LED电子显示屏毕业设计中英文翻译
基于51单片机的led显示屏设计

毕业设计(论文)此毕业设计论文几乎所有内容都是作者原创,已经查重通过,重复率不到5%。
程序部分如有疑问,可以qq联系。
1366715589、电子与信息工程学院二零一四年六月天津工业大学毕业设计(论文)基于单片机的LED显示屏系统设计学生姓名 qq1366715589 院部名称电子与信息工程学院专业电子信息工程指导教师职称天津工业大学毕业设计(论文)任务书院长教研室主任指导教师毕业设计(论文)开题报告表天津工业大学毕业论文进度检查记录本文主要阐述了用51单片机控制单色16*64的LED点阵屏显示的方法,对LED点阵屏如何进行行列信号控制及信号传输中的驱动问题进行了研究,并讨论了单片机控制系统中关键的数据处理以及发送问题。
结果表明采用并行数据输入、串行数据及同步时钟传输的专用电路可大大减少CPU的辅助时间,提高了数据的发送速度。
并给出了通过软件控制点阵屏显示的几种方式,如静态显示,分屏显示以及左移显示,对其软件的算法给出了具体分析。
基于各种算法我们就可以灵活的运用软件实现各种显示,并将其用于商业用途。
关键词:LED点阵屏;单片机;驱动;扫描This article mainly elaborates the method of using MCU-51 to control single color 16*64 LED lattice screen display, and researching how to carry on the ranks signal control and the question of signal actuation with the LED lattice screen, and discusses the essential data processing and the transmission question in the monolithic integrated circuit control system. The result indicates that CPU non-cutting time can be reduced greatly by using the allocated-use circuit with parallel data input, serial data and synchronism clock transmission, which has raised the data transmitting speed. This system has given several ways to control lattice screen display via software such as the static state display, divided screen display and left shift display, which has given the concrete analysis of software's algorithm. We can realize all kinds of display nimbly by using software based on each algorithm, and use it in the commercial trade .Key words:LED lattice screen;One-chip computer;Drive;Scan天津工业大学本科毕业论文目录第一章绪论 (1)1.1课题的背景和意义 (1)1.2 相关技术发展现状 (2)1.2.1 LED显示屏发展的简要回顾 (2)1.2.2 我国LED显示屏的发展现状 (3)1.2.3 LED显示屏的发展趋势 (4)第二章系统总体设计 (6)2.1需求分析 (6)2.2系统组成及功能描述 (6)2.3系统的功能描述 (7)2.4系统的工作过程 (7)第三章基于51单片机的LED显示屏系统设计 (8)3.1硬件系统总体设计 (8)3.1.1 STC90C51的硬件结构 (8)3.1.2 STC90C51主要性能参数 (9)3.1.4 STC90C51单片机适用领域 (10)3.2 单片机STC90C51电路及外围电路 (10)3.4 LED显示屏扫描电路设计 (13)3.4.1 LED点阵屏内部结构及显示原理 (13)3.4.2 列扫描电路设计 (15)3.4.3 行驱动扫描电路设计 (16)第四章软件设计 (17)4.1系统软件设计思路 (17)4.2显示驱动程序 (17)4.3上移程序设计 (18)第五章系统调试与实验 (21)5.1实验平台 (21)5.2软件平台 (23)5.2.1 字模提取 (24)5.3实验方案 (25)5.3.1主控部分测试 (25)5.3.2 led显示部分测试 (25)结论 (27)参考文献 (28)附录 (29)谢辞 (55)第一章绪论1.1课题的背景和意义随着我国社会经济文化等的不断发展,民众的消费标准也在发生着不断的变化,户外灯箱广告更是扮演着越来越重要的宣传角色,在车站、商场、学校单位等场合都会见到霓虹灯之类的广告。
LED点阵的外文翻译

本科毕业设计(论文)外文翻译学生姓名:黄杰学号:********* 二级学院名称:电子信息学院专业:电子科学与技术指导教师:徐方迁职称副教授合作/企业教师:职称填表日期:年月日substrate and epitaxial layer. In this research, I have helped ramping up an MOCVD system together with Dr. Hongbo Yu. In this Chapter, I will summarize the MOCVD technologies and defect reduction strategies for InGaN light-emitting diodes (LEDs) epitaxy that will be used throughout this Thesis.2.1.1 GaN Growth Using MOCVDDue to a large lattice mismatch between GaN and sapphire, it is important to contain the defects near the GaN/sapphire interface such that the defect density can be minimized in the device region. Such optimization is achieved using in situ reflectometry [44, 45]. A home-made reflectometry system shown in Figure 2-1 was established in our 3 x 2” Thomas-Swan Close-Coupled Showerhead (CCS) MOCVD system. White light is reflected from the sample surface and monitored by a spectrometer during the growth. The reflectivity is sensitive to both the surface morphology and the epitaxial layer structure.Figure 2-1. Illustration of a home-made in situ reflectometry system integrated into the MOCVD system.Figure 2-2. Typical growth conditions for GaN templates used in this research.Typical growth conditions for GaN templates used in this research are summarized in Figure 2-2 and Table 2-2. Unless otherwise mentioned, c-plane sapphire substrates were used. The five steps outlined in Table 2-2, including high temperature (HT) cleaning, nitridation, low temperature (LT) nucleation, annealing of LT nucleation layer, and HT GaN growth, are crucial for high quality GaN epilayer.Figure 2-3 and Table 2-3 show the corresponding in situ reflectometry signal.In the following, we will describe how the reflectometry signal can be used to optimize the GaN template growth. Unless otherwise mentioned, we will refer to the reflectometry signal shown in Figure 2-3.Figure 2-3. In situ reflectometry trace of GaN template growth (Sample ID : UM-S07- 254). The highlighted areas correspond to important sub-steps during the epitaxy.2.1.1.1 High Temperature CleaningInitially, as the sample temperature is ramped up, the reflectivity increases due to the increase of the refractive index of the sample. Kim et al. has thoroughly studied the effect of initial thermal cleaning on the sapphire substrate andmode. Several strategies to control the GaN growth in each regime will be briefly discussed in the following.The growth in part I is a buffer step to prepare a surface suitable for HT GaN growth. During this step, the oscillation of the reflectometry signal becomes increasingly obvious. Initially, the reflectivity continues to drop due to the increase of surface roughness induced by the coagulations of the islands, i.e. 3D growth. As time goes by, the 3D growth mode is suppressed and the 2D growth mode is enhanced. Once the surface becomes flattened due to the enhanced 2D growth, layer by layer growth of GaN begins, which causes the reflectivity to increase. The duration of this part of growth can be optimized by tweaking the reactor pressure, V/III ratio, and growth rate [51, 52]. For example, in the case of a low V/III ratio, it takes longer to recover the reflection intensity, which implies that the change of the growth mode (3D 2D) occurs more slowly. The reflectivity recovery time is critical to oscillation amplitude in part II. In general, a larger oscillation amplitude corresponds to a better crystal quality.The part II of the HT GaN growth is stable in a wide range of growth conditions because the growth occurs in a mass transfer limited region. Nevertheless, several key factors will still affect the crystalline structure, including the growth temperature, trimethyl-gallium (TMG) flow, NH3 flow, V/III ratio, and reactor pressure. As shown in Figure 2-7, the growth rate increases as the group III flow increases but decreases as the V/III ratio and growth temperature increase. Thegrowth rate is one of the key parameters to determine optical and electrical properties of GaN epilayer especially for p- or n- type doped cases. This will be discussed in more details in the next Section.译成中文:纳米结构InGaN发光Diodesfor固态照明固态照明用电可能减少25%。
LED专业英语[最全]
![LED专业英语[最全]](https://img.taocdn.com/s3/m/8dd4c46fdd36a32d737581bc.png)
LED照明常用词汇中英文对照1灯具中英文对照烟花灯firework lamp / light节日灯holiday lamp / light圣诞灯Christmas lamp / light椰树灯coconut lamp / light卤素灯Halide Lamps / Halogen Lamps白炽灯泡incandescent light bulbs 组合开关integral switch专业照明illumination舞台灯stage lamp应急灯emergency lamp / light嵌灯/嵌入灯/埋地灯recessed light / lamp车灯car lamp车头灯head lamp投光灯spot light / lamp走线灯light linear泛光灯flood light / lamp景观灯landscape light / lamp电子感应灯electronic senor light / lamp灭蚊灯mosquito killer lamp光源light灯泡bulb节能灯energy saving lamp节能灯(紧凑型荧光灯) Compact Fluorescent Lamp荧光灯fluorescent light /lamp荧光灯支架fluorescent light fixtures电筒flashlight/torch light / lamp 灯杯lamp cup金卤灯metal halide/halogen lamp 溴钨灯Bromine tungsten lamp汞灯mercury lamp钠灯Sodium lamp卤钨灯Halogen tungsten lamp碘钨灯iodine tungsten lamp氖灯/霓虹灯neon lamp石英灯quartz lamp倍尔诺照明Banner lighting company 卤素灯halogen lamp灯饰配件light fittings灯罩lamp shade灯头/灯座lamp holder灯头/灯座lamp base灯盘lamp house气体放电灯Gas discharge lamp荧光灯fluorescent light /lamp current-carry载(电)流的current-conducting 导电的压克力配件acrylic fitting塑胶配件plastic fitting陶瓷配件ceramic fitting五金配件hardware fitting玻璃配件glass fitting压铸件die-casting fitting开关switch电线electric wire / power cored 插针/插头Pin (plug)插座socket电感镇流器Inductive / magnetic ballast电子镇流器electronic ballast适配器adapter变压器transformer启动器starter整流器commutator感应器sensor调光器dimmer端子台termianl荧光灯管Linear fluorescent light tube三基色tri-phosphor三基色稀土荧光粉tri-phosphor Fluorescent Powder三基色灯管tri-phosphor tube light三基色发光二极管tri-phosphor LEDS伪彩色LED显示屏pseudo-color LED panel全彩色LED显示屏all-color LED panel 光及辐射Light and radiation光通量(单位为:流明lm) Luminous flux ,Φ光强度luminous intensity, I光强度单位:坎德拉candela, cd照度Illuminance, E 照度单位:勒克斯Lux, lx辉度Luminance, L 辉度单位:坎德拉每平方米cd/㎡色温Co1or Temperature色温单位:绝对温度Kelvin, K光色Light color演色性Color rendering平均演色性指数general color rendering index, (Ra)灯具效率Luminaire efficiency不可见光Invisible Light光谱Spectrum白炽灯泡Incandescent bulb吸顶灯ceiling lamp / light水晶灯crystal lamp / light室内灯residential lamp / light枝状大吊灯chandeliers吊灯pendant lamp / light半吊灯half pendant lamp / light台灯table lamp / light壁灯wall lamp / light落地灯floor lamp / light水珠灯water pearl lamp / light导轨灯track lamp / light柱灯pillar lamp / light蒂凡尼灯tiffany lamp / light 风水灯water fountain lamp / light户外灯outdoor lamp / light路灯street lamp / light筒灯down lamp / light投光射灯spot lamp / light庭院灯garden lamp / light草坪灯lawn lamp / light草地灯lawn lamp / light防水灯water proof lamp / Under water lampcurrent-limiter电流限制器,限流器current-limiting石艺灯marble lamp / light羊皮灯parchment lamp / light镜前灯mirror front lamp / light格栅灯grille lamp / light木灯wooden lamp / light宫灯palace lamp / light仿水晶灯imitated crystal lamp / light低压灯low voltage lamp / light工艺灯artificial lamp / light镜画灯picture lamp / light吊线灯track / line lamp / light柱头灯water jet lamp / light水底灯underwater lamp / light户外壁灯outdoor wall lamp / light组合灯assembled lamp / light太阳能灯solar lamp / light彩灯holiday lamp / light彩虹灯rainbow lamp / light烟花灯firework lamp / lightAachromatic (perceived) colour……………………………………………无彩(知觉)色(8)acdjustable luminarie…………………………………………………………可调式灯具(26)area (surface) light source…………………………………………………………面光源(16)average cylinderical illuminance……………………………………………平均柱面照度(16)average illuminance……………………………………………………………平均照度(15)average life………………………………………………………………………平均寿命(23)average luminance………………………………………………………………平均亮度(15)average spherical illuminance, scalar illuminance………平均球面照度;标量照度(16)Bballast………………………………………………………………………………镇流器(22)bayonet cap……………………………………………………………………插口式灯头(22)beam angle…………………………………………………………………………光束角(29)brightness……………………………………………………………………………视亮度(8)Ccalculatinb height of luminaire……………………………………………灯具计算高度(14)cap……………………………………………………………………………………灯头(22)ceiling luminaire, surface mounted luminaire……………………………………吸顶灯具(27)chroma………………………………………………………………………………彩度(8)chromatic adaptation…………………………………………………………………色适应(8)chromatic (perceived )colour………………………………………………有彩(知觉)色(8)chromaticity………………………………………………………………………色品;色度(9)CIE standard clear sky……………………………………………………CIE标准全晴天空(31)CIE standard overcast sky………………………………………………CIE标准全阴天空(31)CIE standard photometric observer……………………………………CIE标准光度观察者(4)circular fluorescent lamp………………………………………………………环形荧光灯(21)coefficient ofsunshine spacing……………………………………………日照间距系数(34)colorimeter…………………………………………………………………………色度计(38)colorimetry…………………………………………………………………………色测量(37)colour appearance……………………………………………………………………色表(9)colour atlas……………………………………………………………………色(谱)集(38)colour chip……………………………………………………………………………色卡(38)colour contrast………………………………………………………………………色对比(9)colour correction……………………………………………………………………色修正(38)colour of light source……………………………………………………………光源色(8)olour rendering………………………………………………………………………显色性(9)colour rendering index……………………………………………………………显色指数(9)colour sensation………………………………………………………………………色感觉(8)colour stimulus………………………………………………………………………色刺激(8)colour temperature……………………………………………………………色温(度)(9)combined lughting…………………………………………………………………混光照明(13)compact fluorescent lamp……………………………………………………紧凑型荧光灯(21)cool colour……………………………………………………………………………冷色(9)cool white fluorescent lamp………………………………………………冷白色荧光灯(20)correction coefficient for beight-span ratio……………………………高跨比修正系数(33)correction coefficient of window width……………………………………窗宽修正系数(33)correlated colour temperature……………………………………………相关色温(度)(9)cosine correction…………………………………………………………………余弦修正(38)cut-off…………………………………………………………………………………截光(29)cut-off angle………………………………………………………………………截光角(29)Ddark adaptation………………………………………………………………………暗适应(6)daylight…………………………………………………………………………昼光(30)daylight climate coefficient……………………………………………………光气候系数(32)daylight factor……………………………………………………………………采光系数(31)daylight factor of window or rooflight opening…………………………窗洞口采光系数(32)daylight fluorescent lamp…………………………………………………日光采荧光灯(20)decorative lamp…………………………………………………………………装饰灯泡(18)diffused lighting…………………………………………………………………漫射照明(12)diffused luminaire……………………………………………………………漫射型灯具(25)diffuser…………………………………………………………………………漫射体(36)diffuse reflectance……………………………………………………………漫射射比(37)diffuse reflection…………………………………………………………………漫反射(35)diffuse sky radiation………………………………………………………天空漫射辐射(30)diffuse transmission………………………………………………………………漫透射(35)diffuse transmittance……………………………………………………………漫透射比(37)direct flux……………………………………………………………………直接光通量(14)diffusion………………………………………………………………………………漫射(35)direct glare………………………………………………………………………直接眩光(7)direct lighting……………………………………………………………………直接照明(12)direct luminaire………………………………………………………………直接型灯具(25)directional lighting………………………………………………………………向定照明(12)direction sign luminaire………………………………………………………指向标志灯(28)direct solar radiation…………………………………………………………直接日辐射(30)disability glare……………………………………………………………………失能眩光(7)discharge lamp……………………………………………………………………放电灯(19)discomfort glare………………………………………………………………不舒适眩光(7)distribution of luminous intensity……………………………………………光强分布;配光(13)downlight……………………………………………………………………下射式灯具(27)downward flux………………………………………………………………下半球光通量(14)dust-proof luminaire…………………………………………………………防尘灯具(26)dust-tight luminaire…………………………………………………………尘密型灯具(26)electric light source…………………………………………………………………电光源(18)electromagnetic radiation…………………………………………………………电磁辐射(2)electronic ballast………………………………………………………………电子镇流器(22)emergency lighting……………………………………………………………应急照明(11)emergency luminaire………………………………………………………………应急灯(28)escape lighting…………………………………………………………………疏散照明(11)escape sign luminaire……………………………………………………………疏散标志灯(28)exit sign luminaire………………………………………………………………出口标志灯(28)exterior critical illuminance…………………………………………………室外临界照度(31)externally reflected component of daylight factor…………采光系数的室外反射光分量(32)Fflame-proof luminaire…………………………………………………………隔爆型灯具(26)flicker…………………………………………………………………………………闪烁(7)floodlighting………………………………………………………………………泛光照明(12)floor lamp…………………………………………………………………………落地灯(27)fluorescent high pressure mercury (vapour) lamp………………荧光高压汞(蒸气)灯(19)fluorescent lamp……………………………………………………………………荧光灯(20)frosted lamp………………………………………………………………………磨砂灯泡(18)full cut-off luminaire…………………………………………………………截光型灯具(28)Ggas-filled lamp…………………………………………………………………充气灯泡(18)general colour rendering index……………………………………………一般显色指数(10)general diffused lighting……………………………………………………一般漫射照明(12)general lighting……………………………………………………………………一般照明(11)general light souree…………………………………………………………普通照明灯泡(19)glare………………………………………………………………………………………眩光(7)glare by reflection…………………………………………………………………反射眩光(7)global daylight illuminance……………………………………………………总昼光照度(30)global solar radiation……………………………………………………………总日辐射(30)gloss……………………………………………………………………………………光泽(37)gloss meter…………………………………………………………………………光泽计(38)goniophotometer………………………………………………………………变角光度计(38)Hhand lamp…………………………………………………………………………手提灯(27)high-frequency fluorescent lamp……………………………………………高频荧光灯(21)high-frequency induction lamp…………………………………………高频无极感应灯(21)high intensity discharge lamp…………………………………………高强度气体放电灯(19)high mast lighting………………………………………………………………高杆照明(13)high pressure mercury (vapour) lamp……………………………………高压汞(蒸气)灯(19)high pressure sodium (vapour) lamp…………………………………高压钠(蒸气)灯(20)high pressure sodium (vapour) lamp with high colour rendering…高显色型高压钠(蒸气)灯(20)high pressure sodium (vapour) lamp with improved colour rendering…中显色型高压钠(蒸气)灯(20)horizontal illuminance…………………………………………………………水平面照度(15)hue………………………………………………………………………………色调,色相(8)Iignitor…………………………………………………………………………………触发器(22)illuminance………………………………………………………………………………照度(5)illuminance meter……………………………………………………………………照度计(37)illuminance ratio………………………………………………………………………照度比(17)illuminance vector…………………………………………………………………照度矢量(16)incandescent lamp……………………………………………………………………白炽灯(18)increased safety luminaire………………………………………………………增安型灯具(26)increment coefficient due to interior reflected light…………………室内反射光增量系数(33)indirect lighting……………………………………………………………………间接照明(12)indirect luminaire………………………………………………………………间接型灯具(25)infrared radiation……………………………………………………………………红外辐射(2)initial average illuminance……………………………………………………初始平均照度(15)inspection lighting…………………………………………………………………检修照明(13)instant-start fluorescent lamp…………………………………………瞬时启动式荧光灯(21)integrating sphere……………………………………………………………………积分球(38)intermediate colour……………………………………………………………………中间色(9)internally reflected component of daylight factor ……………采光系数的室内反射光分量(31)iso-illuminance curve…………………………………………………………等照度曲线(17)iso-intensity curve……………………………………………………………等光强曲线(17)iso-luminance curve…………………………………………………………等亮度曲线(17)isotropic diffuse reflection………………………………………………各向同性漫反射(36)isotropic diffuse transmission…………………………………………各向同性漫透射(36)Llambert's (cosine) law…………………………………………………朗伯(余弦)定律(36)lamp current……………………………………………………………………灯电流(24)lampholder………………………………………………………………………………灯座(22)lamp voltage……………………………………………………………………灯电压(23)life (of a lmap) ………………………………………………………………(灯的)寿命(23)light……………………………………………………………………………………光(2)light adaptation……………………………………………………………………明适应(5)light center (of a light source of luminaire) ……………………………………………………………(光源的或灯具的)光中心(16)light climate………………………………………………………………………光气候(30)lightness (of a related colour) ……………………………………………明度(相关色)(8)light loss coefficient due to obstruction or exterior building……………………………………………………………室外建筑挡当折减系数(33)line light souree……………………………………………………………………线光源(16)local lighting……………………………………………………………………局部照明(11)localised lilghting…………………………………………………………分区一般照明(11)louvre, lourver……………………………………………………………………遮光格栅(28)low pressure sodium (vopour) lamp…………………………………低压钠(蒸气)灯(20)luminaire……………………………………………………………………………灯具(25)low-voltage tungsten halogen lamp…………………………………………低压卤钨灯(19)luminaire efficiency……………………………………………………………灯具效率(29)luminaire for explosive atmosphere……………………………………………防爆灯具(26)luminaire for road lighting…………………………………………………道路照明灯具(28)luminaire guard………………………………………………………………灯具保护网(29)luminance………………………………………………………………………………亮度(4)luminance contrast………………………………………………………………亮度对比(6)luminance meter……………………………………………………………………亮度计(37)luminous ceiling lighting……………………………………………………发光顶棚照明(13)luminous efficiency (of a lamp) …………………………………………(灯的)发光效率(23)laminous environment…………………………………………………………………光环境(6)luminous flux…………………………………………………………………………光通量(4)luminous flux maintenance factor…………………………………………光通量维持率(23)luminous flux ratio of combined light source……………………………混光光源通量比(17)luminous intensity…………………………………………………………发光强度(4)Mmaintained average illuminance………………………………………………维持平均照度(15)maintenance factor…………………………………………………………………维护系数(15)maximum illuminance………………………………………………………………最大照度(15)maximum permissable spacing height ratio of luminaire…………灯具最大允许距离高比(16)median life…………………………………………………………………………中值寿命(23)mercury (vapour) lamp……………………………………………………汞(蒸气)灯(19)mesopic vision……………………………………………………………………中间视觉(5)metal halide lamp……………………………………………………………金属卤化物灯(20)method of utilization factor, lumen method………………………利用系数法;流明法(17)middle angle luminaire………………………………………………………中照型灯具(25)minimum illuminance……………………………………………………………最小照度(15)minimum sunshine spacing…………………………………………………最小日照间距(34)mixed lighting……………………………………………………………………混合照明(11)mixed reflection…………………………………………………………………混合反射(35)mixed transmission………………………………………………………………混合透射(36)moisture-proof lampholder………………………………………………………防潮灯座(22)monochromatic radiation…………………………………………………………单色辐射(3)mounting height of luminaire………………………………………………灯具安装高度(16)Nnarrow angle luminaire………………………………………………………深照型灯具(25)neon tubing…………………………………………………………………………霓虹灯(20)non-cut-off luminaire………………………………………………………非截光型灯具(28)normal illuminance………………………………………………………………法向照度(15)mormal lighting…………………………………………………………………正常照明(11)Oobject colour………………………………………………………………………物体色(8)obstracle lighting……………………………………………………………障碍照明(12)obstruction……………………………………………………………………天空遮挡物(32)on-duty lighting…………………………………………………………………值班照明(12)opal lamp………………………………………………………………………乳白灯泡(18)optical bench………………………………………………………………光具座;测光导轨(37)optical radiation…………………………………………………………………光学辐射(2)ordianry luminaire………………………………………………………………普通灯具(26)orientation coefficient of clear sky…………………………………………晴天方向系数(33)Ppendant luminaire……………………………………………………………悬吊式灯具(27)(perceived) colour………………………………………………………(知觉)色,颜色(7)perfect reflecting diffuser…………………………………………………理想漫反射体(36)perfect transmitting diffuser………………………………………………理想漫透射体(36)permanent supplementary artificial lighting ………………………………………………………………………常设辅助人工照明(11)photocell…………………………………………………………………………光电池(38)photometry…………………………………………………………………………光测量(37)photopic vision………………………………………………………………………明视觉(5)pin cap…………………………………………………………………………插脚式灯头(22)point light source……………………………………………………………………点光源(16)point method………………………………………………………………………逐点法(17)portable luminaie………………………………………………………………可移式灯具(27)possible sunshine duration (at a particular locationg) …………………………………………………………可照明间(某一特定地点)(34)power per unit area…………………………………………………………单位面积功率(17)prefocus lamp……………………………………………………………………聚光灯泡(18)preheat start fluorescent lamp………………………………………预热启动式荧光灯(21)projector…………………………………………………………………………投光灯(27)protected luminaire…………………………………………………………防护型灯具(26)protective glass………………………………………………………………保护玻璃(29)QQuick start fluorescent lamp ……………………………………………快速启动式荧光灯(21)Rradiant flux………………………………………………………………………辐射通量(3)rated current……………………………………………………………………额定电流(24)rated luminous flux (of a type of lamp) ……………………………………………………………………(灯的)额定光通量(23)rated power (of a type of lamp) ……………………………………(灯的)额定功率(22)rated voltage…………………………………………………………………额定电压(23)ratio of glazing to floor area…………………………………………………窗地面积比(32)recessed luminaire……………………………………………………………嵌入式灯具(27)reference surface…………………………………………………………………参考平面(14)reflectance…………………………………………………………………………反射比(36)reflected (global) solar radiation……………………………………………………………反射(总)日辐射(30)reflection………………………………………………………………………………反射(35)reflectometer………………………………………………………………………反射计(38)reflector……………………………………………………………………………反射器(28)reflector lamp…………………………………………………………………反射型灯泡(18)refraction………………………………………………………………………………折射(35)refractor……………………………………………………………………………折射器(28)regular reflectance……………………………………………………………规则反射比(37)regular reflection, specular reflection …………………………………………………………………规则反射;镜面反射(35)regular transmission, direct transmission…………………………规则透射;直接透射(35)regular transmittance…………………………………………………………规则透射比(37)relative spectral distribution…………………………………………………相对光谱分布(3)relative sunshine duration…………………………………………………………日照率(34)retroreflection………………………………………………………………………逆反射(37)reflector type high pressure mercury (vapour) lamp …………………………………………………………………反射型高压汞(蒸气)灯(19)re-starting time…………………………………………………………………再启动时间(24)rise and fall pendant luminare……………………………………………升降悬吊式灯具(27)road lighting…………………………………………………………………道路照明(13)room cavity ratio……………………………………………………………………室空间比(14)room index………………………………………………………………………室形指数(14)rotationally symmetrical luminous intensity distribution ……………………………………………………………………旋转对称光强分布(13)Ssafety lighting……………………………………………………………………安全照明(11)scotopic vision………………………………………………………………………暗视觉(5)screw cap………………………………………………………………………螺口式灯头(22)sealed beam lamp………………………………………………………封闭型光束灯泡(18)searchlight………………………………………………………………………探照灯(27)security lighting…………………………………………………………………警卫照明(12)self-ballasted fluorescent high pressure mercury (vapour) lamp………………………………………………………自镇流荧光高压汞(蒸气)灯(19)semi-cut-off luminaire………………………………………………………半截光型灯具(28)semi-direct lighting…………………………………………………………半直接照明(12)semi-direct luminaire…………………………………………………………半直接型灯具(25)semi-high mast lighting………………………………………………………半高杆照明(13)semi-indirect lighting…………………………………………………………半间接照明(12)semi-indirect luminaire………………………………………………………半间接型灯具(25)shielding angle…………………………………………………………………遮光角(29)skylight…………………………………………………………………天空(漫射)光(30)sky component of daylight factor………………………………采光系数的天空光分量(32)sodium (vapour) lamp………………………………………………………钠(蒸气)灯(20)solar radiation………………………………………………………………………日辐射(30)spacing height ratio of luminaire……………………………………………灯具距高比(16)spacing iso-illuminance curve…………………………………………空间等照度曲线(17)spacingof luminaire………………………………………………………………灯具间距(16)special colour rendering index…………………………………………………特殊显色指数(9)spectrial concentration, spectral distribution…………………………………………………………光谱(密)集度;光谱分布(3)spectral line…………………………………………………………………………谱线(3)spectral luminous effciency……………………………………………光谱光(视)效率(4)spectrophotometer…………………………………………光谱光度计;分光光度计(38)spectrum………………………………………………………………………………光谱(3)spotlight……………………………………………………………………聚光灯,射灯(27)spotlighting………………………………………………………………………重点照明(13)starter………………………………………………………………………………启动器(22)stand-by lighting…………………………………………………………………备用照明(12)starting time………………………………………………………………………启动时间(24)starting current…………………………………………………………………启动电流(23)starting voltage……………………………………………………………………启动电压(23)straight tubular fluorescent lamp………………………………………………直管形荧光灯(21)stroboscopic effect………………………………………………………………频闪效应(7)sunlight……………………………………………………………………阳光;直射日光(30)sunshine duration………………………………………………………………日照明间(34)sunshine on building……………………………………………………………建筑日照(33)sunshine spacing………………………………………………………………日照间距(34)surface colour………………………………………………………………………表面色(8)symmetrical (asymmetrical) luminaire…………………对称配光型(非对称配光型)灯具(25)symmetrical luminous intensity distribution………………………………对称光强分布(13)Ttable lamp……………………………………………………………………………台灯(27)three-band fluorescent lamp………………………………………………三基色荧光灯(21)total cloud amount……………………………………………………………………总云量(31)total flux………………………………………………………………………总光通量(14)total power (of a type of lamp) …………………………………………(灯的)全功率(23)total transmittance of daylighting…………………………………………采光的总透射比(32)transmission…………………………………………………………………………透射(35)transmittance………………………………………………………………………透射比(36)tungsten halogen lamp………………………………………………………………卤钨灯(19)tubular incandescent lamp……………………………………………………管形白炽灯泡(19)Uultraviolet radiation……………………………………………………………紫外辐射(2)underwater luminaire……………………………………………………………水下灯具(26)uniformity of daylighting………………………………………………………采光均匀度(32)uniformity ratio of illuminance………………………………………………照度均匀度(15)upward flux……………………………………………………………………上半球光通量(14)utilization factor…………………………………………………………………利用系数(14)Vvacuum lamp……………………………………………………………………真空灯泡(18)veiling reflection…………………………………………………………………光幕反射(7)vertical illuminance……………………………………………………………垂直面照度(15)vibration service lamp……………………………………………………………耐震灯泡(19)visibility………………………………………………………………………………可见度(6)visible radiation………………………………………………………………………可见辐射(2)vision………………………………………………………………………………………视觉(5)visual acuity………………………………………………………………视力;视觉敏税度(6)visual adaptation……………………………………………………………………视觉适应(5)visual angle……………………………………………………………………………视角(6)visual environment………………………………………………………………视觉环境(6)visual field……………………………………………………………………………视野(6)visual performance………………………………………………………………视觉功效(6)visual task…………………………………………………………………………视觉作业(6)Wwall luminaire…………………………………………………………………………壁灯(27)warm colour………………………………………………………………………………暖色(9)warm white fluorescent lamp…………………………………………………暖白色荧光灯(21)water-proof luminaire………………………………………………………………防水灯具(26)water-tight luminaire……………………………………………………………水密型灯具(26)white coating lamp…………………………………………………………………涂白灯泡(18)wide angle luminaire……………………………………………………………广照型灯具(25)working plane…………………………………………………………………………工作面(14)Xxenon lamp……………………………………………………………………………氙灯(20)1 backplane 背板2 Band gap voltage reference 带隙电压参考3 bench top supply 工作台电源4 Block Diagram 方块图5 Bode Plot 波特图6 Bootstrap 自举7 Bottom FET Bottom FET8 bucket capacitor 桶形电容9 chassis 机架10 Combi-sense Combi-sense11 constant current source 恒流源12 Core Saturation 铁芯饱和13 crossover frequency 交叉频率14 current ripple 纹波电流15 Cycle by Cycle 逐周期16 cycle skipping 周期跳步17 Dead Time 死区时间18 DIE Temperature 核心温度19 Disable 非使能,无效,禁用,关断20 dominant pole 主极点21 Enable 使能,有效,启用22 ESD Rating ESD额定值23 Evaluation Board 评估板24 Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied. 超过下面的规格使用可能引起永久的设备损害或设备故障。
电子信息工程毕业设计中英文翻译

外文原文Hindawi Publishing CorporationInternational Journal of Navigation and ObservationV olume 2008, Article ID 261384,8 pagesdoi:10.1155/2008/261384Research ArticleGPS Composite Clock AnalysisJames R. WrightAnalytical Graphics, In c., 220 Valle y Creek Blvd, E x ton, PA 19341, USACorrespondence should be addressed to James R. Wright, jwright@Received 30 June 2007; Accepted 6 November 2007Recommended by Demetrios MatsakisCopyright © 2008 James R. Wright. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.AbstractThe GPS composite clock defines GPS time, the timescale used today in GPS operations. GPS time is illuminated by examination of its role in the complete estimation and control problem relative to UTC/TAI. The phase of each GPS clock is unobservable from GPS pseudorange measurements, and the mean phase of the GPS clock ensemble (GPS time) is unobservable. A new and useful obs e r vabilit y definition is presented, together with new observabilit y theorems, to demonstrate explicitly that GPS time is unobservable. Simulated GPS clock phase and frequency deviations, and simulated GPS pseudorange measurements, are used to understand GPS time in terms of Kalman filter estimation errors.1.INTRODUCTIONGPS time is created by processing GPS pseudorange measurements with the operational GPS Kalman filter. Brown [2]refers to the object created by the Kalman filter as the GPS composite clock, and to GPS time as the implicit ensemble mean phase of the GPS composite clock. The fundamental goal by the USAF and the USNO is to control GPS time to within a specified bound of UTC/TAI. (I refer to TAI/UTC understanding that UTC has an accumulated discontinuity (a sum of leap seconds) when compared to TAI. But unique two-way transformations between TAI and UTC have been in successful operational use since 1972. I have no need hereinto further distinguish between TAI and UTC.) I present here a quantitative analysis of the GPScomposite clock, derived from detailed simulations and associated graphics. GPS clock diffusion coefficient values used here were derived from Allan deviation graphs presented by Oaks et al. [ 12 ] in 1998. I refer to them as ―realistic,‖ and in the sequel I claim ―realistic‖ results from their use. Figure 1 presents their diffusion coefficient values and my derivation of associated Allan deviation lines.My interest in the GPS composite clock derives from my interest in performing real-time orbit determination for GPS NA VSTAR spacecraft from ground receiver pseudorange measurements. (James R Wright is the architect of ODTK (Orbit Determination Tool Kit), a commercial soft-ware product offered by Analytical Graphics, Inc. (AGI).)The estimation of NA VSTAR orbits would be in complete without the simultaneous estimation of GPS clock parameters. I use simulated GPS clock phase and frequency deviations, and simulated GPS pseudorange measurements, to study Kalman filter estimation errors.This paper was first prepared for TimeNav’07 [ 20 ]. I am indebted to Charles Greenhall (JPL) for encouragement and help in this work.2.THE COMPLETE ESTIMATION AND CONTROL P ROBLEMThe USNO operates two UTC/TAI master clocks, each of which provides access to an estimate of UTC/TAI in real time(1 pps). One of these clocks is maintained at the USNO, and the other is maintained at Schriever Air Force Base in Colorado Springs. This enables the USNO to compare UTC/TAI to the phase of each GPS orbital NA VSTAR clock via GPS pseudorange measurements, by using a UTC/TAI master clock in a USNO GPS ground receiver. Each GPS clock is a member of (internal to) the GPS ensemble of clocks, but the USNO master clock is external to the GPS ensemble of clocks. Because of this, the difference between UTC/TAI and the phase of each NA VSTAR GPS clock is observable. This difference can be (and is) estimated and quantified. The root mean square (RMS) on these differences quantifies the difference between UTC/TAI and GPS time. Inspection of the differences between UTC/TAI and the phase of each NA VSTAR GPS clock enables the USNO to identify GPS clocks that require particular frequency-rate control corrections. Use of this knowledge enables the USAF to adjust frequency rates of selected GPS clocks. Currently, the USAF uses an automated bang-bang controller on frequency-rate. (According to Bill Feess, an improvement in control can be achieved by replacing the existing ―bang-bang controller‖ with a ―proportional controller.‖)3. STOCHASTIC CLOCK PHYSICSThe most significant stochastic clock physics are understood in terms of Wiener processes and their integrals .Clock physics are characterized by particular values of clock-dependent diffusion coefficients, and are conveniently studied with aid of a relevant clock model that relates diffusion coefficient values to their underlying Wiener processes. For my presentation here I have selected ―The clock model and its relationship with the Allan and related variances‖ presented as an IEEE paper by Zucca and Tavella [19 ] in 2005.Except for FM flicker noise, this model captures the most significant physics for all GPS clocks. I simulate and validate GPS pseudorangemeasurements using simulated phase deviations and simulated frequency deviations, according to Zucca and Tavella.4. KALMAN FILTERSI present my approach for the optimal sequential estimation of clock deviation states and their error covariance functions. Sequential state estimates are generated recursively from two multidimensional stochastic update functions, the time update (TU) and the measurement update(MU). The TU moves the state estimate and covariance forward with time, accumulating integrals of random clock deviation process noise in the covariance. The MU is performed at a fixed measurement time where the state estimate and covariance are corrected with new observation information.The sequential estimation of GPS clock deviations re-quires the development of a linear TU and nonlinear MU. The nonlinear MU must be linearized locally to enable application of the linear Kalman MU. Kalman’s MU derives from Sherman’s theorem, Sherman’s theorem derives from Anderson’s theorem [1], and Anderson’s theorem derives from the Brunn-Minkowki inequality theorem . The theoretical foundation for my linearized MU derives from these theorems.4.1. Initial conditionsInitialization of all sequential estimators requires the use of an initial state estimate column matrix 0|0∧X and an intial state estimate error covariance matrix 0|0P for time t 0. 4.2. Linear TU and nonlinear MUThe simultaneous sequential estimation of GPS clock phase and frequency deviation parameters can be studied with the development of a linear TU and nonlinear MU for the clock state estimate subset. This is useful to study clock parameter estimation, as demonstrated in Section 6 .Let i j |∧X denote an n × 1 column matrix of state estimate components, where the left subscript j denotes state epoch t j and the right subscript i denotes time-tag t i for the last observation processed, where i, j ∈{0, 1, 2, ...}.Let i j P |denote an associated n × n square symmetric state estimate error co-variance matrix (positive eigenvalues).4.2.1. Linear TUFor k ∈{0, 1, 2, 3,..., M }, the propagation of the true un-known n ×1 matrix state K X is given byK K K K K K J X X ,1,11++++=φ (1)Where K K J ,1+is called the process noise matrix. Propagation of the known n × 1 matrix state estimate K K X |∧is given byK K K K K K X X |,1|1++∧=φ (2)because the conditional mean of K K J ,1+is zero. Propagation of the known n × n matrix state estimate error covariance matrix K K P |is given byK K T K K K K K K K K Q P P ,1,1|,1|1+++++=φφ (3) where the n × n matrix K K Q ,1+is called the process noise co-variance matrix.4.2.2. Nonlinear MUCalculate the n×1matrix filter gain:111|111|11][-++++++++=K T K K K K T K K K K R H P H H P K (4)The filter measurement update state estimate n × 1matrix 1|1++∧K K X, due to the observation y K+1, iscalculated with )]([|111|11|1K K K K K K K K X y y K X X +∧+++∧++∧-+= (5) 5. UNOBSERV ABLE GPS CLOCK STATESGPS time is created by the operational USAF Kalman filter by processing GPS pseudorange observations. GPS time is the mean phase of an ensemble of many GPS clocks, and yet the clock phase of every operational GPS clock is unobservable from GPS pseudorange observations, as demonstrated below. GPS NA VSTAR orbit parameters are observable from GPS pseudorange observations. The USAF Kalman filter simultaneously estimates orbit parameters and clock parameters from GPS pseudorange observations, so the state estimate is partitioned in this manner into a subset of unobservable clock parameters and a subset of observable orbit parameters. This partition is performed by application of Sherman ’s theorem in the MU.5.1. Partition of KF1 estimation errorsSubtract estimated clock deviations from simulated (true) clock deviations to define and quantify Kalman filter (KF1) estimation errors. Adopt Brown’s additive partition of KF1 estimation errors into two components. I refer to the first component as the unobservable error common to eachclock (UECC), and to the second component as the observable error independent for each clock (OEIC). (Observability is meaningful here only when processing simulated GPS pseudorange data.) On processing the first GPS pseudorange measurements with KF1 the variances on both fall quickly. But with continued measurement processing the variances on the UECC increase without bound while the variances on the OEIC approach zero asymptotically.For simulated GPS pseudorange data I create an optimal sequential estimate of the UECC by application of a second Kalman filter KF2 to pseudo measurements defined by the phase components of KF1 estimation errors.Since there is no physical process noise on the UECC, an estimate of the UECC can also be achieved using a batch least squares estimation algorithm on the phase components of KF1 estimation errors—demonstrated previously by Green-hall [7]. (I apply sufficient process noise covariance for KF2 to mask the effects of double-precision computer word truncation. Without this, KF2 does diverge.)5.2. Unobservable error common to each clockThere are at least four techniques to estimate the UECC when simulating GPS pseudorange data. First, one could take the sample mean of KF1 estimation errors across the clock ensemble at each time and form a sample variance about the mean; this would yield a sequential sampling procedure, but where each mean and variance is sequentially unconnected. Second, one can employ Ken Brown’s implicit ensemble mean (IEM) and covariance; this is a batch procedure requiring an inversion of the KF1 covariance matrix followed by a second matrix inversion of the modified covariance matrix inverse; this is not a sequential procedure. Third, one can adopt the new procedure by Greenhall [7] wherein KF1 phase estimation errors are treated as pseudo measurements, and are processed by a batch least squares estimator to obtain optimal batch estimates and covariance matrices for the UECC. Fourth, one can treat the KF1 phase estimation errors as pseudo measurements, invoke a second Kalman filter (KF2), and process these phase pseudo measurements with KF2 to obtain optimal sequential estimates and variances for the UECC. I have been successful with this approach. Figure 3 presents an ensemble of ―realistic‖ KF1 phase estimation errors, overlaid with ―realistic‖ KF2 sequential estimates of UECC in phase. (By ―realistic‖ I refer to realistic clock diffusion coefficient values.)5.3. Observable error independent for each clockAt each applicable time subtract the estimate of the UECC from the KF1 phase deviation estimate, for each particular GPS clock, to estimate the OEIC in phase for that clock. During measurement processing, the OEIC is contained within an envelope of a few parts of a nanosecond (see Figure 4).Figure 4 presents a graph of two cases of the OEIC for ground station clock S1. For the blue line of intervals of link visibility and KF1 range measurement processing are clearly distinguished from propagation intervals with no measurements. During measurement processing, the observable component of KF1 estimation error is contained within an envelope of a few parts of a nanosecond.Calculation of the sequential covariance for the OEIC requires a matrix value for thecross-covariance between the KF1 phase deviation estimation error and the UECC estimation error at each time. I have not yet been able to calculate this cross-covariance.6. KALMAN FILTERS KF1 AND KF2I have simulated GPS pseudorange measurements for two GPS ground station clocks S1 and S2, and for two GPS NA VSTAR clocks N1 and N2. Here I set simulated measurement time granularity to 30s for the set of all visible link intervals. Visible and nonvisible intervals areclearly evident in the blue line of Figure 4. I set the scalar root-variance R for bothmeasurement simulations and Kalman filter KF1 to R= 1 cm. Typically R∼1 m for GPS pseudorange, but when carrier phase measurements are processed simultaneously with pseudorange, the root-variance is reduced by two orders of magnitude. So the use of R= 1cmenables me to quantify lower performance bounds for the simultaneous processing of both measurement types.6.1. Create GPS clock ensembleTypically, one processes measurements with a Kalman filter to derive sequential estimates of a multidimensional observable state. Instead, here I imitate the GPS operational procedure and process simulated GPS pseudorange measurements with KF1 to create a sequence of unobservable multidimensional clock state estimates. Clock state components are unobservable from GPS pseudorange measurements. See Figure 2 for an example of an ensemble of estimated unobservable clock phase deviation state components created by KF1.6.1.1. Sherman’s theoremGPS time, the unobservable GPS clock ensemble mean phase, is created by the use of Sherman’s theorem [11、18 ]in the USAF Kalman filter measurement update algorithm on GPS range measurements. Satisfaction of Sherman’s Theorem guarantees that the mean-squared state estimate error on each observable state estimate component is minimized. But the mean-squared state estimate error on each unobservable state estimate component is not reduced. Thus the unobservable clock phase deviation state estimate component common to every GPS clock is isolated by application of Sherman’s theorem. An ensemble of unobservable state estimate components i s thus created by Sherman’s theorem—see Figure 3for an example.6.2. Initial condition errorsA significant result emerges due to the modeling of Kalman filter (KF1) initial condition errors in phase and frequency. Initial estimated clock phase deviations are significantly displaced by the KF1 initial condition errors in phase. As time evolves estimated clock phase deviation magnitudes diverge continuously and increasingly when referred to true (simulated) phase deviations, and thisis due to filter initial condition errors in frequency. See Figure 2for an example.7. IDENTIFY NONCLOCK MODELING ERRORSMy interest in the GPS NA VSTAR (SV) orbit determination problem, combined with that of the clock parameter estimation problem, has enabled the identification of a useful diagnostic tool: given realistic values for diffusion coefficients for each of the real GPS clocks, then quantitative upper bounds can be calculated on OEIC magnitudes. These calculations require the use of a rigorous simulator .Existence of significant cross-correlations between GPS clock phase errors and other nonclock GPS estimation modeling errors enables significant aliasing into GPS clock phase estimates during operation of KF1 on re a l data. But given rigorous quantitative upper bounds on OEIC magnitudes, then significant violation of these bounds when processing real GPS pseudorange and carrier phase data identifies nonclock modeling errors related to the GPS estimation model. Modeling error candidates here include NA VSTAR orbit force modeling errors, ground antenna modeling errors (multipath), and tropospheric modeling errors. NA VSTAR orbit force modeling errors include those of solar photon pressure, albedo, thermal dump, and propellant outgassing. The accuracy of this diagnostic tool depends on the use of realistic clock diffusion coefficient values and a rigorous clock model simulation capability.8. OBSERV ABLE CLOCKSIn an earlier version of my paper, I reported on KF1 validation results where clock S1 was specified as a TAI/UTC clock, external to the GPS clock ensemble consisting of S2, N1, and N2. This brought observability (see Sections 5 and 6 herein)to S2, N1, and N2 clock states from GPS pseudorange measurements, drove clocks S2, N1, and N2 immediately to the TAI/UTC timescale, and enabled a clean validation of my filter implementation. Also it raised the question: why not the same thing for the real GPS clock ensemble? Discussions with Ed Powers (USNO) and Bill Feess (Aerospace Corporation) reveal that this approach was tried and discarded after the difficulty in recovery from an uplink hardware failure was blamed on the use of a single TAI/UTC Master Clock. This issue was resolved with Kenneth Brown’s introduction of the implicit ensemble mean. The mean phase (GPS time) of the GPS clock ensemble will remain unobservable to GPS pseudorange measurements in the USAF Kalman filter for the foreseeable future.REFERENCES[1] T. W. Anderson, ―The integral of a symmetric unimodal function over a symmetric convex set and some probab ility inequalities,‖ Proceeding s of the American Mathematical Society ,vol. 6, no. 2, pp. 170–176, 1955.[2] K. R. Brown, ―The theory of the GPS composite clock,‖ in Proceeding s of the 4th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS ’91) ,pp.223–241, Albuquerque, NM, USA, September 1991.[3] R. S. Bucy and P. D. Joseph, Filtering for Stochastic Processes with Applications to Guidance, Interscience, New York, NY,USA, 1968.[4] W. Feess, ―The Aerospace Corporation,‖ private Communications, 2006.[5] R. J. Gardner, ―The Brunn-Minkowski inequality,‖ Bulletin of the American Mathematical Society , vol. 39, no. 3, pp. 355–405,2002.[6] C. A. Greenhall, private Communications, 2006-2007. 8 International Journal of Navigation and Observation[7] C. A. Greenhall, ―A Kalman filter clock ensemble algorithm that admits measurement noise,‖Metrologia,vol.43,no.4,pp. S311–S321, 2006.[8] S. T. Hutsell, ―Relating the hadamard variance to MCS Kalman filter clock estimati on,‖ in Proceedings of the 27th Annual Precise Time and Time Interval ( PT TI) Applications and Planning Meeting, p. 293, San Diego, Calif, USA, December 1995.[9] R. E. Kalman, ―New methods in wiener filtering theory,‖ in Proceedings of the 1st Symposium on Engineering Applications of Random Function Theory and Probability, J.L. Bogdanoff andF.Kozin,Eds.,John Wiley&Sons,New York,NY,USA,1963.[10] D. Matsakis, private Communication, November 2007.[11] J. S. Meditch, Stochastic Optimal Linear Estimation and Control , McGraw-Hill, New York, NY, USA, 1969.[12] O. J. Oaks, T. B. McCaskill, M.M. Largay, W. G. Reid, and J. A.Buisson, ―Performance of GPS on-orbit NA VSTAR frequency standards and monitor station time references,‖ in Proceedings of the 30th Annual Precise Time and Time Interval ( PT TI) Meeting, pp. 135–143, Reston, Va, USA, December 1998.[13] E. Powers, private Communications, 2006.[14] W. Riley, private Communications, PTTI meeting, December 2006.[15] S. Sherman, ―A theorem on convex sets with applications ,‖The Annals of Mathematical Statistics, vol.26, no.4, pp. 763–767,1955.[16] S. Sherman, ―Non-mean-square error criteria,‖ IEEE Transactions on Information Theory, vol.4, no.3, pp. 125–126, 1958.[17] E.M. Stein and R. Shakarchi, Real Analysis, Princeton University Press, Princeton, NJ, USA, 2005.[18] J. R. Wright, ―Sherman’s theorem,‖ in The Malcolm D. Shuster Astronautics Symposium (AAS ’05), Grand Island, NY, USA, June 2005.[19] C. Zucca and P. Tavella, ―The clock model and its relations hip with the allan and related variances,‖ IEEE Transact ions on Ultrasonics, Ferroelectrics, and Frequency Control ,vol.52,no.2, pp.289–295,2005.[20] J. R. Wright, ―GPS composite clock analysis,‖ in IEEE International Frequency Control Symposium, European Frequency and Time Forum , pp.523–528, Geneva, Switzerland, June 2007.中文翻译欣达维出版公司国际导航和观察杂志2008期文章编号261384,8页识别号:10.1155/2008/261384研究性文章GPS复合时钟分析詹姆斯·R·赖特美国宾夕法尼亚州埃克斯顿谷溪大道220号图像分析公司邮件请寄给詹姆斯·R·赖特:jwright@2007年6月30日收到;2007年11月6日录用德米特里·马萨吉斯推荐版权©2008年詹姆斯·R·赖特。
电气毕业设计用外文翻译(中英文对照)

The Transformer on load ﹠Introduction to DC Machine sThe Transformer on loadIt has been shown that a primary input voltage 1V can be transformed to any desired open-circuit secondary voltage 2E by a suitable choice of turns ratio. 2E is available for circulating a load current impedance. For the moment, a lagging power factor will be considered. The secondary current and the resulting ampere-turns 22N I will change the flux, tending to demagnetize the core, reduce m Φ and with it 1E . Because the primary leakage impedance drop is so low, a small alteration to 1E will cause an appreciable increase of primary current from 0I to a new value of 1I equal to ()()i jX R E V ++111/. The extra primary current and ampere-turns nearly cancel the whole of the secondary ampere-turns. This being so , the mutual flux suffers only a slight modification and requires practically the same net ampere-turns 10N I as on no load. The total primary ampere-turns are increased by an amount 22N I necessary to neutralize the same amount of secondary ampere-turns. In the vector equation , 102211N I N I N I =+; alternatively, 221011N I N I N I -=. At full load, the current 0I is only about 5% of the full-load current and so 1I is nearly equal to 122/N N I . Because in mind that 2121/N N E E =, the input kV A which is approximately 11I E is also approximately equal to the output kV A, 22I E .The physical current has increased, and with in the primary leakage flux to which it is proportional. The total flux linking the primary ,111Φ=Φ+Φ=Φm p , is shown unchanged because the total back e.m.f.,(dt d N E /111Φ-)is still equal and opposite to 1V . However, there has been a redistribution of flux and the mutual component has fallen due to the increase of 1Φ with 1I . Although the change is small, the secondary demand could not be met without a mutual flux and e.m.f. alteration to permit primary current to change. The net flux s Φlinking the secondary winding has been further reduced by the establishment of secondary leakage flux due to 2I , and this opposes m Φ. Although m Φ and2Φ are indicated separately , they combine to one resultant in the core which will be downwards at the instant shown. Thus the secondary terminal voltage is reduced to dt d N V S /22Φ-= which can be considered in two components, i.e. dt d N dt d N V m //2222Φ-Φ-=or vectorially 2222I jX E V -=. As for the primary, 2Φ is responsible for a substantially constant secondaryleakage inductance 222222/Λ=ΦN i N . It will be noticed that the primary leakage flux is responsiblefor part of the change in the secondary terminal voltage due to its effects on the mutual flux. The two leakage fluxes are closely related; 2Φ, for example, by its demagnetizing action on m Φ has caused the changes on the primary side which led to the establishment of primary leakage flux.If a low enough leading power factor is considered, the total secondary flux and the mutual flux are increased causing the secondary terminal voltage to rise with load. p Φ is unchanged in magnitude from the no load condition since, neglecting resistance, it still has to provide a total back e.m.f. equal to 1V . It is virtually the same as 11Φ, though now produced by the combined effect of primary and secondary ampere-turns. The mutual flux must still change with load to give a change of 1E and permit more primary current to flow. 1E has increased this time but due to the vector combination with 1V there is still an increase of primary current.Two more points should be made about the figures. Firstly, a unity turns ratio has been assumed for convenience so that '21E E =. Secondly, the physical picture is drawn for a different instant of time from the vector diagrams which show 0=Φm , if the horizontal axis is taken as usual, to be the zero time reference. There are instants in the cycle when primary leakage flux is zero, when the secondary leakage flux is zero, and when primary and secondary leakage flux is zero, and when primary and secondary leakage fluxes are in the same sense.The equivalent circuit already derived for the transformer with the secondary terminals open, can easily be extended to cover the loaded secondary by the addition of the secondary resistance and leakage reactance.Practically all transformers have a turns ratio different from unity although such an arrangement issometimes employed for the purposes of electrically isolating one circuit from another operating at the same voltage. To explain the case where 21N N ≠ the reaction of the secondary will be viewed from the primary winding. The reaction is experienced only in terms of the magnetizing force due to the secondary ampere-turns. There is no way of detecting from the primary side whether 2I is large and 2N small or vice versa, it is the product of current and turns which causes the reaction. Consequently, a secondary winding can be replaced by any number of different equivalent windings and load circuits which will give rise to an identical reaction on the primary .It is clearly convenient to change the secondary winding to an equivalent winding having the same number of turns 1N as the primary.With 2N changes to 1N , since the e.m.f.s are proportional to turns, 2212)/('E N N E = which is the same as 1E .For current, since the reaction ampere turns must be unchanged 1222'''N I N I = must be equal to 22N I .i.e. 2122)/(I N N I =.For impedance , since any secondary voltage V becomes V N N )/(21, and secondary current I becomes I N N )/(12, then any secondary impedance, including load impedance, must become I V N N I V /)/('/'221=. Consequently, 22212)/('R N N R = and 22212)/('X N N X = .If the primary turns are taken as reference turns, the process is called referring to the primary side. There are a few checks which can be made to see if the procedure outlined is valid.For example, the copper loss in the referred secondary winding must be the same as in the original secondary otherwise the primary would have to supply a different loss power. ''222R I must be equal to 222R I . )222122122/()/(N N R N N I ∙∙ does in fact reduce to 222R I .Similarly the stored magnetic energy in the leakage field )2/1(2LI which is proportional to 22'X I will be found to check as ''22X I . The referred secondary 2212221222)/()/(''I E N N I N N E I E kVA =∙==.The argument is sound, though at first it may have seemed suspect. In fact, if the actual secondarywinding was removed physically from the core and replaced by the equivalent winding and load circuit designed to give the parameters 1N ,'2R ,'2X and '2I , measurements from the primary terminals would be unable to detect any difference in secondary ampere-turns, kVA demand or copper loss, under normal power frequency operation.There is no point in choosing any basis other than equal turns on primary and referred secondary, but it is sometimes convenient to refer the primary to the secondary winding. In this case, if all the subscript 1’s are interchanged for the subscript 2’s, the necessary referring constants are easily found; e.g. 2'1R R ≈,21'X X ≈; similarly 1'2R R ≈ and 12'X X ≈.The equivalent circuit for the general case where 21N N ≠ except that m r has been added to allow for iron loss and an ideal lossless transformation has been included before the secondary terminals to return '2V to 2V .All calculations of internal voltage and power losses are made before this ideal transformation is applied. The behaviour of a transformer as detected at both sets of terminals is the same as the behaviour detected at the corresponding terminals of this circuit when the appropriate parameters are inserted. The slightly different representation showing the coils 1N and 2N side by side with a core in between is only used for convenience. On the transformer itself, the coils are , of course , wound round the same core.Very little error is introduced if the magnetising branch is transferred to the primary terminals, but a few anomalies will arise. For example ,the current shown flowing through the primary impedance is no longer the whole of the primary current. The error is quite small since 0I is usually such a small fraction of 1I . Slightly different answers may be obtained to a particular problem depending on whether or not allowance is made for this error. With this simplified circuit, the primary and referred secondary impedances can be added to give: 221211)/(Re N N R R += and 221211)/(N N X X Xe +=It should be pointed out that the equivalent circuit as derived here is only valid for normal operation at power frequencies; capacitance effects must be taken into account whenever the rate of change of voltage would give rise to appreciable capacitance currents, dt CdV I c /=. They are important at high voltages and at frequencies much beyond 100 cycles/sec. A further point is not theonly possible equivalent circuit even for power frequencies .An alternative , treating the transformer as a three-or four-terminal network, gives rise to a representation which is just as accurate and has some advantages for the circuit engineer who treats all devices as circuit elements with certain transfer properties. The circuit on this basis would have a turns ratio having a phase shift as well as a magnitude change, and the impedances would not be the same as those of the windings. The circuit would not explain the phenomena within the device like the effects of saturation, so for an understanding of internal behaviour .There are two ways of looking at the equivalent circuit:(a) viewed from the primary as a sink but the referred load impedance connected across '2V ,or (b) viewed from the secondary as a source of constant voltage 1V with internal drops due to 1Re and 1Xe . The magnetizing branch is sometimes omitted in this representation and so the circuit reduces to a generator producing a constant voltage 1E (actually equal to 1V ) and having an internal impedance jX R + (actually equal to 11Re jXe +).In either case, the parameters could be referred to the secondary winding and this may save calculation time .The resistances and reactances can be obtained from two simple light load tests.Introduction to DC MachinesDC machines are characterized by their versatility. By means of various combination of shunt, series, and separately excited field windings they can be designed to display a wide variety of volt-ampere or speed-torque characteristics for both dynamic and steadystate operation. Because of the ease with which they can be controlled , systems of DC machines are often used in applications requiring a wide range of motor speeds or precise control of motor output.The essential features of a DC machine are shown schematically. The stator has salient poles and is excited by one or more field coils. The air-gap flux distribution created by the field winding is symmetrical about the centerline of the field poles. This axis is called the field axis or direct axis.As we know , the AC voltage generated in each rotating armature coil is converted to DC in the external armature terminals by means of a rotating commutator and stationary brushes to which the armature leads are connected. The commutator-brush combination forms a mechanical rectifier,resulting in a DC armature voltage as well as an armature m.m.f. wave which is fixed in space. The brushes are located so that commutation occurs when the coil sides are in the neutral zone , midway between the field poles. The axis of the armature m.m.f. wave then in 90 electrical degrees from the axis of the field poles, i.e., in the quadrature axis. In the schematic representation the brushes are shown in quarature axis because this is the position of the coils to which they are connected. The armature m.m.f. wave then is along the brush axis as shown.. (The geometrical position of the brushes in an actual machine is approximately 90 electrical degrees from their position in the schematic diagram because of the shape of the end connections to the commutator.)The magnetic torque and the speed voltage appearing at the brushes are independent of the spatial waveform of the flux distribution; for convenience we shall continue to assume a sinusoidal flux-density wave in the air gap. The torque can then be found from the magnetic field viewpoint.The torque can be expressed in terms of the interaction of the direct-axis air-gap flux per pole d Φ and the space-fundamental component 1a F of the armature m.m.f. wave . With the brushes in the quadrature axis, the angle between these fields is 90 electrical degrees, and its sine equals unity. For a P pole machine 12)2(2a d F P T ϕπ= In which the minus sign has been dropped because the positive direction of the torque can be determined from physical reasoning. The space fundamental 1a F of the sawtooth armature m.m.f. wave is 8/2π times its peak. Substitution in above equation then gives a d a a d a i K i mPC T ϕϕπ==2 Where a i =current in external armature circuit;a C =total number of conductors in armature winding;m =number of parallel paths through winding;And mPC K a a π2=Is a constant fixed by the design of the winding.The rectified voltage generated in the armature has already been discussed before for an elementary single-coil armature. The effect of distributing the winding in several slots is shown in figure ,in which each of the rectified sine waves is the voltage generated in one of the coils, commutation taking place at the moment when the coil sides are in the neutral zone. The generated voltage as observed from the brushes is the sum of the rectified voltages of all the coils in series between brushes and is shown by the rippling line labeled a e in figure. With a dozen or so commutator segments per pole, the ripple becomes very small and the average generated voltage observed from the brushes equals the sum of the average values of the rectified coil voltages. The rectified voltage a e between brushes, known also as the speed voltage, is m d a m d a a W K W mPC e ϕϕπ==2 Where a K is the design constant. The rectified voltage of a distributed winding has the same average value as that of a concentrated coil. The difference is that the ripple is greatly reduced.From the above equations, with all variable expressed in SI units:m a a Tw i e =This equation simply says that the instantaneous electric power associated with the speed voltage equals the instantaneous mechanical power associated with the magnetic torque , the direction of power flow being determined by whether the machine is acting as a motor or generator.The direct-axis air-gap flux is produced by the combined m.m.f. f f i N ∑ of the field windings, the flux-m.m.f. characteristic being the magnetization curve for the particular iron geometry of the machine. In the magnetization curve, it is assumed that the armature m.m.f. wave is perpendicular to the field axis. It will be necessary to reexamine this assumption later in this chapter, where the effects of saturation are investigated more thoroughly. Because the armature e.m.f. is proportional to flux timesspeed, it is usually more convenient to express the magnetization curve in terms of the armature e.m.f. 0a e at a constant speed 0m w . The voltage a e for a given flux at any other speed m w is proportional to the speed,i.e. 00a m m a e w w e Figure shows the magnetization curve with only one field winding excited. This curve can easily be obtained by test methods, no knowledge of any design details being required.Over a fairly wide range of excitation the reluctance of the iron is negligible compared with that of the air gap. In this region the flux is linearly proportional to the total m.m.f. of the field windings, the constant of proportionality being the direct-axis air-gap permeance.The outstanding advantages of DC machines arise from the wide variety of operating characteristics which can be obtained by selection of the method of excitation of the field windings. The field windings may be separately excited from an external DC source, or they may be self-excited; i.e., the machine may supply its own excitation. The method of excitation profoundly influences not only the steady-state characteristics, but also the dynamic behavior of the machine in control systems.The connection diagram of a separately excited generator is given. The required field current is a very small fraction of the rated armature current. A small amount of power in the field circuit may control a relatively large amount of power in the armature circuit; i.e., the generator is a power amplifier. Separately excited generators are often used in feedback control systems when control of the armature voltage over a wide range is required. The field windings of self-excited generators may be supplied in three different ways. The field may be connected in series with the armature, resulting in a shunt generator, or the field may be in two sections, one of which is connected in series and the other in shunt with the armature, resulting in a compound generator. With self-excited generators residual magnetism must be present in the machine iron to get the self-excitation process started.In the typical steady-state volt-ampere characteristics, constant-speed primemovers being assumed. The relation between the steady-state generated e.m.f. a E and the terminal voltage t V isa a a t R I E V -=Where a I is the armature current output and a R is the armature circuit resistance. In a generator, a E is large than t V ; and the electromagnetic torque T is a countertorque opposing rotation.The terminal voltage of a separately excited generator decreases slightly with increase in the load current, principally because of the voltage drop in the armature resistance. The field current of a series generator is the same as the load current, so that the air-gap flux and hence the voltage vary widely with load. As a consequence, series generators are not often used. The voltage of shunt generators drops off somewhat with load. Compound generators are normally connected so that the m.m.f. of the series winding aids that of the shunt winding. The advantage is that through the action of the series winding the flux per pole can increase with load, resulting in a voltage output which is nearly constant. Usually, shunt winding contains many turns of comparatively heavy conductor because it must carry the full armature current of the machine. The voltage of both shunt and compound generators can be controlled over reasonable limits by means of rheostats in the shunt field. Any of the methods of excitation used for generators can also be used for motors. In the typical steady-state speed-torque characteristics, it is assumed that the motor terminals are supplied from a constant-voltage source. In a motor the relation between the e.m.f. a E generated in the armature and the terminal voltage t V isa a a t R I E V +=Where a I is now the armature current input. The generated e.m.f. a E is now smaller than the terminal voltage t V , the armature current is in the opposite direction to that in a motor, and the electromagnetic torque is in the direction to sustain rotation ofthe armature.In shunt and separately excited motors the field flux is nearly constant. Consequently, increased torque must be accompanied by a very nearly proportional increase in armature current and hence by a small decrease in counter e.m.f. to allow this increased current through the small armature resistance. Since counter e.m.f. is determined by flux and speed, the speed must drop slightly. Like the squirrel-cage induction motor ,the shunt motor is substantially a constant-speed motor having about 5 percent drop in speed from no load to full load. Starting torque and maximum torque are limited by the armature current that can be commutated successfully.An outstanding advantage of the shunt motor is ease of speed control. With a rheostat in the shunt-field circuit, the field current and flux per pole can be varied at will, and variation of flux causes the inverse variation of speed to maintain counter e.m.f. approximately equal to the impressed terminal voltage. A maximum speed range of about 4 or 5 to 1 can be obtained by this method, the limitation again being commutating conditions. By variation of the impressed armature voltage, very wide speed ranges can be obtained.In the series motor, increase in load is accompanied by increase in the armature current and m.m.f. and the stator field flux (provided the iron is not completely saturated). Because flux increases with load, speed must drop in order to maintain the balance between impressed voltage and counter e.m.f.; moreover, the increase in armature current caused by increased torque is smaller than in the shunt motor because of the increased flux. The series motor is therefore a varying-speed motor with a markedly drooping speed-load characteristic. For applications requiring heavy torque overloads, this characteristic is particularly advantageous because the corresponding power overloads are held to more reasonable values by the associated speed drops. Very favorable starting characteristics also result from the increase in flux with increased armature current.In the compound motor the series field may be connected either cumulatively, so that its.m.m.f.adds to that of the shunt field, or differentially, so that it opposes. The differential connection is very rarely used. A cumulatively compounded motor hasspeed-load characteristic intermediate between those of a shunt and a series motor, the drop of speed with load depending on the relative number of ampere-turns in the shunt and series fields. It does not have the disadvantage of very high light-load speed associated with a series motor, but it retains to a considerable degree the advantages of series excitation.The application advantages of DC machines lie in the variety of performance characteristics offered by the possibilities of shunt, series, and compound excitation. Some of these characteristics have been touched upon briefly in this article. Still greater possibilities exist if additional sets of brushes are added so that other voltages can be obtained from the commutator. Thus the versatility of DC machine systems and their adaptability to control, both manual and automatic, are their outstanding features.负载运行的变压器及直流电机导论负载运行的变压器通过选择合适的匝数比,一次侧输入电压1V 可任意转换成所希望的二次侧开路电压2E 。
电子显示器常用术语中英对照

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
英文全称 Liquid crystal display Design Verification Test Engineering Verification Test System Integration Test System Verificaion Test Engineering Change Notice Engineering Change Request Bill of material Factory Notice Transistor-transistor Logic Low Voltage Differential Signal Reduced Swing Differential Signal Transmission Minimized Differential Signal Digital Video Interface Contrast Ratio Response time Gray Gamma Color Gamut View Angles Analog - Digital Converter Scalar IC Frame Rate Converter Inter Integrated circuit bus Electric Erasure Program Read Only Memory Flash Memory In System Programming Display Clock Thin Film Transistor Phase-Locked Loop China Compulsory Certification Federal Communications Commission Food and Drug Administration Europe Comliance Canada Standard Association dielectronic test Fail-safe test Grounding test Witness Test UL follow up sevice procedure UL initial product inspection Liquid Crystal Display Television Standard Definition Television High Definition Television Enhanced Definition Television Digital Color Television Television Broadcast by Satellite Satellite Master Antenna Television Phase Alternation by Line National Television Systems Committee Sequential Color Memoire Advanced Television Systems Committee Very High Frequency Ultra High Frequency Radio Frequency Amplitude Modulation Quadrature Amplitude Modulation Frequency Modulation Organisation International de Radiodiffision-Television Cable Television Community Antenna Television Close-Circuit Television Air Broadcast Television System Committee Broadcast Satellite Communication Satellite Second Audio Program Stereo Dual Mono Multi Channel Television Sound Near-Instantaneously Companded Audio Multiplex Multistandard Sound Processor Pict SIT SVT ECN ECR BOM FN TTL LVDS RSDS TMDS DVI CR RT
LED照明常用词汇中英文对照
1 backplane 背板2 Band gap voltage reference 带隙电压参考3 benchtop supply 工作台电源4 Block Diagram 方块图5 Bode Plot 波特图6 Bootstrap 自举7 Bottom FET Bottom FET8 bucket capcitor 桶形电容9 chassis 机架10 Combi-sense Combi-sense11 constant current source 恒流源12 Core Sataration 铁芯饱和13 crossover frequency 交叉频率14 current ripple 纹波电流15 Cycle by Cycle 逐周期16 cycle skipping 周期跳步17 Dead Time 死区时间18 DIE Temperature 核心温度19 Disable 非使能,无效,禁用,关断20 dominant pole 主极点21 Enable 使能,有效,启用22 ESD Rating ESD额定值23 Evaluation Board 评估板24 Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied.超过下面的规格使用可能引起永久的设备损害或设备故障。
建议不要工作在电特性表规定的参数范围以外。
25 Failling edge 下降沿26 figure of merit 品质因数27 float charge voltage 浮充电压28 flyback power stage 反驰式功率级29 forward voltage drop 前向压降30 free-running 自由运行31 Freewheel diode 续流二极管32 Full load 满负载33 gate drive 栅极驱动34 gate drive stage 栅极驱动级35 gerber plot Gerber 图36 ground plane 接地层37 Henry 电感单位:亨利38 Human Body Model 人体模式39 Hysteresis 滞回40 inrush current 涌入电流41 Inverting 反相42 jittery 抖动43 Junction 结点44 Kelvin connection 开尔文连接45 Lead Frame 引脚框架46 Lead Free 无铅47 level-shift 电平移动48 Line regulation 电源调整率49 load regulation 负载调整率50 Lot Number 批号51 Low Dropout 低压差52 Miller 密勒53 node 节点54 Non-Inverting 非反相55 novel 新颖的56 off state 关断状态57 Operating supply voltage 电源工作电压58 out drive stage 输出驱动级59 Out of Phase 异相60 Part Number 产品型号61 pass transistor pass transistor62 P-channel MOSFET P沟道MOSFET63 Phase margin 相位裕度64 Phase Node 开关节点65 portable electronics 便携式电子设备66 power down 掉电67 Power Good 电源正常68 Power Groud 功率地69 Power Save Mode 节电模式70 Power up 上电71 pull down 下拉72 pull up 上拉73 Pulse by Pulse 逐脉冲(Pulse by Pulse)74 push pull converter 推挽转换器75 ramp down 斜降76 ramp up 斜升77 redundant diode 冗余二极管78 resistive divider 电阻分压器79 ringing 振铃80 ripple current 纹波电流81 rising edge 上升沿82 sense resistor 检测电阻83 Sequenced Power Supplys 序列电源84 shoot-through 直通,同时导通85 stray inductances. 杂散电感86 sub-circuit 子电路87 substrate 基板88 Telecom 电信89 Thermal Information 热性能信息90 thermal slug 散热片91 Threshold 阈值92 timing resistor 振荡电阻93 Top FET Top FET94 Trace 线路,走线,引线95 Transfer function 传递函数96 Trip Point 跳变点97 turns ratio 匝数比,=Np / Ns。
LED专业英语[全面]
LED照明常用词汇中英文对照1灯具中英文对照烟花灯 firework lamp / light 节日灯 holiday lamp / light 圣诞灯 Christmas lamp / light 椰树灯 coconut lamp / light 卤素灯 Halide Lamps / Halogen Lamps白炽灯泡 incandescent light bulbs组合开关 integral switch专业照明 illumination舞台灯 stage lamp应急灯 emergency lamp / light 嵌灯/嵌入灯/埋地灯 recessed light / lamp车灯 car lamp车头灯 head lamp投光灯 spot light / lamp走线灯 light linear泛光灯 flood light / lamp景观灯 landscape light / lamp 电子感应灯 electronic senor light / lamp灭蚊灯 mosquito killer lamp 光源 light灯泡 bulb节能灯 energy saving lamp节能灯(紧凑型荧光灯) Compact Fluorescent Lamp荧光灯 fluorescent light /lamp 荧光灯支架fluorescent light fixtures电筒 flashlight/torch light / lamp灯杯 lamp cup金卤灯metal halide/halogen lamp溴钨灯 Bromine tungsten lamp 汞灯 mercury lamp钠灯 Sodium lamp卤钨灯 Halogen tungsten lamp 碘钨灯 iodine tungsten lamp氖灯/霓虹灯 neon lamp石英灯 quartz lamp倍尔诺照明 Banner lighting company 卤素灯 halogen lamp灯饰配件 light fittings灯罩 lamp shade灯头/灯座 lamp holder灯头/灯座 lamp base灯盘 lamp house气体放电灯 Gas discharge lamp 荧光灯 fluorescent light /lamp current-carry载(电)流的current-conducting 导电的压克力配件 acrylic fitting塑胶配件 plastic fitting陶瓷配件 ceramic fitting五金配件 hardware fitting玻璃配件 glass fitting压铸件 die-casting fitting开关 switch电线 electric wire / power cored插针/插头 Pin (plug)插座 socket电感镇流器 Inductive / magnetic ballast电子镇流器 electronic ballast适配器 adapter变压器 transformer启动器 starter整流器 commutator感应器 sensor调光器 dimmer端子台 termianl荧光灯管Linear fluorescent light tube三基色 tri-phosphor三基色稀土荧光粉tri-phosphor Fluorescent Powder三基色灯管 tri-phosphor tube light三基色发光二极管 tri-phosphor LEDS 伪彩色LED显示屏 pseudo-color LEDpanel全彩色LED显示屏all-color LED panel光及辐射 Light and radiation光通量(单位为:流明lm) Luminous flux , Φ光强度luminous intensity, I光强度单位:坎德拉 candela, cd 照度 Illuminance, E照度单位:勒克斯 Lux, lx辉度 Luminance, L 辉度单位:坎德拉每平方米 cd/㎡色温Co1or Temperature色温单位:绝对温度 Kelvin, K光色 Light color演色性 Color rendering 平均演色性指数 general color rendering index, (Ra)灯具效率Luminaire efficiency不可见光 Invisible Light 光谱 Spectrum白炽灯泡 Incandescent bulb 吸顶灯 ceiling lamp / light水晶灯 crystal lamp / light室内灯 residential lamp / light 枝状大吊灯 chandeliers吊灯 pendant lamp / light半吊灯 half pendant lamp / light 台灯 table lamp / light壁灯 wall lamp / light落地灯 floor lamp / light 水珠灯 water pearl lamp / light 导轨灯 track lamp / light柱灯 pillar lamp / light蒂凡尼灯 tiffany lamp / light风水灯 water fountain lamp / light 户外灯 outdoor lamp / light路灯 street lamp / light筒灯 down lamp / light投光射灯 spot lamp / light庭院灯 garden lamp / light草坪灯 lawn lamp / light草地灯 lawn lamp / light防水灯 water proof lamp / Under water lampcurrent-limiter电流限制器,限流器current-limiting石艺灯 marble lamp / light羊皮灯 parchment lamp / light镜前灯 mirror front lamp / light 格栅灯 grille lamp / light木灯 wooden lamp / light宫灯 palace lamp / light仿水晶灯 imitated crystal lamp / light 低压灯 low voltage lamp / light 工艺灯 artificial lamp / light镜画灯 picture lamp / light吊线灯 track / line lamp / light 柱头灯 water jet lamp / light水底灯 underwater lamp / light户外壁灯 outdoor wall lamp / light 组合灯 assembled lamp / light太阳能灯 solar lamp / light彩灯 holiday lamp / light彩虹灯 rainbow lamp / light烟花灯 firework lamp / lightAachromatic (perceived) colour……………………………………………无彩(知觉)色(8)acdjustable luminarie…………………………………………………………可调式灯具(26)area (surface) light source…………………………………………………………面光源(16)average cylinderical illuminance……………………………………………平均柱面照度(16)average illuminance……………………………………………………………平均照度(15)average life………………………………………………………………………平均寿命(23)average luminance………………………………………………………………平均亮度(15)average spherical illuminance, scalar illuminance………平均球面照度;标量照度(16)Bballast………………………………………………………………………………镇流器(22)bayonet cap……………………………………………………………………插口式灯头(22)beam angle…………………………………………………………………………光束角(29)brightness……………………………………………………………………………视亮度(8)Ccalculatinb height of luminaire……………………………………………灯具计算高度(14)cap……………………………………………………………………………………灯头(22)ceiling luminaire, surface mounted luminaire……………………………………吸顶灯具(27)chroma………………………………………………………………………………彩度(8)chromatic adaptation…………………………………………………………………色适应(8)chromatic (perceived )colour………………………………………………有彩(知觉)色(8)chromaticity………………………………………………………………………色品;色度(9)CIE standard clear sky……………………………………………………CIE标准全晴天空(31)CIE standard overcast sky………………………………………………CIE标准全阴天空(31)CIE standard photometric observer……………………………………CIE标准光度观察者(4)circular fluorescent lamp………………………………………………………环形荧光灯(21)coefficient ofsunshine spacing……………………………………………日照间距系数(34)colorimeter…………………………………………………………………………色度计(38)colorimetry…………………………………………………………………………色测量(37)colour appearance……………………………………………………………………色表(9)colour atlas……………………………………………………………………色(谱)集(38)colour chip……………………………………………………………………………色卡(38)colour contrast………………………………………………………………………色对比(9)colour correction……………………………………………………………………色修正(38)colour of light source……………………………………………………………光源色(8)olour rendering………………………………………………………………………显色性(9)colour rendering index……………………………………………………………显色指数(9)colour sensation………………………………………………………………………色感觉(8)colour stimulus………………………………………………………………………色刺激(8)colour temperature……………………………………………………………色温(度)(9)combined lughting…………………………………………………………………混光照明(13)compact fluorescent lamp……………………………………………………紧凑型荧光灯(21)cool colour……………………………………………………………………………冷色(9)cool white fluorescent lamp………………………………………………冷白色荧光灯(20)correction coefficient for beight-span ratio……………………………高跨比修正系数(33)correction coefficient of window width……………………………………窗宽修正系数(33)correlated colour temperature……………………………………………相关色温(度)(9)cosine correction…………………………………………………………………余弦修正(38)cut-off…………………………………………………………………………………截光(29)cut-off angle………………………………………………………………………截光角(29)Ddark adaptation………………………………………………………………………暗适应(6)daylight…………………………………………………………………………昼光(30)daylight climate coefficient……………………………………………………光气候系数(32)daylight factor……………………………………………………………………采光系数(31)daylight factor of window or rooflight opening…………………………窗洞口采光系数(32)daylight fluorescent lamp…………………………………………………日光采荧光灯(20)decorative lamp…………………………………………………………………装饰灯泡(18)diffused lighting…………………………………………………………………漫射照明(12)diffused luminaire……………………………………………………………漫射型灯具(25)diffuser…………………………………………………………………………漫射体(36)diffuse reflectance……………………………………………………………漫射射比(37)diffuse reflection…………………………………………………………………漫反射(35)diffuse sky radiation………………………………………………………天空漫射辐射(30)diffuse transmission………………………………………………………………漫透射(35)diffuse transmittance……………………………………………………………漫透射比(37)direct flux……………………………………………………………………直接光通量(14)diffusion………………………………………………………………………………漫射(35)direct glare………………………………………………………………………直接眩光(7)direct lighting……………………………………………………………………直接照明(12)direct luminaire………………………………………………………………直接型灯具(25)directional lighting………………………………………………………………向定照明(12)direction sign luminaire………………………………………………………指向标志灯(28)direct solar radiation…………………………………………………………直接日辐射(30)disability glare……………………………………………………………………失能眩光(7)discharge lamp……………………………………………………………………放电灯(19)discomfort glare………………………………………………………………不舒适眩光(7)distribution of luminous intensity……………………………………………光强分布;配光(13)downlight……………………………………………………………………下射式灯具(27)downward flux………………………………………………………………下半球光通量(14)dust-proof luminaire…………………………………………………………防尘灯具(26)dust-tight luminaire…………………………………………………………尘密型灯具(26)electric light source…………………………………………………………………电光源(18)electromagnetic radiation…………………………………………………………电磁辐射(2)electronic ballast………………………………………………………………电子镇流器(22)emergency lighting……………………………………………………………应急照明(11)emergency luminaire………………………………………………………………应急灯(28)escape lighting…………………………………………………………………疏散照明(11)escape sign luminaire……………………………………………………………疏散标志灯(28)exit sign luminaire………………………………………………………………出口标志灯(28)exterior critical illuminance…………………………………………………室外临界照度(31)externally reflected component of daylight factor…………采光系数的室外反射光分量(32)Fflame-proof luminaire…………………………………………………………隔爆型灯具(26)flicker…………………………………………………………………………………闪烁(7)floodlight……………………………………………………………………………泛光灯(27)floodlighting………………………………………………………………………泛光照明(12)floor lamp…………………………………………………………………………落地灯(27)fluorescent high pressure mercury (vapour) lamp………………荧光高压汞(蒸气)灯(19)fluorescent lamp……………………………………………………………………荧光灯(20)frosted lamp………………………………………………………………………磨砂灯泡(18)full cut-off luminaire…………………………………………………………截光型灯具(28)Ggas-filled lamp…………………………………………………………………充气灯泡(18)general colour rendering index……………………………………………一般显色指数(10)general diffused lighting……………………………………………………一般漫射照明(12)general lighting……………………………………………………………………一般照明(11)general light souree…………………………………………………………普通照明灯泡(19)glare………………………………………………………………………………………眩光(7)glare by reflection…………………………………………………………………反射眩光(7)global daylight illuminance……………………………………………………总昼光照度(30)global solar radiation……………………………………………………………总日辐射(30)gloss……………………………………………………………………………………光泽(37)gloss meter…………………………………………………………………………光泽计(38)goniophotometer………………………………………………………………变角光度计(38)Hhand lamp…………………………………………………………………………手提灯(27)high-frequency fluorescent lamp……………………………………………高频荧光灯(21)high-frequency induction lamp…………………………………………高频无极感应灯(21)high intensity discharge lamp…………………………………………高强度气体放电灯(19)high mast lighting………………………………………………………………高杆照明(13)high pressure mercury (vapour) lamp……………………………………高压汞(蒸气)灯(19)high pressure sodium (vapour) lamp…………………………………高压钠(蒸气)灯(20)high pressure sodium (vapour) lamp with high colour rendering…高显色型高压钠(蒸气)灯(20)high pressure sodium (vapour) lamp with improved colour rendering…中显色型高压钠(蒸气)灯(20)horizontal illuminance…………………………………………………………水平面照度(15)hue………………………………………………………………………………色调,色相(8)Iignitor…………………………………………………………………………………触发器(22)illuminance………………………………………………………………………………照度(5)illuminance meter……………………………………………………………………照度计(37)illuminance ratio………………………………………………………………………照度比(17)illuminance vector…………………………………………………………………照度矢量(16)incandescent lamp……………………………………………………………………白炽灯(18)increased safety luminaire………………………………………………………增安型灯具(26)increment coefficient due to interior reflected light…………………室内反射光增量系数(33)indirect flux………………………………………………………………………间接光通量(14)indirect lighting……………………………………………………………………间接照明(12)indirect luminaire………………………………………………………………间接型灯具(25)infrared radiation……………………………………………………………………红外辐射(2)initial average illuminance……………………………………………………初始平均照度(15)inspection lighting…………………………………………………………………检修照明(13)instant-start fluorescent lamp…………………………………………瞬时启动式荧光灯(21)integrating sphere……………………………………………………………………积分球(38)intermediate colour……………………………………………………………………中间色(9)internally reflected component of daylight factor ……………采光系数的室内反射光分量(31)iso-illuminance curve…………………………………………………………等照度曲线(17)iso-intensity curve……………………………………………………………等光强曲线(17)iso-luminance curve…………………………………………………………等亮度曲线(17)isotropic diffuse reflection………………………………………………各向同性漫反射(36)isotropic diffuse transmission…………………………………………各向同性漫透射(36)Llambert's (cosine) law…………………………………………………朗伯(余弦)定律(36)lamp current……………………………………………………………………灯电流(24)lampholder………………………………………………………………………………灯座(22)lamp voltage……………………………………………………………………灯电压(23)life (of a lmap) ………………………………………………………………(灯的)寿命(23)light……………………………………………………………………………………光(2)light adaptation……………………………………………………………………明适应(5)light center (of a light source of luminaire) ……………………………………………………………(光源的或灯具的)光中心(16)light climate………………………………………………………………………光气候(30)lightness (of a related colour) ……………………………………………明度(相关色)(8)light loss coefficient due to obstruction or exterior building……………………………………………………………室外建筑挡当折减系数(33)line light souree……………………………………………………………………线光源(16)local lighting……………………………………………………………………局部照明(11)localised lilghting…………………………………………………………分区一般照明(11)louvre, lourver……………………………………………………………………遮光格栅(28)low pressure sodium (vopour) lamp…………………………………低压钠(蒸气)灯(20)luminaire……………………………………………………………………………灯具(25)low-voltage tungsten halogen lamp…………………………………………低压卤钨灯(19)luminaire efficiency……………………………………………………………灯具效率(29)luminaire for explosive atmosphere……………………………………………防爆灯具(26)luminaire for road lighting…………………………………………………道路照明灯具(28)luminaire guard………………………………………………………………灯具保护网(29)luminance………………………………………………………………………………亮度(4)luminance contrast………………………………………………………………亮度对比(6)luminance meter……………………………………………………………………亮度计(37)luminous ceiling lighting……………………………………………………发光顶棚照明(13)luminous efficiency (of a lamp) …………………………………………(灯的)发光效率(23)laminous environment…………………………………………………………………光环境(6)luminous flux…………………………………………………………………………光通量(4)luminous flux maintenance factor…………………………………………光通量维持率(23)luminous flux ratio of combined light source……………………………混光光源通量比(17)luminous intensity…………………………………………………………发光强度(4)Mmaintained average illuminance………………………………………………维持平均照度(15)maintenance factor…………………………………………………………………维护系数(15)maximum illuminance………………………………………………………………最大照度(15)maximum permissable spacing height ratio of luminaire…………灯具最大允许距离高比(16)median life…………………………………………………………………………中值寿命(23)mercury (vapour) lamp……………………………………………………汞(蒸气)灯(19)mesopic vision……………………………………………………………………中间视觉(5)metal halide lamp……………………………………………………………金属卤化物灯(20)method of utilization factor, lumen method………………………利用系数法;流明法(17)middle angle luminaire………………………………………………………中照型灯具(25)minimum illuminance……………………………………………………………最小照度(15)minimum sunshine spacing…………………………………………………最小日照间距(34)mixed lighting……………………………………………………………………混合照明(11)mixed reflection…………………………………………………………………混合反射(35)mixed transmission………………………………………………………………混合透射(36)moisture-proof lampholder………………………………………………………防潮灯座(22)monochromatic radiation…………………………………………………………单色辐射(3)mounting height of luminaire………………………………………………灯具安装高度(16)Nnarrow angle luminaire………………………………………………………深照型灯具(25)neon tubing…………………………………………………………………………霓虹灯(20)non-cut-off luminaire………………………………………………………非截光型灯具(28)normal illuminance………………………………………………………………法向照度(15)mormal lighting…………………………………………………………………正常照明(11)Oobject colour………………………………………………………………………物体色(8)obstracle lighting……………………………………………………………障碍照明(12)obstruction……………………………………………………………………天空遮挡物(32)on-duty lighting…………………………………………………………………值班照明(12)opal lamp………………………………………………………………………乳白灯泡(18)optical bench………………………………………………………………光具座;测光导轨(37)optical radiation…………………………………………………………………光学辐射(2)ordianry luminaire………………………………………………………………普通灯具(26)orientation coefficient of clear sky…………………………………………晴天方向系数(33)Ppendant luminaire……………………………………………………………悬吊式灯具(27)(perceived) colour………………………………………………………(知觉)色,颜色(7)perfect reflecting diffuser…………………………………………………理想漫反射体(36)perfect transmitting diffuser………………………………………………理想漫透射体(36)permanent supplementary artificial lighting ………………………………………………………………………常设辅助人工照明(11)photocell…………………………………………………………………………光电池(38)photometry…………………………………………………………………………光测量(37)photopic vision………………………………………………………………………明视觉(5)pin cap…………………………………………………………………………插脚式灯头(22)point light source……………………………………………………………………点光源(16)point method………………………………………………………………………逐点法(17)portable luminaie………………………………………………………………可移式灯具(27)possible sunshine duration (at a particular locationg) …………………………………………………………可照明间(某一特定地点)(34)power per unit area…………………………………………………………单位面积功率(17)prefocus lamp……………………………………………………………………聚光灯泡(18)preheat start fluorescent lamp………………………………………预热启动式荧光灯(21)projector…………………………………………………………………………投光灯(27)protected luminaire…………………………………………………………防护型灯具(26)protective glass………………………………………………………………保护玻璃(29)QQuick start fluorescent lamp ……………………………………………快速启动式荧光灯(21)Rradiant flux………………………………………………………………………辐射通量(3)rated current……………………………………………………………………额定电流(24)rated luminous flux (of a type of lamp) ……………………………………………………………………(灯的)额定光通量(23)rated power (of a type of lamp) ……………………………………(灯的)额定功率(22)rated voltage…………………………………………………………………额定电压(23)ratio of glazing to floor area…………………………………………………窗地面积比(32)recessed luminaire……………………………………………………………嵌入式灯具(27)reference surface…………………………………………………………………参考平面(14)reflectance…………………………………………………………………………反射比(36)reflected (global) solar radiation ……………………………………………………………反射(总)日辐射(30)reflection………………………………………………………………………………反射(35)reflectometer………………………………………………………………………反射计(38)reflector……………………………………………………………………………反射器(28)reflector lamp…………………………………………………………………反射型灯泡(18)refraction………………………………………………………………………………折射(35)refractor……………………………………………………………………………折射器(28)regular reflectance……………………………………………………………规则反射比(37)regular reflection, specular reflection …………………………………………………………………规则反射;镜面反射(35)regular transmission, direct transmission…………………………规则透射;直接透射(35)regular transmittance…………………………………………………………规则透射比(37)relative spectral distribution…………………………………………………相对光谱分布(3)relative sunshine duration…………………………………………………………日照率(34)retroreflection………………………………………………………………………逆反射(37)reflector type high pressure mercury (vapour) lamp …………………………………………………………………反射型高压汞(蒸气)灯(19)re-starting time…………………………………………………………………再启动时间(24)rise and fall pendant luminare……………………………………………升降悬吊式灯具(27)road lighting…………………………………………………………………道路照明(13)room cavity ratio……………………………………………………………………室空间比(14)room index………………………………………………………………………室形指数(14)rotationally symmetrical luminous intensity distribution ……………………………………………………………………旋转对称光强分布(13)Ssafety lighting……………………………………………………………………安全照明(11)scotopic vision………………………………………………………………………暗视觉(5)screw cap………………………………………………………………………螺口式灯头(22)sealed beam lamp………………………………………………………封闭型光束灯泡(18)security lighting…………………………………………………………………警卫照明(12)self-ballasted fluorescent high pressure mercury (vapour) lamp………………………………………………………自镇流荧光高压汞(蒸气)灯(19)semi-cut-off luminaire………………………………………………………半截光型灯具(28)semi-direct lighting…………………………………………………………半直接照明(12)semi-direct luminaire…………………………………………………………半直接型灯具(25)semi-high mast lighting………………………………………………………半高杆照明(13)semi-indirect lighting…………………………………………………………半间接照明(12)semi-indirect luminaire………………………………………………………半间接型灯具(25)shielding angle…………………………………………………………………遮光角(29)skylight…………………………………………………………………天空(漫射)光(30)sky component of daylight factor………………………………采光系数的天空光分量(32)sodium (vapour) lamp………………………………………………………钠(蒸气)灯(20)solar radiation………………………………………………………………………日辐射(30)spacing height ratio of luminaire……………………………………………灯具距高比(16)spacing iso-illuminance curve…………………………………………空间等照度曲线(17)spacingof luminaire………………………………………………………………灯具间距(16)special colour rendering index…………………………………………………特殊显色指数(9)spectrial concentration, spectral distribution …………………………………………………………光谱(密)集度;光谱分布(3)spectral line…………………………………………………………………………谱线(3)spectral luminous effciency……………………………………………光谱光(视)效率(4)spectrophotometer…………………………………………光谱光度计;分光光度计(38)spectrum………………………………………………………………………………光谱(3)spotlight……………………………………………………………………聚光灯,射灯(27)spotlighting………………………………………………………………………重点照明(13)starter………………………………………………………………………………启动器(22)stand-by lighting…………………………………………………………………备用照明(12)starting time………………………………………………………………………启动时间(24)starting current…………………………………………………………………启动电流(23)starting voltage……………………………………………………………………启动电压(23)straight tubular fluorescent lamp………………………………………………直管形荧光灯(21)stroboscopic effect………………………………………………………………频闪效应(7)sunlight……………………………………………………………………阳光;直射日光(30)sunshine duration………………………………………………………………日照明间(34)sunshine on building……………………………………………………………建筑日照(33)surface colour………………………………………………………………………表面色(8)symmetrical (asymmetrical) luminaire…………………对称配光型(非对称配光型)灯具(25)symmetrical luminous intensity distribution………………………………对称光强分布(13)Ttable lamp……………………………………………………………………………台灯(27)three-band fluorescent lamp………………………………………………三基色荧光灯(21)total cloud amount……………………………………………………………………总云量(31)total flux………………………………………………………………………总光通量(14)total power (of a type of lamp) …………………………………………(灯的)全功率(23)total transmittance of daylighting…………………………………………采光的总透射比(32)transmission…………………………………………………………………………透射(35)transmittance………………………………………………………………………透射比(36)tungsten halogen lamp………………………………………………………………卤钨灯(19)tubular incandescent lamp……………………………………………………管形白炽灯泡(19)Uultraviolet radiation……………………………………………………………紫外辐射(2)underwater luminaire……………………………………………………………水下灯具(26)uniformity of daylighting………………………………………………………采光均匀度(32)uniformity ratio of illuminance………………………………………………照度均匀度(15)upward flux……………………………………………………………………上半球光通量(14)utilization factor…………………………………………………………………利用系数(14)Vvacuum lamp……………………………………………………………………真空灯泡(18)veiling reflection…………………………………………………………………光幕反射(7)vertical illuminance……………………………………………………………垂直面照度(15)vibration service lamp……………………………………………………………耐震灯泡(19)visibility………………………………………………………………………………可见度(6)visible radiation………………………………………………………………………可见辐射(2)vision………………………………………………………………………………………视觉(5)visual acuity………………………………………………………………视力;视觉敏税度(6)visual adaptation……………………………………………………………………视觉适应(5)visual angle……………………………………………………………………………视角(6)visual environment………………………………………………………………视觉环境(6)visual field……………………………………………………………………………视野(6)visual performance………………………………………………………………视觉功效(6)visual task…………………………………………………………………………视觉作业(6)Wwall luminaire…………………………………………………………………………壁灯(27)warm colour………………………………………………………………………………暖色(9)warm white fluorescent lamp…………………………………………………暖白色荧光灯(21)water-proof luminaire………………………………………………………………防水灯具(26)water-tight luminaire……………………………………………………………水密型灯具(26)white coating lamp…………………………………………………………………涂白灯泡(18)wide angle luminaire……………………………………………………………广照型灯具(25)working plane…………………………………………………………………………工作面(14)Xxenon lamp……………………………………………………………………………氙灯(20)1 backplane 背板2 Band gap voltage reference 带隙电压参考3 bench top supply 工作台电源4 Block Diagram 方块图5 Bode Plot 波特图6 Bootstrap 自举7 Bottom FET Bottom FET8 bucket capacitor 桶形电容9 chassis 机架10 Combi-sense Combi-sense11 constant current source 恒流源12 Core Saturation 铁芯饱和13 crossover frequency 交叉频率14 current ripple 纹波电流15 Cycle by Cycle 逐周期16 cycle skipping 周期跳步17 Dead Time 死区时间18 DIE Temperature 核心温度19 Disable 非使能,无效,禁用,关断20 dominant pole 主极点21 Enable 使能,有效,启用22 ESD Rating ESD额定值23 Evaluation Board 评估板24 Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operationoutside of the parameters specified in the Electrical Characteristics section is not implied. 超过下面的规格使用可能引起永久的设备损害或设备故障。
LED 产品相关英语
(一) 产品技术术语(e)Other LED products 其它LED 产品traffic light 交通灯(a) 3 in 1 full screen time count light 三合一满屏倒计时(b) red fork green arrow 红叉绿箭头® LED Vivid walking light 动感人行灯(d) LED motor full screen light 机动满屏灯LED decoration light 护栏管(a) 114 dot light 114粒灯(b) LED decorating light accessorie 护栏管配件(控制器)s(controller)III. LED soft light 灯带(a) LED flat 5 light 扁五线(b) flat 5 light fitting 扁五线配件(c) LED big two light LED大二线(d) big two light fitting 大二线配件(h) 同步全彩显示控制系统相关的英文单词及词组描述视频功能的英文单词及词组video frequency function(二)商务文件中的常用语选港费由买方负担optional charges to be borne by the Buyers / optionalcharges for Buyers’ account一月份装船shipment during January / January shipment一月底装船shipment not later than Jan.31st. / shipment on or before Jan.31st. 一/二月份装船shipment during Jan./Feb.或Jan./Feb. shipment在…(时间)分两批装船shipment during...in two lots在…(时间)平均分两批装船shipment during...in two equal lots分三个月装运in three monthly shipments分三个月,每月平均装运in three equal monthly shipments立即装运immediate shipments即期装运prompt shipments收到信用证后30天内装运shipments within 30 days after receipt of L/C允许分批装船partial shipment not allowed partial shipment not permitted partial shipment not unacceptable付款方式:terms of payment。
6、毕业设计(论文)外文翻译(原文)模板
编号:桂林电子科技大学信息科技学院毕业设计(论文)外文翻译(原文)系(部):专业:学生姓名:学号:指导教师单位:姓名:职称:年月日1、所填写内容“居中”对齐,注意每项下划线长度一致,所填字体为三号字、宋体字。
2、A4纸打印;页边距要求如下:页边距上下各为2.5 厘米,左右边距各为2.5厘米。
正文:要求为小四号Times New Roman字体,行间距取固定值(设置值为20磅);字符间距为默认值(缩放100%,间距:标准)。
页眉处“共X页”,X需要手动修改。
大功率LED散热的研究摘要:如何提高大功率LED的散热能力,是LED器件封装和器件应用设计要解决的核心问题。
介绍并分析了国内外大功率LED散热封装技术的研究现状,总结了其发展趋势与前景用途。
关键词:大功率LED;散热;封装1. 引言发光二极管(LED )诞生至今,已经实现了全彩化和高亮度化,并在蓝光LED 和紫光LED 的基础上开发了白光LED ,它为人类照明史又带来了一次飞跃。
发光二极管(LED)具有低耗能、省电、寿命长、耐用等优点,因而被各方看好将取代传统照明成为未来照明光源。
而大功率LED 作为第四代电光源,赋有“绿色照明光源”之称,具有体积小、安全低电压、寿命长、电光转换效率高、响应速度快、节能、环保等优良特性,必将取代传统的白炽灯、卤钨灯和荧光灯而成为21世纪的新一代光源。
普通LED 功率一般为0.05W ,工作电流为20mA ,大功率LED可以达到1W,2W,甚至数十瓦!工作电流可以是几十毫安到几百毫安不等。
其特点具有体积小、耗电小、发热小、寿命长、响应速度快、安全低电压、耐候性好、方向性好等优点。
外罩可用PC管制作,耐高温达135 度,低温-45 度。
广泛应用在油田、石化、铁路、矿山、部队等特殊行业、舞台装饰、城市景观照明、显示屏以及体育场馆等,特种工作灯具中的具有广泛的应用前景。
但由于目前大功率白光LED 的转换效率还较低,光通量较小,成本较高等方面因素的制约,因此大功率白光LED 短期内的应用主要是一些特殊领域的特种工作灯具,中长期目标才能是通用照明领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中文:LED电子显示屏在酒店休闲场所中的应用随着显示器件与技术的进一步发展,屏幕显示系统在国民经济中得到了广泛的应用,LED显示屏是信息显示的重要传媒之一。
LED显示屏是利用发光二极管点阵模块或像素单元组成的显示屏幕。
伴随着计算机技术的发展,使得LED数码管能够在减少驱动器的情况下能够直接被驱动。
而且它具有可靠性高、使用寿命长、性能价格比高、使用成本低、环境适应能力强等特点,所以一直在平板显示领域扮演着重要的角色,并且在今后相当长的一段时期内还有相当大的发展空间。
所以被广泛应用于金融市场、医院、体育场馆、机场、码头、车站、高速公路等公共场所的信息显示和广告宣传。
近几年来我国LED显示的相关技术也取得了较快和较大的发展,早期时曾因LED材料器件的限制,LED显示屏的应用领域没有广泛展开,另一方面,显示屏控制技术基本上是通信控制方式,客观上影响了显示效果。
所以导致早期的LED显示屏在国内很少,产品以红、绿双基色为主,控制方式为通信控制,灰度等级为单点四级调灰,产品的成本比较高。
后来LED显示屏迅速发展,进入九十年代,全球信息产业高速增长,信息技术各个领域不断突破,LED显示屏在LED材料和控制技术方面也不断出现新的成果。
蓝色LED镜片研制成功,全彩色LED显示屏进入市场;电子计算机及微电子领域的技术发展,在显示屏控制技术领域出现了视频控制技术,显示屏的动态显示效果大大提高。
这个阶段,LED显示屏在我国发展迅速,LED显示屏产业成为新兴的高科技产业。
今天,LED显示屏应用领域更为广阔,下面我就来谈谈 LED 在酒店和休闲场中的应用。
一、酒店LED显示屏的效益LED电子显示屏被誉为继电视,报纸,网络之后的第四大广告宣传媒体,它能给投资者带来看得见的社会效益及经济效益,LED电子显示屏可接收来自计算机、电视机、录像机、VCD、摄像机等传输的信息,并实时播放二维或三维动画、文字资料。
随着经济的发展,社会工作生活的节奏的加快,酒店在人们的生活中伴影着一个不可缺少的角色。
酒店是当今人口流动量较大的地方,是社会各界知名人士会集的场所,当然也是信息需求最快、最准、最大的窗口。
LED电子显示屏将满您的顾客的需求,为投资者带来了巨大的、无可估量的、长期的社会效益,经济效益.1、社会效益A、宣传酒店的服务项目及优惠政策,提升酒店的形象。
B、宣传酒店的《服务承诺》等内容,提高其知名度。
C、美化酒店的环境,提高其档次和品味更利于吸引更多的顾客朋友。
D、方便顾客。
2、经济效益二十一世纪,一个高度信息化的时代,企业的宣传广告意识从未如此强烈并正在日益增强;酒店人流密集,信息要求广;LED电子显示屏,一种高信息容量的显示媒体,一种当今世界上最佳的广告宣传媒体,可在一年365天内无限量地对外承接各种广告业务;在良好的运作下,将在分分秒秒中创造源源不断的财富,带来巨大的经济效益。
广州全国交易会展览馆旁的大型全彩屏,正以每年数以千万元计的广告收入,为投资者带来滚滚财富;厦门白鹭州广场上的大型全彩屏,在短短三年的时间内,回收了全部投资500多万元,并正以每年近200万元的纯利润为投资者带来源源不断的经济利益。
综上分析,在大酒店配置一大型LED电子显示屏,将给您和您的顾客带来巨大的、长久的、良好的社会效益和经济效益,起到一箭双雕的效果二、酒店LED显示屏的作用1、起到烘托气氛的作用。
通过显示屏幕可播放上级领导及各种贵宾莅临参观、指导的欢迎词,各种重大节日的庆祝词等。
2、起到宣传、普及知识的作用。
A、通过LED电子显示屏可播放各种法律、法规、条例及各种常识等。
B、通过LED电子显示屏可播放酒店新增服务项目介绍;酒店的《服务承诺》等。
3、起到公告板的作用。
通过显示屏幕可播放讲座、会议等的通知,各种告示、工作安排和先进集体、个人的光荣榜及先进事迹等。
4、起到公益广告的作用。
①、通过显示屏幕可播放天气预报;②、当地的人文、历史、地理、气候概况、风俗人情;③、当地地图、旅游交通图及各旅游景点的分布图;④、《文明市民公约》、酒店的宣传口号及重要新闻等。
5、可创造良好的经济效益。
作为当今世界最好的广告宣传媒体,还能承接国内外各大企业的宣传广告,(建议采用双基色或全彩色的,这样显示的内容就丰富多彩,更能吸引各大企业及单位承办活动及做宣传广告,同时也有利于提升酒店的知名度,充分体现酒店的档次)。
总的来说LED显示屏在酒店中在提高酒店服务公众的形象、知名度,服务档次及创建文明窗口方面起到了良好的作用。
三、 LED显示屏的特点1、显示屏亮度高可视距离远,五百米内都能清晰可见;2、显示屏显示内容简单明了色彩鲜艳,不会带来条幅或其它显示设备的粗糙感及厚重感.3、显示屏是一种寿命长,耗电低无多余红外/紫外等光谱并不含汞有害物质的绿色照明光源.4、显示屏是一种高科技的产品.它的采用能很快的将贵公司与时代接轨.5、显示屏的发展前景极为广阔,在政府机构和企事业处都起着重大作用。
显示屏的系统的采用,将使贵公司的信息化登上更高的台阶。
我国经济发展迅猛,对信息的传播有越来越高的要求。
可以相信,led电子显示屏以其色彩鲜亮、显示信息量大、寿命长、耗电量小、重量轻、空间尺寸小、稳定性高、易操作、易安装维护等特点将在社会经济发展中扮演越来越重要的角色。
总得看来,led显示屏在当今显示媒体中,性价比最高,是您最佳的选择。
英文原文Application of LED electronic display in hotel and leisure venuesAs the further development of display device and technology, screen display system has been widely used in national economy, LED display as a carrier for displaying information is one of major media. LED display is composed by using LED lattice module or pixel unit.As computer technology developed, LED digital has the characteristics of high reliability, long life, high cost performance, low using cost, strongly adaptive capacity to environment which can be directly driven without reducing drive, therefore, it has been playing a importance role in the field of flat display. and for a long period of time, there are considerable room for development. So, it widely used in the financial markets, hospitals, stadiums, airports, terminals, stations, highways and other public places for information display and advertising.In recent years, China's LED display related technology has also been made a fast and great development, Because of early stage LED material and component restriction, LED display applications were not widely expand. The other hand, display control technology basically is a communication control method which objectively affects the display effect. Thus resulting in the early LED displays in the country rarely, product based on double primary color which is green and red, communication control, gray level is single point of four tone gray, high cost. Later, the rapid development of LED display in the nineties, the global information industry is growing rapidly, information technology continue to make breakthroughs in various fields, LED display in the LED materials and control technology has also been the emergence of new results. The successful development of blue LED lens, full-color LED display to enter the market; the field of computer and microelectronics technology development in the field of display control technology, the video control technology, the screen dynamic display effect of greatly increased. In this stage, LED display in China has developed rapidly, LED display industry turn into a new high-tech industry. Today, LED display used in broader field, here I will talk my point about the LED in the hotel and leisure field applications.I. LED display of the effectiveness of the hotelLED electronic display is the fourth largest advertising media after television,newspaper, network. It will bring tangible social benefits for investors and economic benefits, LED electronic display can be received from the computer, TV, VCR, VCD, video cameras andother information transmitted, and play dimensional or three-dimensional animation, text information at anytime.With economic grows, Accelerated pace of social work life, the hotel in people's lives plays a indispensable role. Hotel is a large population flow in today where it is a social gathering place for celebrities, of course, it is the window which needs information fastest, most accurate and huge. LED electronic display will be full of your customer's demand for investors with a huge, immeasurable, long-term social and economic benefits.1. SocialA, promote the hotel's services and preferential policies to enhance the hotel's image.B, promote the hotel's "service commitment" and other content, enhancing its visibility.C, beautify the hotel environment, to improve their grades and the taste is more conducive to attracting more customers a friend.D, Providing convenience to our customers.2. EconomicThe twenty-first century, a highly information-oriented era, corporate awareness of the advertisements has never been so strong and is growing; Hotels flow-intensive, information requirements wide; LED electronic display, a high information content of the display medium, a the world's best advertising media, can be, within 365 days a year to undertake a variety of advertising an unlimited number of foreign business; In good operation, will obviously about to create rising prosperity has brought enormous economic benefits. Guangzhou, China Trade Fair Exhibition Hall next to a large full-color screen, at an annual tens of millions of dollars in advertising revenue for investors rolling in wealth; Xiamen Egret Plaza on the state of large-scale full-color, in just three years time, the recovery of more than 500 million yuan of total investment, and is nearly 200 million a year net profit for the investors steady flow of economic benefits.The foregoing analysis, the Grand Hotel to configure a large LED electronic display, will give you and your guests with huge, long-term, good social and economic benefits, play a double-edged sword effect.Ⅱ.The role of hotel LED display1.Heat the hotel mood.Through the display screen to play the higher-ups and all kinds of guests come to visit,guide words of welcome, a variety of major festivals such as celebration of the word.2.Knowledge spreadingA, through the LED electronic display that can play a variety of laws, rules, regulations and all kinds of knowledge and so on.B, through the LED electronic display can play hotel new service introduction; the hotel's "service commitment" and so on.3. Play the role of bulletin boards.Through the display screen can be broadcast lectures, meetings of the notice, all notices, job placement and advanced individuals, the Hall of Fame and advanced deeds and so on.4.played the role of public service ads.①, through the display screen can be broadcast weather forecasts;②, local culture, history, geography, climate profiles, local customs and habits;③, local maps, tourist traffic map and various tourist spots, maps;④, "civilized citizens of the Convention", the hotel's slogan and important news.5. Creation of well economic benefitsAs the world's best advertising media, also carry advertisements of major companies, (the proposed dual-color or full color, so that the content displayed on the rich and colorful, more attraction to major companies and units undertake activities and doing advertising, enhance the hotel to be well known, fully reflect the grade of the hotel).Overall LED display in the hotel for the advancement of hotel services to the public image, reputation, service grade, and create a civilized window.Ⅲ. The characteristics of LED display1. Display is of bright and longer visual distance, which reaches to 500m can be seen clearly.2. Display shows the simple and colorful contents that will not bring banners or other display device and the thick rough sense of feeling.3. Display is green lighting with the characteristics of long life, low power consumption, without extra IR / UV spectra of mercury-containing hazardous substances.4. Display is a high-tech product, it will be used to quickly align your company with the times.5. The development prospect of display is extremely broad, in government agencies and enterprises play an important role in office. The adoption of the display system will enable yourcompany's information technology step to high level.China's economy is developing rapidly, there is increasing number of dissemination of information requirements. It is believed that, led electronic display with its bright colors, display informative, long life, power consumption is small, light weight, space for small size, high stability, easy operation, easy installation and maintenance, and other characteristics played a role in the socio-economic development becomes more important. Somehow seems, led screen display in today's media, the best cost performance, is your best choice.。