且CD=3,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.315.已知点A、B、C、D在同一条直线上,线段AB=8,C是AB的中点,DB=1.5.则线段CD的长为()A.2.5B.3.5C.2.5或5.5D.3.5或5.56.点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB的中点的是()A.AM=BM B.AB=2AM C.AM+BM=AB D.BM=AB7.如图,线段AB=18cm,点M为线段AB的中点,点C将线段MB分成MC:CB=1:2,则线段AC的长度为()A.6cm B.12cm C.9cm D.15cm8.如图,已知线段AB=8,点C是线段AB是一动点,点D是线段AC的中点,点E是线段BD的中点,在点C从点A向点B运动的过程中,当点C刚好为线段DE的中点时,线段AC的长为()A.3.2B.4C.4.2D.9.如图,D、E顺次为线段AB上的两点,AB=19,BE﹣DE=7,C为AD的中点,则AE ﹣AC的值为()A.5B.6C.7D.810.如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=CB﹣EB;③CE=CD+DB﹣AC;④CE=AE+CB﹣AB.其中,正确的是()A.①②B.①②③C.①②④D.①②③④二.填空题11.数学来源于生活而又高于生活,比如当我们在植树的时候,要想整齐地栽一行树,只需要确定两端树坑的位置即可.用数学知识可以解释为.12.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD=.13.如图,点C在线段AB上,且AC=AB,点D在线段BC上,AD=5,BD=3,则线段CD的长度为.14.如图,点C、D在线段AB上,AC=6cm,CD=4cm,AB=12cm,则图中所有线段的和是cm.15.如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF 的中点,且MN=8cm,则EF长为.三.解答题16.如图,已知点A、B、C.D,根据下列语句画图.(不写作图过程)作射线AB、直线AC,连接AD并延长线段AD.17.如图,A,B,C三棵树在同一直线上,若小明正好站在线段的AC中点Q处,BC=2BQ.(1)填空:AQ==AC,AQ﹣BC=.(2)若BQ=3米,求AC的长.18.如图,线段AB上顺次有三个点C,D,E,把线段AB分为了2:3:4:5四部分,且AB=28.(1)求线段AE的长;(2)若M,N分别是DE,EB的中点,求线段MN的长度.参考答案一.选择题1.解:A、射线P A和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线ab,cd,直线的写法不对,故本选项错误;D、两点确定一条直线是正确的.故选:D.2.解:∵C是AB的中点,D是BC的中点,∴AC=BC=AB,CD=BD=BC,∵CD=BC﹣BD∴CD=AC﹣BD,故A正确;∵CD=BC﹣DB,∴CD=AB﹣DB,故B正确;∴AD=AC+CD=BC+CD,故D正确;∵CD=BD=BC;故C错误;故选:C.3.解:①如果三点共线,过其中两点画直线,共可以画1条;②如果任意三点不共线,过其中两点画直线,共可以画3条.故选:C.4.解:所有线段之和=AC+AD+AB+CD+CB+BD,∵CD=3,∴所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD)=12+3(AB﹣CD)=12+3(AB﹣3)=3AB+3=3(AB+1),∵AB是正整数,∴所有线段之和是3的倍数,故选:C.5.解:∵AB=8,C是AB的中点,∴AC=BC=4,∵DB=1.5.当点D在点B左侧时,CD=BC﹣BD=4﹣1.5=2.5,当点D在点B右侧时,CD=BC+BD=4+1.5=5.5,则线段CD的长为2.5或5.5.故选:C.6.解:A、由AM=BM可以判定点M是线段AB中点,所以此结论正确,故这个选项不符合题意;B、由AB=2AM可以判定点M是线段AB中点,所以此结论正确,故这个选项不符合题意;C、由AM+BM=AB不可以判定点M是线段AB中点,所以此结论不正确,故这个选项符合题意;D、由BM=AB可以判定点M是线段AB中点,所以此结论不正确,故这个选项不符合题意;故选:C.7.解:∵线段AB=18cm,点M为线段AB的中点,∴AM=BM=AB=9,∵点C将线段MB分成MC:CB=1:2,设MC=x,CB=2x,∴BM=MC+CB=3x,∴3x=9,解得x=3,∴AC=AM+MC=9+3=12.则线段AC的长度为12.故选:B.8.解:∵点D是线段AC的中点,∴AD=CD,∵点E是线段BD的中点,∴BE=DE,∵点C为线段DE的中点,∴CD=CE,∴AD=CD=CE,∵AB=AD+DC+CE+BE=3AD+BE=3AD+DE=3AD+2CD=5AD,∴AD=1.6,∴AC=2AD=3.2,故选:A.9.解:∵AB=19,设AE=m,∴BE=AB﹣AE=19﹣m,∵BE﹣DE=7,∴19﹣m﹣DE=7,∴DE=12﹣m,∴AD=AB﹣BE﹣DE=19﹣(19﹣m)﹣(12﹣m)=19﹣19+m﹣12+m=2m﹣12,∵C为AD中点,∴AC=AD=×(2m﹣12)=m﹣6.∴AE﹣AC=6,故选:B.10.解:由图可知:①CE=CD+DE,正确;②CE=CB﹣EB,正确;③CE=CD+DB﹣EB,错误;④CE=AE+CB﹣AB,正确;故选:C.二.填空题11.解:两端两个树坑的位置,可看做两个点,根据两点确定一条直线,即可确定一行树所在的位置.故答案为:两点确定一条直线.12.解:∵DA=6,DB=3,∴AB=DB+DA=3+6=9,∵C为线段AB的中点,∴BC=AB=×9=4.5,∴CD=BC﹣DB=4.5﹣3=1.5.故答案为:1.5.13.解:∵AD=5,BD=3,∴AB=AD+BD=8,∵AC=AB=,∴CD=AD﹣AC=5﹣=,故答案为:.14.解:由线段的和差,得AC+DB=AB﹣CD=12﹣4=8(cm).图中所有线段的和AC+AD+AB+CD+CB+DB=AC+(AC+CD)+AB+CD+(CD+DB)+DB =2(AC+DB)+3CD+AB=2×8+3×4+12=40(cm).答:图中所有线段的和是40cm,故答案为:40.15.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故答案为:12cm.三.解答题16.解:作射线AB、直线AC,连接AD并延长线段AD,如图所示:17.解:(1)∵O是线段AC的中点,∴AQ=CQ=AC,AQ﹣BC=CQ﹣BC=QB,故答案为;(2)∵BQ=3米,BC=2BQ,∴BC=2BQ=6米,∴CQ=BC+BQ=6+3=9(米),∵Q是AC中点,∴AQ=QC=9(米),∴AC=AQ+QC=9+9=18(米),∴AC的长是18米.18.解:(1)设AC=2x,则CD、DE、EB分别为3x、4x、5x,由题意得,2x+3x+4x+5x=28,解得,x=2,则AC、CD、DE、EB分别为4、6、8、10,则AE=AC+CD+DE=4+6+8=18;(2)如图:∵M是DE的中点,∴ME=DE=4,∵N是EB的中点∴EN=EB=5,∴MN=ME+EN=4+5=9.4.3角一.选择题1.25°的补角是()A.155°B.145°C.55°D.65°2.已知∠A=30°45',∠B=30.45°,则∠A()∠B.A.两点之间直线最短B.一个有理数,不是正数就是负数C.平角是一条直线D.整数和分数统称为有理数4.下列语句中:正确的个数有()①画直线AB=3cm;②连接点A与点B的线段,叫做A、B两点之间的距离;③两条射线组成的图形叫角;④任何一个有理数都可以用数轴上的一个点来表示.A.0B.1C.2D.35.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′6.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°7.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3为()A.120°B.60°C.30°D.150°8.如图所示的是正方形网格,则∠AOB___∠COD()A.>B.<C.=D.≥9.如图,OA是北偏东30°方向的一条射线,若射线OB与OA垂直,则射线OB表示的方向是()A.东偏北30°B.东偏北60°C.北偏西30°D.北偏西60°10.如图,甲、乙两人同时从A地出发,甲沿北偏东50°方向步行前进,乙沿图示方向步行前进.当甲到达B地,乙到达C地时,甲与乙前进方向的夹角∠BAC为100°,则此时乙位于A地的()A.南偏东30°B.南偏东50°C.北偏西30°D.北偏西50°二.填空题11.计算:18°13′×5=.12.若此时时钟表上的时间是8:20分,则时针与分针的夹角为度.13.若两个角互补,且度数之比为3:2,求较大角度数为.14.若∠AOB=45°,∠BOC=75°,OD平分∠AOB,OE平分∠BOC,则∠DOE的度数为.15.将一副三角板按如图方式摆放在一起,且∠1比∠2大20°,则∠1的度数等于.三.解答题16.已知:如图,∠AOB=30°,∠COB=20°,OC平分∠AOD,求∠BOD的度数.17.如图,已知∠MON=150°,∠AOB=90°,OC平分∠MOB,(1)若∠AOC=35°,则∠BOC=°,∠NOB=°;(2)若∠NOB=10°,则∠BOC=°,∠AOC=°;(3)若∠AOC=α,∠NOB=β,请直接写出α与β之间的数量关系.18.已知O为直线AB上一点,射线OD,OC,OE位于直线AB上方,OD在OE的左侧,∠AOC=120°,∠DOE=50°,设∠BOE=n.(1)若射线OE在∠BOC的内部(如图1),①若n=43°,求∠COD的度数;②当∠AOD=3∠COE时,求∠COD的度数.(2)若射线OE恰为图中某一个角(小于180°)的角平分线,试求n的值.19.如图,已知∠AOB内部有三条射线,OE平分∠AOD,OC平分∠BOD.(1)若∠AOB=90°,求∠EOC的度数;(2)若∠AOB=α,求∠EOC的度数;(3)如果将题中“平分”的条件改为∠EOA=∠AOD,∠DOC=∠DOB且∠DOE:∠DOC=4:3,∠AOB=90°,求∠EOC的度数.参考答案与试题解析一.选择题1.【解答】解:25°的补角是:180°﹣25°=155°.故选:A.2.【解答】解:30.45°=30°+0.45×60′=30°27′,∵30°45′>30°27′,∴30°45'>30.45°,∴∠A>∠B,故选:A.3.【解答】解:A、两点之间线段最短,原说法错误,故本选项不符合题意;B、一个有理数,不是正数就是负数或零,原说法错误,故本选项不符合题意;C、平角的两边在一条直线上,原说法错误,故本选项不符合题意;D、整数和分数统称为有理数,原说法正确,故本选项符合题意;故选:D.4.【解答】解:①因为直线不可以度量,所以画直线AB=3cm是错误的;②连接点A与点B的线段的长度,叫做A、B两点之间的距离,原说法错误;③有公共端点是两条射线组成的图形叫做角,原说法错误;④任何一个有理数都可以用数轴上的一个点来表示,原说法正确;正确的有1个,故选:B.5.【解答】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.6.【解答】解:射线OA表示的方向是南偏东65°,故选:C.7.【解答】解:∵∠1和∠2互为余角,∠1=60°,∴∠2=90°﹣∠1=90°﹣60°=30°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣30°=150°.故选:D.8.【解答】解:∵∠AOC=∠BOD=90°,∴∠AOB+∠BOC=90°,∠COD+∠BOC=90°,∴∠AOB=∠COD.故选:C.9.【解答】解:由题意得,∠AOC=30°,∵射线OB与射线OA垂直,∴∠BOC=60°,∴OB的方向角是北偏西60°.故选:D.10.【解答】解:如图所示:由题意可得:∠1=50°,∠BAC=100°,则∠2=180°﹣100°﹣50°=30°,故乙位于A地的南偏东30°.故选:A.二.填空题(共5小题)11.【解答】解:原式=90°+65′=91°5′.故答案是:91°5′.12.【解答】解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上8点20分,时针与分针的夹角可以看成30°×4+0.5°×20=130°.故答案为:130.13.【解答】解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.14.【解答】解:如图1,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=22.5°+37.5°=60°;如图2,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=37.5°﹣22.5°=15°,故答案为:60°或15°.15.【解答】解:设∠2为x,则∠1=x+20°;根据题意得:x+x+20°=90°,解得:x=35°,则∠1=35°+20°=55°;故答案为:55°.三.解答题(共4小题)16.【解答】解:∵∠AOB=30°,∠COB=20°,∴∠AOC=∠AOB+∠BOC=30°+20°=50°,∵OC平分∠AOD,∴∠AOC=∠COD=50°,∴∠BOD=∠BOC+COD=20°+50°=70°.17.【解答】解:(1)∠BOC=∠AOB﹣∠AOC=90°﹣35°=55°;∵OC平分∠MOB,∴∠MOB=2∠BOC=110°,∴∠NOB=∠MON﹣∠MOB=150°﹣110°=40°.故答案为:55,40;(2)∠MOB=∠MON﹣∠NOB=150°﹣10°=140°,∵OC平分∠MOB,∴∠BOC=;∴∠AOC=90°﹣∠BOC=20°.故答案为70,20;(3)∵∠AOC=α,∠NOB=β,∴∠BOC=90°﹣α,∵OC平分∠MOB,∴∠MOB=2∠BOC=180°﹣2α,∵∠MOB+∠NOB=150°,∴180°﹣2α+β=150°,即β=2α﹣30°.18.【解答】解:(1)①∠BOC=180°﹣∠AOC=60°,由n=43°,可得∠COE=∠BOC﹣∠BOE=17°,∴∠COD=∠DOE﹣∠COE=50°﹣17°=33°;②∵∠AOD=3∠COE,∠AOD+∠COD=120°,∠DOE=50°,∴3∠COE+50°﹣∠COE=120°,解得∠COE=35°,∴∠COD=∠DOE﹣∠COE=50°﹣35°=15°;(2)当OE平分∠BOC时,如图所示:∵∠AOC=120°,∴∠BOC=180°﹣∠AOC=60°,∴∠BOE==30°.即n=30°;当OE平分∠AOC时,如图所示:∠BOE=2∠BOC=120°,即n=120°;当OE平分∠BOD时,如图所示:∠BOE=∠DOE=50°,即n=50°;当OE平分∠COD时,∠BOE=∠EOC+∠BOC=50°+60°=110°,即n=110°;OE平分∠AOD是不成立.所以n=30°、50°、110°或120°.19.【解答】解:(1)∵OE平分∠AOD,OC平分∠BOD,∴∠EOD=∠AOD,∠DOC=∠DOB,∴∠EOC=(∠AOD+∠DOB)=45°;(2)由(1)可知:∠EOC=(∠AOD+∠DOB)=α;(3)∵∠DOE:∠DOC=4:3,∴设∠DOE=4x,∠DOC=3x,∵∠EOA=∠AOD,∴∠DOE=∠AOD,∴∠AOD=5x,∵∠DOC=∠DOB,∴∠DOB=4x4.4课题学习制作长方形形状一.选择题1.给出一个正方形,请你动手画一画,将它剖分为n个小正方形.那么,通过实验与思考,你认为下列自然数n不可以取到的是()A.5B.6C.7D.82.有一块两条直角边长分别为3m和4m的直角三角形绿地,现在要扩充成等腰三角形,且扩充部分是直角边长为4m的直角三角形,则扩充后的等腰三角形绿地的周长不可能是()A.16m B.m C.(10+)m D.(10+)m 3.某地有三家工厂,分别位于矩形ABCD的顶点A、B及边CD的中点P处,已知AB=16km,BC=12km,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且与A,B等距离的一点O处建造一个污水处理厂,并铺设排污管道AO,BO,OP.记管道总长为S km.下列说法正确的是()A.S的最小值是8B.S的最小值应该大于28C.S的最小值是26D.S的最小值应该小于264.某乡镇的4个村庄A、B、C、D恰好位于正方形的4个顶点上,为了解决农民出行难问题,镇政府决定修建连接各村庄的道路系统,使得每两个村庄都有直达的公路,设计人员给出了如下四个设计方案(实线表示连接的道路)在上述四个方案中最短的道路系统是方案()A.一B.二C.三D.四5.有甲、乙、丙三个村庄分别位于等边△ABC的顶点,在城中村改造时,为保护环境,改善居民的生活条件,政府决定铺设能够连结这三个村庄的天然气管道.设计人员给出了如图四个设计方案(点D为BC边的中点,点O为△ABC的中心,实线表示天然气管道),其中天然气管道总长最短的是()A.方案1B.方案2C.方案3D.方案46.如图,直线m表示一条河,点M、N表示两个村庄,计划在m上的某处修建一个水泵向两个村庄供水.在下面四种铺设管道的方案中,所需管道最短的方案是(图中实线表示铺设的管道)()A.B.C.D.7.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()A.S3<S1<S2B.S1<S2<S3C.S2<S1<S3D.S1=S2=S38.四座城市A,B,C,D分别位于一个边长为100km的大正方形的四个顶点,由于各城市之间的商业往来日益频繁,于是政府决定修建公路网连接它们,根据实际,公路总长设计得越短越好,公开招标的信息发布后,一个又一个方案被提交上来,经过初审后,拟从下面四个方案中选定一个再进一步论证,其中符合要求的方案是()A.B.C.D.9.如图:有一块三角形状的土地平均分给四户人家,现有四种不同的分法,(如图中,D、E、F分别是BC、AC、AB的中点,G、H分别是BF、AF的中点),其中正确的分法有()A.1种B.2种C.3种D.4种10.王老师用28米长的木条给花圃做围栏,他想把花圃设计成以下四种造型,不能用28米的长木条围成的设计有()种.A.1B.2C.3D.4二.填空题11.如图,笔直的公路旁有A、B两车站,相距15km,C、D为同旁的两个村庄,DA⊥AB 于A,CB⊥AB于B,AD=10cm,CB=5cm,要在这段公路AB旁建一个公路管理站E,使C、D两村到公路管理站的距离相等,那么公路管理站E应建在距A站km处.12.面积为1个平方单位的正三角形,称为单位正三角形.下面图中的每一个小三角形都是单位正三角形,三角形的顶点称为格点.在图1,2,3中分别画出一个平行四边形、梯形和对边都不平行的凸四边形,要求这三个图形的顶点在格点、面积都为12个平方单位..13.如图,有两个正方形的花坛,准备把每个花坛都分成形状相同的四块,种不同的花草.下面左边的两个图案是设计示例,请你在右边的两个正方形中再设计两个不同的图案..14.有一块方角形钢板如图所示,请你用一条直线将其分为面积相等的两部分(不写作法,保留作图痕迹,在图中直接画出).15.如图,平原上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H点的位置,使它与四个村庄的距离之和最小.三.解答题16.如图为正方形网格,每个小正方形的边长均为1,各个小正方形的顶点叫做格点,请在下面的网格中按要求分别画图,使得每个图形的顶点均在格点上.(1)在图中画一个以AB为一边的菱形ABCD,且菱形ABCD的面积等于20.(2)在图中画一个以EF为对角线的正方形EGFH,并直接写出正方形EGFH的面积.17.通过文明城市的评选,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图所示,A,B,C为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.18.图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段AB 的端点均在格点上,在图②、图③中仿照图①,只用无刻度的直尺,各画出一条线段CD,将线段AB分为2:3两部分.要求:所画线段CD的位置不同,点C、D均在格点上19.小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.参考答案与试题解析一.选择题1.【解答】解:对任一正方形,容易分为大于等于4的偶数个小正方形(大小不等),比如2N,(N≥2).具体分法为:设原正方形边长为1,按在水平和垂直方向划两条线,这可分出边长为和两个正方形及长宽分别为和的两个小长方形,而每个小长方形又可分为(N ﹣1)个边长为的小正方形,因此总的正方形数为2+2×(N﹣1)=2N.而对于奇数(N≥7),显然原正方形先可一分为四,而其中之一的小正方形又可分为大于等于4的偶数个小正方形(前一结论),计为2N,因此可分为3+2N=2(N+1)+1个奇数个小正方形,其中(N≥2),故N=4或N≥6的所有自然数.故选:A.2.【解答】解:如图所示:(1)图1:当BC=CD=3m时;由于AC⊥BD,则AB=AD=5m;此时等腰三角形绿地的周长=5+5+3+3=16(m);(2)图2:当AC=CD=4m时;∵AC⊥CB,∴AB=BD=5m,此时等腰三角形绿地的周长=5+5+4+4=18(m);。

七年级数学上册第四章《几何图形初步》习题

七年级数学上册第四章《几何图形初步》习题 一、选择题 1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,

小虫从点A沿着正方体的棱长爬行到点B的长度为( )

A.0 B.1 C.2 D.3B 解析:B 【分析】 将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离. 【详解】 解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1, 则小虫从点A沿着正方体的棱长爬行到点B的长度为1. 故选B. 【点睛】 本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键. 2.点 A、B、C 在同一条数轴上,其中点 A、B 表示的数分别为﹣3、1,若 BC=2,则 AC 等于( ) A.3 B.2 C.3 或 5 D.2 或 6D 解析:D 【解析】 试题 此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算. ∵点A、B表示的数分别为﹣3、1,∴AB=4.

第一种情况:在AB外,如答图1,AC=4+2=6;

第二种情况:在AB内,如答图2,AC=4﹣2=2. 故选D. 3.如图,点C是线段AB的中点,点D是线段CB上任意一点,则下列表示线段关系的式子不正确的是( ) A.AB=2AC B.AC+CD+DB=AB

C.CD=AD-12AB

D.AD=12(CD+AB)

D

解析:D 【解析】 解:A、由点C是线段AB的中点,则AB=2AC,正确,不符合题意;B、AC+CD+DB=AB,正

确,不符合题意;C、由点C是线段AB的中点,则AC=12AB,CD=AD-AC=AD-12AB,正

确,不符合题意;D、AD=AC+CD=12AB+CD,不正确,符合题意.故选D. 4.已知点P是CD的中点,则下列等式中正确的个数是( )

①PCCD;②12PCCD;③2PCPD;④PCPDCD A.1个 B.2个 C.3个 D.4个

人教版七年级上册第四章几何图形初步练习(附答案)

七年级上册第四章几何图形初步程习题练习一、选择题1.下列关于平角和周角的说法正确的是()A.平角是一条线段B.周角是一条射线C.两个锐角的和不一定小于平角D.反向延长射线OA,就形成一个平角2.展开的平面图中,没有长方形的几何体是()A.正方体B.圆锥C.圆柱D.棱柱3.有两个角,它们的比为7:3,它们的差为72°,则这两个角的关系是()A.互为余角B.互为补角C.相等D.以上答案都不对4.一个正方体锯掉一个角后,顶点的个数是()A.7个B.8个C.9个D.7个或8个或9个或10个5.如图,∠AOC=∠BOD=80°,如果∠AOD=140°,那么∠BOC等于()A.20°B.30°C.50°D.40°6.从正面观察这个图形,形状可能是()A.B.C.D.7.一个角的余角是这个角的补角的1,则这个角的度数是()3A.30°B.45°C.60°D.70°8.如图,能用∠1,∠ACB,∠C三种方法表示同一个角的是()A.B.C.D.二、填空题9.一条射线OA绕着它的端点O旋转到的位置OB时,所成的角叫做平角;当旋转到的位置OB时,所成的角叫做周角.10.如图,是用若干个小立方块搭成的几何体分别从正面和上面看到的形状图,则搭成这个几何体最少需要个小立方块.11.写出下列物体类似的几何图形:数学课本,笔筒,金字塔,西瓜.12.如图,OA的方向是北偏东15°,OB的方向是西偏北50度.(1)若∠AOC=∠AOB,则OC的方向是;(2)OD是OB的反向延长线,OD的方向是;(3)∠BOD可看作是OB绕点O逆时针方向旋转至OD,作∠BOD的平分线OE,OE的方向是;(4)在(1)、(2)、(3)的条件下,∠COE= .三、解答题(共4小题,每小题分,共0分)13.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.14.把一根长16米的钢管截成12段,再焊接成一个长方体形状的架子,若要求高与宽都是1米,那么做成这个长方体形状的架子体积有多大?15.如图,点C是线段AB的中点.(1)若点D在线段CB上,且DB=3.5cm,AD=6.5cm,求线段CD的长度;(2)若将(1)中的点“D在线段CB上”改为“点D在直线CB上”,其它条件不变,请画出相应的示意图,并求出此时线段CD的长度;(3)若线段AB=12cm,点C在AB上,点D、E分别是AC和BC的中点.①当点C恰是AB中点时,则DE=cm.②当AC=4cm,时,求DE的长;③当点C在线段AB上运动时(点C与A、B重合除外),求DE的长.16.如图,已知∠AOB、∠COD都为平角,∠AOE、∠BOE、∠COF、∠DOF都等于90°.(1)写出∠AOF的所有余角;(2)写出∠BOD的所有补角;(3)如果∠AOD=4∠EOF,求∠EOF的度数.答案解析1.【答案】D【解析】A、平角是角,是有公共端点的两条射线组成的图形,不是线段,错误;B、周角是角,是有公共端点的两条射线组成的图形,是两条射线,错误;C、锐角大于0°而小于90°,所以两个锐角的和小于180°,错误;D、反向延长射线OA,O成为角的顶点,正确;故选D.2.【答案】B【解析】A,C,D的侧面展开图形都是长方形,而圆锥的侧面展开图形是扇形.故选B.3.【答案】B【解析】设这两个角分别为7x,3x.列方程得:7x-3x=72,解得x=18.这两个角为7×18°=126°,3×18°=54°.因为126°+54°=180°,所以这两个角互补.故选B.4.【答案】D【解析】如图所示:将一个正方体截去一个角,则其顶点的个数减少1;不变;增加1或2.即顶点的个数是7个或8个或9个或10个.故选D.5.【答案】A【解析】∵∠AOC=80°,∠AOD=140°,∴∠COD=∠AOD-∠AOC=60°,∵∠BOD=80°,∴∠BOC=∠BOD-∠COD=80°-60°=20°.故选A.6.【答案】D7.【答案】B【解析】设这个角的度数为x,则它的余角为90°-x,补角为180°-x,依题意得:90°-x=1(180°-x),3解得x=45°.故选B.8.【答案】C【解析】在选项A、B、D中,如果用∠C表示,容易使人产生歧义,无法让人明确到底表示哪个角;只有选项C能用∠1,∠ACB,∠C三种方法表示同一个角,不会使人产生歧义.故选C.9.【答案】与起始位置OA成一条直线;与起始位置OA重合【解析】10.【答案】6【解析】由俯视图易得最底层有5个小立方块,由主视图可得第二层最少有1个小立方块,所以搭成这个几何体最少需要5+1=6个小立方块.故答案为:611.【答案】长方体;圆柱(或棱柱);四棱锥;球.【解析】根据实物的形状,可得立体图形.12.【答案】(1)北偏东70°;(2)南偏东40°;(3)南偏西50°;(4)160°.【解析】根据方位角的概念,即可求解.解:(1)∠AOC=∠AOB=90°-50°+15°=55°,OC的方向是北偏东15°+55°=70°;(2)OD是OB的反向延长线,OD的方向是南偏东40°;(3)OE是∠BOD的平分线,∠BOE=90°;OE的方向是南偏西50°;(4)∠COE=90°+50°+20°=160°.13.【答案】解:设∠AOC =x ,则∠BOC =2∠AOC =2x ,∠AOB =∠BOC +∠AOC =3x .∵OD 平分∠AOB ,∴∠AOD =12∠AOB =32x .又∵∠AOD -∠AOC =∠COD =20°,∴32x -x =20°, 解得x =40°,∴∠AOB =3x =120°.【解析】设∠AOC =x ,则∠BOC =2x ,∠AOB =3x .先由角平分线的定义得出∠AOD =32x ,再根据∠AOD -∠AOC =∠COD =20°,列出关于x 的方程,解方程求出x 的值,进而得到∠AOB 的度数.14.【答案】解:长方体的长是(16-8)÷4=2, 长方体的体积是2×1×1=2(m 3), 答:做成这个长方体形状的架子体积是2 m 3.【解析】根据长方体的宽、高,可得长方体的长,根据长方体的体积公式,可得答案. 15.【答案】解:(1)∵DB =3.5cm ,AD =6.5cm ,∴AB =10cm .∵C 为AB 中点,∴CB =5cm ,∴CD =5-3.5=1.5 cm ;(2)①点D在线段BC上,则CD=1.5cm,②点D在CB的延长线上:,则AB=AD-DB=3.∴BC=1.5,∴CD=1.5+3.5=5;(3)①6;②DE=6cm,③设AC=x cm,则BC=(12一x)cm,又D、E分别为AC、BC中点,CD=x2,CE=12−x2,DE=CD+CE=x2+12−x2=6cm.【解析】(1)根据线段的和差,可得AB的长,根据线段中点的性质,可得BC的长,再根据线段的和差,可得答案;(2)分类讨论:①点D在线段BC上,②点D在CB的延长线上,根据线段的和差,可得AB的长,根据线段中点的性质,可得BC的长,再根据线段的和差,可得答案;(3)根据线段的和差,可得AB的长,根据线段中点的性质,可得BC的长,再根据线段的和差,可得答案.16.【答案】解:(1)∠AOF的所有余角有∠EOF、∠BOD、∠AOC;(2)∠BOD的所有补角∠AOD、∠BOC;(3)∵∠AOC=∠EOF,∠AOC+∠AOD=180°,∠AOD=4∠EOF,∴5∠AOC=180°,∴∠EOF=∠AOC=36°.故∠EOF的度数是36°.【解析】(1)余角即与另一个角的和为90°的角;(2)补角即与另一个角的和为180°的角;(3)利用平角为180°求解.。

人教版数学七年级上学期第四章单元练习题:几何图形初步(含答案)

第四章单元练习题:几何图形初步1.如图所示,已知∠AOB=90°,OM平分∠BOC,ON平分∠AOC,求∠MON的度数.2.如图,已知点A、B、C、D、E在同一直线上且AC=BD,E是线段BC的中点,AD=10,AB=3.(1)求线段BD的长度;(2)求线段BE的长度.3.点O为直线AB上一点,在直线AB同侧任作射线OC,OD,使得∠COD=90°.(1)如图1,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,则∠EOF的度数是(度).(2)如图2,过点O作射线OE,当OE恰好为∠AOD的角平分线时,求出∠BOD与∠COE的数量关系;(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF 平分∠COD,若∠EOC=3∠EOF,直接写出∠AOE的度数.4.如图所示,已知O是直线AB上一点,∠BOE=∠FOD=90°,OB平分∠COD.(1)图中与∠DOE互余的角是.(2)图中是否有与∠DOE互补的角?如果有,直接写出全部结果;如果没有,说明理由.(3)如果∠EOD:∠EOF=3:2,求长∠AOC的度数.5.若∠α的度数是∠β的度数的k倍,则规定∠α是∠β的k倍角.(1)若∠M=21°17',则∠M的5倍角的度数为;(2)如图①,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOC=∠COE,请直接写出图中∠AOB的所有3倍角;(3)如图②,若∠AOC是∠AOB的5倍角,∠COD是∠AOB的3倍角,且∠AOC和∠BOD互为补角,求∠AOD的度数.6.如图1,点O为直线AB上一点,过点O作射线OC,OD,使射线OC平分∠AOD.(1)当∠BOD=50°时,∠COD=°;(2)将一直角三角板的直角顶点放在点O处,当三角板MON的一边OM与射线OC重合时,如图2.①在(1)的条件下,∠AON=°;②若∠BOD=70°,求∠AON的度数;③若∠BOD=α,请直接写出∠AON的度数(用含α的式子表示).7.如图,线段BD=AB=CD,点E、F分别是线段AB、CD的中点,EF=14cm,求线段AB、CD的长.8.一个角的补角比它的余角的还多60°,求这个角的度数.9.已知线段AB=m(m为常数),点C为直线AB上一点(不与A、B重合),点P、Q分别在线段BC、AC上,且满足CQ=2AQ,CP=2BP.(1)如图,当点C恰好在线段AB中点时,则PQ=(用含m的代数式表示);(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ﹣2PQ与1的大小关系,并说明理由.10.如图,OD平分∠BOC,OE平分∠AOC.(1)若∠BOC=60°,∠AOC=40°,求∠DOE的度数;(2)若∠DOE=n°,求∠AOB的度数;(3)若∠DOE+∠AOB=180°,求∠AOB与∠DOE的度数.11.如图1,点O为直线AB上一点,过点O作射线OC,使∠B OC=2∠AOC,将一直角三角板的直角顶点放在点O处,边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转45°至图2的位置,此时∠MOC =°;(2)将图1中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1逆时针旋转一周的过程中,若三角板绕点O按5°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.12.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.13.如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=35°,∠ACB=;若∠ACB=140°,则∠DCE=;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α,β都是锐角),如图(c),若把它们的顶点O重合在一起,请直接写出∠AOD与∠BOC的大小关系.14.阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是,数轴上表示﹣2和3的两点之间的距离是;(2)数轴上表示x和﹣1的两点之间的距离表示为;(3)若x表示一个有理数,则|x﹣2|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.15.阅读:在用尺规作线段AB等于线段a时,小明的具体作法如下:已知:如图,线段a:求作:线段AB,使得线段AB=a.作法:①作射线AM;②在射线AM上截取AB=a.∴线段AB即为所求,如图.解决下列问题:已知:如图,线段b:(1)请你仿照小明的作法,在上图中的射线AM上求作点D,使得BD=b;(不要求写作法和结论,保留作图痕迹)(2)在(1)的条件下,取AD的中点E.若AB=10,BD=6,求线段BE的长.(要求:第(2)问重新画图解答)参考答案1.解:∵OM平分∠BOC,ON平分∠AOC,∴∠MOC=∠BOC,∠NOC=∠AOC,∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=∠BOA=45°.∴∠MON的度数为45°.2.解:(1)∵AD=10,AB=3,∴BD=AD﹣AB=10﹣3=7;(2)∵AD=10,AB=3,∴BC=AD﹣2AB=10﹣2×3=4,∴BE=BC=×4=2.即线段BE的长度为2.3.解:(1)∵∠COD=90°,∴∠AOC+∠BOD=90°,∵OE为∠AOC的角平分线,OF平分∠BOD,∴∠EOC=∠AOC,∠DOF=∠BOD,∴∠EOF=∠COD+∠EOC+∠DOF=90°+(∠AOC+∠BOD)=90°+×90°=135°,故答案为:135;(2)∵∠COD=90°,∴∠COE+∠EOD=90°,∴∠EOD=90°﹣∠COE,∵OE为∠AOD的角平分线,∴∠AOD=2∠EOD=2(90°﹣∠COE)=180°﹣2∠COE,∵∠BOD+∠AOD=180°,∴∠BOD=180°﹣∠AOD=180°﹣180°+2∠COE=2∠COE;(3)①如图3所示时,∵∠COD=90°,OF平分∠COD,∴∠COF=∠EOC+∠EOF=45°,∵∠EOC=3∠EOF,∴4∠EOF=45°,∴∠EOF=11.25°,∴∠EOC=33.75°,∵OC为∠AOE的角平分线,∴∠AOE=2∠EOC=67.5°;②如图4所示时,∵∠COD=90°,OF平分∠COD,∴∠COF=45°,∵∠EOC=3∠EOF,∴∠COF=2∠EOF=45°,∴∠EOF=22.5°,∴∠COE=45°+22.5°=67.5°,∵OC为∠AOE的角平分线,∴∠AOE=2∠COE=135°;综上所述,∠AOE的度数为67.5°或135°.4.解:(1)图中与∠DOE互余的角有:∠EOF,∠BOD,∠BOC,故答案为:∠EOF,∠BOD,∠BOC;(2)与∠DOE互补的角有∠BOF,∠COE;(3)∵∠EOD:∠EOF=3:2,∴∠EOD=3x,则∠EOF=2x,∵∠FOD=90°,∴3x+2x=90°,x=18°,∴∠EOF=36°,∵∠BOE=∠FOD=90°,∴∠DOE+∠EOF=90°,∠DOE+∠DOB=90°,∴∠EOF=∠DOB=36°,∵OB平分∠COD,∴∠DOB=∠COB=36°,∵∠AOC+∠COB=180°,∴∠AOC=180°﹣∠COB=144°.5.解:(1)21°17'×5=106°25';故答案为:106°25';(2)∵OB是∠AOC的平分线,OD是∠COE的平分线,∠AOC=∠COE,∴∠AOB=∠BOC=∠COD=∠DOE,∴∠AOD=∠BOE=3∠AOB.故∠AOB的3倍角有:∠AOD,∠BOE;(3)设∠AOB=x,则∠BOC=4x,∠COD=3x.由题意,得5x+7x=180°,解得x=15°,所以∠AOD=8x=120°.6.解:(1)∠AOD=180°﹣∠BOD=130°,∵OC平分∠AOD,∴∠COD==65°.故答案为:65°;(2)①由(1)可得∠AOC=∠COD=65°,∴∠AON=90°﹣∠AOC=25°,故答案为:25°;②∵∠BOD=70°,∴∠AOD=180°﹣∠BOD=110°,∵OC平分∠AOD,∴∠AOC=,∵∠MON=90°,∴∠AON=90°﹣∠AOC=35°;③.7.解:设BD=x,则CD=5x,AB=4x,∵点E,F分别是AB,CD的中点,∴EB=AB=2x,DF=CD=2.5x,∴ED=1x,∴EF=ED+DF=3.5x,又∵EF=14,∴3.5x=14,解得x=4,∴CD=5x=20,AB=4x=16.8.解:设这个角为x°,则其余角为(90﹣x)°,补角为(180﹣x)°,依题意有180﹣x=(90﹣x)+60,解得x=30.答:这个角的度数是30°.9.解:(1)∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵点C恰好在线段AB中点,∴AC=BC=AB,∵AB=m(m为常数),∴PQ=CQ+CP=AC+BC=×AB+×AB=AB=m;故答案为:m;(2)①点C在线段AB上:∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵AB=m(m为常数),∴PQ=CQ+CP=AC+BC=×(AC+BC)=AB=m;②点C在线段BA的延长线上:∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵AB=m(m为常数),∴PQ=CP﹣CQ=BC﹣AC=×(BC﹣AC)=AB=m;③点C在线段AB的延长线上:∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵AB=m(m为常数),∴PQ=CQ﹣CP=AC﹣BC=×(AC﹣BC)=AB=m;故PQ是一个常数,即是常数m;(3)如图:∵CQ=2AQ,∴2AP+CQ﹣2PQ=2AP+CQ﹣2(AP+AQ)=2AP+CQ﹣2AP﹣2AQ=CQ﹣2AQ=2AQ﹣2AQ=0,∴2AP+CQ﹣2PQ<1.10.解:(1)∵OD平分∠BOC,∠BOC=60°,∴∠COD=∠BOC=30°,同理∠COE=20°∴∠DOE=∠COD+∠COE=30°+20°=50°;(2)∵OD平分∠BOC,∴∠BOC=2∠DOC,同理∠AOC=2∠COE∵∠AOB=∠AOC+∠BOC∴∠AOB=2∠DOC+2∠COE=2(∠DOC+∠COE)=2∠DOE=2n°;(3)∵∠AOB=2∠DOE,∠DOE+∠AOB=180°∴∠DOE+2∠DOE=180°,∴∠DOE=60°,∴∠AOB=120°.11.解:(1)∵∠BOC+∠AOC=180°,∠BOC=2∠AOC,∴∠AOC=60°,∠BOC=120°,由旋转可知∠BOM=45°,∵OM恰好平分∠BOC,∴∠MOC=120°﹣45°=75°.故答案为:75.(2)由(1)得∠AOC=60°,∵∠MON=90°,∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°,∴∠AOM与∠NO C之间的数量关系为:∠AOM﹣∠NOC=30°.(3)由(1)得∠AOC=60°,①如左图,延长NO,当直线ON恰好平分锐角∠AOC,∴∠AOD=∠COD=30°,即逆时针旋转60°时NO延长线平分∠AOC,由题意得,5t=60,∴t=12;如右图,当NO平分∠AOC,∴∠AON=30°,即逆时针旋转240°时NO平分∠AOC,∴5t=240,∴t=48,∴三角板绕点O的运动时间为12秒或48秒.12.解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.13.解:(1)若∠DCE=35°,∵∠ACD=90°,∠DCE=35°,∴∠ACE=90°﹣35°=55°,∵∠BCE=90°,∴∠ACB=∠ACE+∠BCE=55°+90°=145°;若∠ACB=140°,∵∠BCE=90°,∴∠ACE=140°﹣90°=50°,∵∠ACD=90°,∴∠DCE=90°﹣50°=40°,故答案为:145°;40°;(2)∠ACB+∠DCE=180°,理由如下:∵∠ACB=∠ACD+∠BCD,=90°+∠BCD,∴∠ACB+∠DCE,=90°+∠BCD+∠DCE,=90°+∠BCE,=180°;(3)∠DAB+∠CAE=120°,理由如下:∵∠DAB=∠DAC+∠CAB,=60°+∠CAB,∴∠DAB+∠CAE,=60°+∠CAB+∠CAE,=60°+∠EAB,=120°;(4)∠AOD+∠BOC=α+β,理由是:∵∠AOD=∠DOC+∠COA=β+∠COA,∴∠AOD+∠BOC=β+∠COA+∠BOC,=β+∠AOB,=α+β.14.解:(1)|1﹣(﹣3)|=4;|3﹣(﹣2)|=5;故答案为:4;5;(2)|x﹣(﹣1)|=|x+1|或|(﹣1)﹣x|=|x+1|,故答案为:|x+1|;(3)有最小值,当x<﹣3时,|x﹣2|+|x+3|=2﹣x﹣x﹣3=﹣2x﹣1,当﹣3≤x≤2时,|x﹣2|+|x+3|=2﹣x+x+3=5,当x>2时,|x﹣2|+|x+3|=x﹣2+x+3=2x+1,在数轴上|x﹣2|+|x+3|的几何意义是:表示有理数x的点到﹣3及到2的距离之和,所以当﹣3≤x≤2时,它的最小值为5.15.解:(1)如图所示:∴点D、点D'即为所求;(2)∵E为线段AD的中点,∴.如图1,点D在线段AB的延长线上.∵AB=10,BD=6,∴AD=AB+BD=16.∴AE=8.∴BE=AB﹣AE=2.如图2,点D在线段AB上.∵AB=10,BD=6,∴AD=AB﹣BD=4.∴AE=2.∴BE=AB﹣AE=8,综上所述,BE的长为2或8.。

人教版初中数学七年级上册第四章《几何图形初步》综合水平测试(含答案)

人教版初中数学七年级上册第四章《几何图形初步》综合水平测试一、选择题(每题3分,共30分)1.把一条弯曲的河道改成直道,可以缩短航程,其中的道理可以解释为( ).(A )线段有两个端点 (B )过两点可以确定一条直线(C )两点之间,线段最短 (D )线段可以比较大小2.下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个角的是( )3.若一个立体图形的正视图、左视图都是长方形,俯视图圆,则这个图形可能 ( )A .圆柱B 球C 圆锥D 三棱锥4.操场上,小明对小亮说:“你在我的北偏东30°方向上”,那么小亮可以对小明说:“你在我的( )方向上”.(A )南偏西30° (B )北偏东30° (C )北偏东60° (D )南偏西60°5.若∠A 的余角是70°,则∠A 的补角是( )A .70°B .110°C .20°D .160°6.如图,下列说法错误的是( )A .∠B 也可以表示为∠ABCB .∠BAC 也可以表示为∠AC .∠1也可以表示为∠CD .以C 为顶点且小于180º的角有3个 7.已知∠1、∠2互为补角,且∠1>∠2,则∠2的余角是( ).(A )12(∠1+∠2) (B )12∠1 (C )12(∠1-∠2) (D )12∠2 8.将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后B E B A ''与与在同一条直线上,则∠CBD 的度数A. 大于90°B.等于90° C. 小于90° D.不能确定9.小丽制作了一个对面图案均相同的正方体礼品盒(如图1所示),则这个正方体礼品盒的平面展开图可能是( ).A B C D第2题图 A E B DCA ' E ' 第8题图 第6题图图110.如图7,是由四个11⨯的小正方形组成的大正方形,则1234+++=∠∠∠∠( ) A.180B.150 C.135 D.120二、填空题(每题3分,共30分)11.圆柱的侧面展开图是_______形.12.拿一个硬币,将其立在桌面上用力一转,它形成的是一个_______体,由此说明_______________________________________________13.如图, OC 平分∠AOB ,∠BOC =20°,则∠AOB =.14.如图,点C 是∠AOB 的边OA 上一点,D 、E 是OB 上两点,则图中共有_______条线段,________条射线, ________个小于平角的角.15.有四个点,每三个点都不在一条直线上,过其中每两个点画直线,可以画________条直线.16.已知五角星的五个顶点在同一圆上,且均分布,五角星的中心是这个圆的圆心,则圆心与两个相邻顶点的连线,构成的角度为______.17.∠α的补角为125°,∠β的余角为37°,则α、β的大小关系为α______β.18.一次测验从开始到结束,手表的时针转了50的角,这次测验的时间是________.19.在直线l 上取A B C ,,三点,使得4cm AB =,3cm BC =,如果点O 是线段AC 的中点,则线段OB 的长度为________.20.将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=11O °,则∠BOC= .三、解答题(共50分)21.画图题(共12分) (1)(本题6分)如图,∠AOB 为已知角,请用圆规和直尺准确地画一个角等于∠AOB (请保留作图痕迹)(2)(本题6分)如图,分别从正面、左面、上面观察这个图形,请画出你看到的平面图形 A B第10题图 第14题图第13题图 第21题图第20题图22.(本题8分)一个角的余角比它的补角的13还少20°,求这个角.23. (本题10分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若AB=18cm,求DE的长;(2)若CE=5cm,求DB的长.24.(本题10分)如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.(1)指出图中∠AOD的补角,∠BOE的补角;(2)若∠BOC=68°,求∠COD和∠EOC的度数;(3)∠COD与∠EOC具有怎样的数量关系?25.(本题10分)国外有一种流行的拼图游戏,称为“俄罗斯方块”,它的基本图形有如下两性质:①由四个连在一起的同样大小的正方形组成;②每个小正方形至少和另一个小正方形有一条公共边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2014学年度第一学期单元试卷
初一 数学 第1页共4页
DCBA
F
EFEDCBABAFED
C

B
A

乙1乙乙

乙乙
乙乙

D
C
BA

β
βββ

α

α
α
α

乙3乙乙

北京市第41中学2013年10月初一数学第四章几何图形初步测试题
(时限:60分钟 总分:100分)
班级 姓名 学号 成绩
一、选择题:每小题4分,共36分。
1.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对
面上的字是( )
A.和 B.谐
C.社 D.会
2.下面左边是用八块完全相同的小正方体搭成
的几何体,从上面看该几何体得到的图是( )

A B C D
3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( )
A. 正方体、圆柱、三棱柱、圆锥
B. 正方体、圆锥、三棱柱、圆柱
C. 正方体、圆柱、三棱锥、圆锥
D. 正方体、圆柱、四棱柱、圆锥

4.如图,对于直线AB,线段CD,射线EF,其中能相交的是( )

5.下列说法中正确的是( )
A.画一条3厘米长的射线 B.画一条3厘米长的直线
C.画一条5厘米长的线段 D.在线段、射线、直线中直线最长

6.如图,将一副三角尺按不同位置摆放,摆放方式中∠ 与∠ 互余的是



初一 数学 第2页共4页
2

1

N
M
P
D
C

B
A

B()
D

C

A
DC

B
A

乙19乙
D
C

B

A
O

乙20乙
C
B

A
乙18乙
DCBA
O

7. C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为
( )
A. 3cm B. 4cm C. 5cm D. 6cm
8.用度、分、秒表示91.34°为( )
A. 91°20/24// B. 91°34/ C. 91°20/4// D. 91°3/4//
9.甲、乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),
两人做法如下:

甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;
乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,
则∠MAN=45°
对于两人的做法,下列判断正确的是( )
A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错
二、 填空题:本大题共5小题,每小题4分,共20分。
10.下列各图形中, 不是正方体的展开图(填序号).

① ② ③ ④
11.已知线段AB,延长AB到C,使BC=2AB,D为AB的中点,若BD=3cm,则AC
的长为 cm.
12.如图,已知点O是直线AD上的点,∠AOB、∠BOC、∠COD三个角从小到大依
次相差25°,则这三个角的度数分别为.

13.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB
2013-2014学年度第一学期单元试卷

初一 数学 第3页共4页
D
C
B

A

b
a

O
D
C
B
A

= .
14.如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东15°
方向行至点C,则∠ABC= 度.

三、 解答题:(本大题共44分)
15.(每小题3分,共6分)根据下列语句,画出图形.
⑴已知四点A、B、C、D.
① 画直线AB;
② 连接AC、BD,相交于点O;
③ 画射线AD、BC,交于点P.

⑵如图,已知线段a、b,画一条线段,使它等于2a-b.(不要求写画法)

16.计算题:(每小题5分,共20分)
⑴ (180°-91°32/24//)÷3 ⑵ 34°25/×3+35°42/

⑶ 一个角的余角比它的补角的还少20°,求这个角.
3

1

⑷ 如图,AOB为直线,OC平分∠AOD,∠BOD=42°,
求∠AOC的度数.
初一 数学 第4页共4页
4

乙24乙乙
3x乙2
A
1乙2x3

乙25乙乙
EA/DCBA

17.(本大题6分)
如图,是由7块正方体木块堆成的物体,请说出图⑴、图⑵、图⑶分别是从哪一个
方向看得到的?

⑴ ⑵ ⑶
18.(本大题6分)
如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体
的左面与右面标注的式子相等.
⑴ 求x的值.
⑵ 求正方体的上面和底面的数字和.

19.(本大题6分)探究题:
如图,将书页一角斜折过去,使角的顶点A落在A
/

处,BC为折痕,BD平分

∠A/BE,求∠CBD的度数.
2013-2014学年度第一学期单元试卷

初一 数学 第5页共4页
参考答案:
一、选择题:
1.D;2.D;3.A;4.B;5.C;6.C;7.C; 8.A; 9.A;
二、填空题:10.③;11.18; 12.35°,60°,85°;
13.180°14.60°
三、解答题: 15.略; 16.⑴.29°29/12//;⑵.138°57/;⑶.75°;⑷.69°.
17.⑴是从上面看;⑵.是从正面看到 ;⑶.是从左面看. 18.⑴1;⑵4.
19.90°

相关文档
最新文档