失真放大电路研究
放大器非线性失真研究装置设计与测试

AUTOMOBILE DESIGN | 汽车设计时代汽车 放大器非线性失真研究装置设计与测试臧竞之 李希平杭州广安汽车电器有限公司 浙江省杭州市 311402摘 要: 基于STM32F334单片机设计制作的一个放大器非线性失真研究装置。
该设计采用晶体管放大电路将信号源放大,使用四双向模拟开关(CD4066BM)做模拟开关,利用单片机自带ADC采集电压变化,用FFT 算法实现的低频谐波失真度的测量。
使用THD的计算公式计算出线性放大器的“总谐波失真”近似值。
通过EKT043显示触摸屏显示当前输出波形和失真度并且可以通过按键进行波形选择。
关键词:STM32F334单片机 晶体管 ADC采集 FFT算法1 系统方案论证1.1 方案描述信号源输出频率为1kHZ、峰峰值为20mV的正弦波,通过晶体管放大电路放大到峰峰值不小于2V,频率为1kHZ的无明显失真正弦波形,顶部失真波形,底部失真波形,双向失真波形,交越失真波形这5种波形[1]。
通过ADC采集电压变化,用FFT算法实现的低频谐波失真度的测量,使用THD计算公式计算出非线性失真的输出的“总谐波失真”近似值。
通过EKT043显示触摸屏显示当前输出波形和失真度。
如图1所示。
1.2 方案比较与选择1.2.1 失真度测量方法的比较与选择方案一:失真度计以模拟法为基础,采用基于基波抑制原理的基波抑制方法,通过频率选择性无源网络抑制基波,并从抑制基波后的总均方根电压和均方根谐波电压中计算失真度,基波抑制法构成的失真度测量仪可以解决频率范围为100Hz~10KHz、失真度为1×10-5~100%的总体谐波失真测量,测量准确度为±5%~±30%左右,测量较为方便。
方案二:采用快速傅立叶变换(FFT)算法对量化后的信号进行处理,得到基波和各次谐波的电压,从而计算出失真度[2]。
为了提高非整周期采样条件下失真度测量的精度,可以采用准同步法对被测信号的基波和谐波电压进行精确测量。
放大电路的非线性失真分析

THD
2 2 U2 U3 100% U1
2. 放大电路的最大不失真幅度
放大电路要想获得大的不失真输出幅度,需要: 1. 工作点Q要设置在输出特性曲线放大区的中间部位; 2. 要有合适的交流负载线的斜率。
图 03.14 放大器的最大不 失真输出幅度(动画3-4)
(动画3-8)
放大器的不失真输出幅度的确定。
饱和失真
由于放大电路的工作点达到了三极管 的截止区而引起的非线性失真。对于NPN管, 输出电压表现为顶部失真。 截止失真
(a)饱和失真
(b)截止失真
图 02.02.14 放大器截止失真和饱和失真(NPN晶体管)
(动画3-3)
1.2 非线性失真系数
放大器要求输出信号与输入信号之间是线性关系, 不能产生失真。 由于三极管存在非线性,使输出信号产 生了非线性失真。 非线性失真系数的定义:在某一正弦信号输入下, 输出波形因非线性而产生失真,其谐波分量的总有效值 与基波分量之比,用THD表示,即
E4a0223 图解法
E4a02233 放大电路的非线性 失真分析
1. 放大电路的非线性失真
1.1 饱和失真与截止失真
由晶体管特性曲线的非线性引起的输出信号失真,称为 由于放大电路的工作点达到了三极管 非线性失真,主要有饱和失真和截止失真。 的饱和区而引起的非线性失真。对于NPN管, 输出电压表现为底部失真。
输出幅度
t
3. 输出功率和功率三角形
放大电路向电阻性负载提供的输出功率:
Vom I om 1 Po Vom I om 2 2 2
在输出特性曲线上,正好 是三角形ABQ的面积,这一
三角形称为功率三角形。
要想PO大,就要使功率三 角形的面积大,即必须使Vom 图 03.15 功率三角形
干货|大学生电子竞赛题目分析——放大器非线性失真研究装置

干货|大学生电子竞赛题目分析——放大器非线性失真研究装置1任务设计并制作一个放大器非线性失真研究装置,其组成如图所示,图中的K1和K2为1×2切换开关,晶体管放大器只允许有一个输入端口和一个输出端口。
2要求K1和K2均投到各自的“1”端子,外接信号源输出频率1kHz、峰峰值20mV的正弦波作为晶体管放大器输入电压u i,要求输出无明显失真及四种失真波形u o,且u o的峰峰值不低于2V。
外接示波器测量晶体管放大器输出电压u o波形。
(1)放大器能够输出无明显失真的正弦电压u o(2)放大器能够输出有“顶部失真”的电压u o(3)放大器能够输出有“底部失真”的电压u o(4)放大器能够输出有“双向失真”的电压u o(5)放大器能够输出有“交越失真”的电压u o(6)分别测量并显示上述五种输出电压u o的“总谐波失真”近似值。
(7)其他3说明(1)限用晶体管、阻容元件、模拟开关等元器件设计并实现图中的受控晶体管放大器,其输出的各种失真或无明显失真的信号必须出自该晶体管放大电路,禁用预存失真波形数据进行D/A转换等方式输出各种失真信号。
(2)在设计报告中,应结合电路设计方案阐述出现各种失真的原因。
(3)无明显失真及四种具有非线性失真电压u o的示意波形如下图所示:(4)总谐波失真定义:线性放大器输入为正弦信号时,其非线性失真表现为输出信号中出现谐波分量,常用总谐波失真(THD:total harmonic distortion)衡量线性放大器的非线性失真程度。
THD定义:若线性放大器输入电压其含有非线性失真的输出交流电压为则有:在完成设计要求的第(6)项时,谐波取到五次即可,即(5)对THD自动测量期间,不得有任何人工干预。
(6)K1和K2的“2”端子用于作品测试。
题目分析与方案设计本题主要由两部分组成:一个晶体管放大器、一个谐波分析电路。
题目要求的晶体管放大器是一个具有特殊要求的放大器,要求通过切换某些元件后,不仅能够输出正常的无失真波形,还能输出4种失真波形,分别为顶部失真、底部失真、双向失真与交越失真。
模拟电子技术单元11-3:乙类功率放大电路的失真及消除方法

三、乙类功率放大电路的失真及消除方法
1、 交越失真的消除 (UBE倍增电路)
图(b)是利用三极管的 VBE 为 T1 和 T2 管 提供所 需 偏压,其关系式为:
U BE4
R2 R1 R2
U B2B3
, 调整电阻R1、R2的阻 值,即可得到合适的偏压
值,这种方式在集成电路
中经常用到。
1、 交越失真
三、乙类功率放大电路的失真及消除方法
1、 交越失真的消除
克服交越失真的措施是避 开“死区”电压,静态时, 给T1和T2管提供较小的 正向偏置电压,使每一个 晶体管处于微导通状态。 即晶体管工作在甲乙类状 态。当输入信号一旦加入, 晶体管立即进入线性放大 区,从而消除交越失真。
图(a)是利用二极管的正向 导通压降为T1和T2管提供所 需偏压, 即UB1B2=UD1+UD2。
《模拟电子技术》
项目模块 扩放大器的分析与调试
一、功率放大电路概述 二、几种功率放大电路的介绍 三、乙类功率放大电路的失真及消除方法 四、甲乙类互补对称功率放大电路 五、采用复合管的改进型功率放大电路
六、功率放大器的组装调试
三、乙类功率放大电路的失真及消除方法
放大器的非线性失真

放大器的非线性失真The document was prepared on January 2, 2021放大器的非线性失真非线性失真是模拟电路中影响电路性能的重要因素之一.本章先从非线性的定义入手,确定量化非线性的一个度量标准,然后研究放大器的非线性失真及其差动电路与反馈系统中的非线性,并介绍一些线性化的技术.概述非线性的定义电路非线性是指输出信号与输入信号之比不为一个常量,体现在输出与输入之间的关系不是一条具有固定斜率的直线,或体现为小信号增益随输入信号电平的变化而变化.放大器的非线性定义:当输入为正弦信号时,由于放大器管子的非线性,使输出波形不是一个理想的正弦信号,输出波形产生了失真,这种由于放大器管子参数的非线性所引起的失真称为非线性失真.由于非线性失真会使输出信号中产生高次谐波成分,所以又称为谐波失真.非线性的度量方法1 泰勒级数系数表示法:用泰勒级数展开法对所关心的范围内输入输出特性用泰勒展开来近似:)()()()(33221 +++=t x t x t x t y ααα 对于小的x ,y t≈α1x ,表明α1是x ≈0附近的小信号增益,而α2,α3等即为非线性的系数,所以确定式中的α1,α2等系数就可确定.2 总谐波失真THD 度量法:即输入信号为一个正弦信号,测量其输出端的谐波成分,对谐波成分求和,并以基频分量进行归一化来表示,称为“总谐波失真”THD .把xt=Acosωt 代入式中,则有:+++++=+++=)]3cos(cos 3[4)]2cos(1[2cos cos cos cos )(332213332221t t A t A t A t A t A t A t y ωωαωαωαωαωαωα由上式可看出,高阶项产生了高次谐波,分别称为偶次与奇次谐波,且n 次谐波幅度近似正比于输入振幅的n 次方.例如考虑一个三阶非线性系统,其总谐波失真为:2331233222)43()4()2(THD A A A A αααα++= 3 采用输入/输出特性曲线与理想曲线即直线的最大偏差来度量非线性.在所关心的电压范围0 V i,max 内,画一条通过实际特性曲线二个端点的直线,该直线就为理想的输入/输出特性曲线,求出它与实际的特性曲线间的最大偏差ΔV ,并对最大输出摆幅V o,max 归一化.即在如图所示.V图 非线性的确定单级放大器的非线性1 由于管子特性引起的非线性以共源放大器为例来说明单级放大器的非线性,如图所示是带电阻负载的共源放大器.V S +v sVo图 共源放大器图中V S 为M 1管的直流工作点,即栅源电压,而v s 则为输入的交流小信号,假定输入的交流小信号为:t cos V v m s ω= 则根据饱和萨氏方程可得其漏极电流为: 2)cos (t V V V K I m th GS N D ω+-=上式中I D0为直流输出,所以在输出端的交流信号可表示为:+++-=)]2cos(1[21cos )(22t V K t V V V K I m N m th GS N d ωω输出信号的基波与二次谐波的幅度之比为:)(42th GS mV V V A A -=ωω 由上式可以看出MOS 放大器的非线性失真是由于输出电流与输入电压的平方关系引起的,当V m 很小时,二次谐波可以忽略.2 由放大器传输特性引起的非线性带电阻负载的共源放大器的传输特性如图所示.V图 带电阻负载的共源放大器的传输特性由上图可以看出,放大器的非线性失真与输入信号大小、直流工作点偏置点有关.一般放大器的最大输出幅度是指无失真的输出.所以当偏置点不同时同一放大器的输出幅度是不同的.由于V o =V DD -I D R ,而放大器的电压增益为:A v =-g m R ,所以当电源电压为常数时,随着电阻R 值的增大,放大器的增益增加,但输出幅度的动态范围减小.差分电路的非线性对于差分电路,由于输入与输出间表现出一种“奇对称”的关系,即f -x=-fx ,所以对式的泰勒展开式进行简化,应只有奇次项,所有的偶次项系数为零,即输入为差分信号时差分放大器不存在偶次谐波,从而减少了非线性.V图 相同电压增益的单端放大器与差分放大器对于如图所示的差分放大器,其小信号电压增益为:)(2 R V V K R g A th GS N m v -=≈ 与共源放大器一样,假设输入信号为V m cosωt .则有:21D D o I I I -= 21GS GS id V V V -=根据饱和萨氏方程有:22221)(4 2idth GS id N id NS idN D D V V V V K V K I V K I I --=-=-从式可以看出,只有当N S id K I V /2≤时,I D1、I D2才有意义,而当V id 较小时,△I D =I D1-I D2和V id 才是线性的.所以一般认为在满足N S id K I V /±≤时,差分放大器是线性的.如果|V id |<<V GS -V th ,则将式中的根号下的式子展开得:)(8cos cos )(2 )(81)(2)(41)(2233222221⎥⎥⎦⎤⎢⎢⎣⎡---=⎥⎥⎦⎤⎢⎢⎣⎡---≈---=-th GS m m th GS N th GS idth GS id N th GS idth GS di N D D V V t V t V V V K V V V V V V K V V V V V V K I I ωω 利用三角函数的性质cos 3ωt=3cosωt+cos3ωt/4对式进行进一步的简化,有:)(32)3cos(cos )(323232321th GS m m th GS m m m D D V V t V g t V V V V g I I --⎥⎦⎤⎢⎣⎡--=-ωω 由上式可以看出:差分放大器的非线性失真只包含有奇次谐波,而无偶次谐波分量,且当])(32[323th GS m m V V V V ->>时,其三次谐波分量与基次谐波分量的比值为: )(32/22th GS m V V V -.与式相比可发现:在提供相同的电压增益与输出摆幅的情况下,差动电路呈现的失真要比共源放大的失真要小得多.电路中器件引起的非线性前面介绍的者是假定无源组件为线性,但实际上,特别是在集成电路中,无源组件也都是非线性的.这里主要介绍电容以及用MOS 管作电阻的非线性. 1 电容的非线性电容的非线性主要体现在开关电容电路中,电容器对电压的依赖关系可能会引入相当大的非线性.如图所示的电容结构,则是一个非线性电容.图 一种非线性电容结构对于图中的电容,由于其电容值的大小与PX 二点的电压值即电容两端的电压有关,通常此电容可表示为:)1(2210 +++=V V C C αα 为了考虑电容非线性的影响,分析如图a 所示的开关电容电路.CV oV i0a b图 a 非线性电容的开关电容电路 b 输出曲线假设图中放大器输入电容C 1上有一初始电压为V i0,而输出电容C 2的初始电压为零,且C 1是一非线性电容,并假设C 1/C 2=K 电路的死循环增益,C 1=KC 01+α1V ,则电容C 1上获得的电荷为:201000100112)1( 00i i V V V KC V KC dV V KC dV C Q i i αα+=+==⎰⎰而在放大模式终止时,电容C 2上的电荷为:2100222o o V V C V C dV C Q oα+==⎰而根据电荷守恒定理,Q 1=Q 2,所以可令式与式相等,则可求得:)211(10120211i i o V K V K V ααα+++-=上式中平方根项下的后两项通常远小于1,因此可以对平方根项展开,有:20102)1(i i o V K K KV V α-+≈从上式可以看出输出电压V o 的非线性是由第二项产生的.2 MOS 管作为电阻的非线性如图所示,为一个有源滤波器,其中使用MOS 管作为其电阻,V VGV oV V o图 用MOS 管作为电阻的有源滤波器选择V G 的电压使MOS 管工作在线性区,因此根据萨氏方程有: DS DSth GS N d V )2V V V (K i --= 对上式进行泰勒展开得:+----=)(21))((22S D N S D th GS N d V V K V V V V K i 式中V D -V S =V DS ,则其等效电阻为:++--==)(21)(S D N th GS N DS d V V K V V K V i R 上式中第一项为线性电阻,第二项为非线性电阻,使滤波器电路产生非线性,所以用简单管子工作在非饱和区作电阻时使电路产生非线性,当V D +V S 很小时,非线性可以忽略.克服非线性的技术 原理在模拟电路中改善和克服非线性失真的方法基本上都是采用负反馈.其基本的工作原理如下:考虑放大器的非线性失真时,输出信号可以表示为:h v di v o v DA v A v 00+=式中D 为谐波失真系数,v h 为输入端的谐波信号.则一个反馈系统可用图表示.Dv图 反馈系统的对非线性的影响的原理框图由上图可得到:of v f v F v ⋅= f sf di v v v -= di v h v of v A Dv A v 00+=把式、代入式h v sf v v v of Dv A v A F A v 000)1(+=+即:vv hv vv sf v of F A Dv A F A v A v 000011+++=上式说明,非线性失真减小是用降低系统增益换来的,反馈放大器输入信号幅度与无反馈时相同,则负反馈放大器的输出信号缩小了1+A v0F v 倍.为了便于比较,应将输出信号中的基波幅度调到与无反馈时相同,则有: s v v sf v F A v )1(0+= 把式代入到式中可得到:vv hv s v of F A Dv A v A v 0001++=由上式可以看出负反馈作用使放大器输出信号中的谐波成分减小了,若以D F表示,则有: vv F F A DD 01+=上式说明负反馈放大器非线性失真比无反馈放大器减小了1+A v0F v 倍.上述情况也可以从放大器的传输特性曲线来理解.假定一个放大器一般放大器的开环传输特性曲线失真可以用分段线性近似,如图所示.图 传输特性曲线失真的分段线性近似表示法当v s ≤V s1时,放大器开环增益为A 1;当V s1<v s ≤V s2时,放大器开环增益为A 2;当v s >V s2时,放大器开环增益为A 3.实际为传输特性的斜率,从此可以看出A 3为零,由于放大器随着输入信号的变化放大器增益的不一致,使输出波形将有失真.当放大器加反馈后该放大器闭环时的增益分别为假定反馈系数都为F v vvo v v F A A A 10111+=vvo v v F A A A 20221+=当反馈深度足够时,则有:A v1=1/F v ,A v2=1/F v ,A V3=0因为A 3=0.由上述关系画出闭环放大器传输特性如图中虚线所示,可以看出放大器的增益降低了,但线性范围扩展了,只有当v s >V s2时输出信号被限幅,才会失真.所以负反馈放大器在输出信号中非线性失真减小,反馈越深,负反馈放大器线性工作范围越大缓冲器最大:它是全反馈,非线性失真也越小,当放大器进入饱和区后,输出波形限幅.当放大器输入信号本身包含有谐波成分时,负反馈是无法将这种谐波成分减小的,只有加滤波器.改善放大器非线性失真的实际电路1 共源放大器线性电阻源级负反馈如图a所示,这是一个串联负反馈电路,且反馈系数为F=R S.VoViIa b图a带电阻负反馈的共源级 b不同反馈时的漏电流与Vi的关系负反馈减小了晶体管栅源之间施加的信号的摆幅,因此使得输入-输出特性具有更好的线性.忽略体效应,共源级的等效跨导为:1Smmm RggG+=当g m R S>>1时,则G m接近于1/R S,这是一个与输入无关的值.由图b可以发现R S越大,则ID越稳定.该电路的电压增益为:G m R,由于R S与R都是线性化的,因此A v也是线性的.并且该电路的线性范围直接取决于g m R S,g m R S越大则线性范围越大.例对于一个偏置电流为I0的共源级放大电路如图所示,其输入电压摆幅使漏电流由变化到.则MOS管的跨导发生变化,引起电路的非线性失真,计算以下三种情况下小信号电压增益的变化a R S=0,b g m R S=2的负反馈,c g m R S=4,其中g m是I D=I1时的跨导.解:假定M1工作于饱和区,则有DmIg∝.则:a当R S=0时,即不存在负反馈时,有:4.06.0,,=lmhmggb 当g m R S=2时,由式可得:4.06.00.89)6.021()4.021(4.06.0)4.01/(4.0)6.01/(6.0,,=++=++=SmmSmmlmhmRggRggGGc 同理,当g m R S =4时有:4.06.00.86 )6.041()4.041(4.06.0)4.01/(4.0)6.01/(6.0,,=++=++=S m m S m m lm h m R g g R g g G G由式与式可知:当g m R S =2时,线性度提高了11%;而当g m R S =4时,线性度提高了14%.2 差分放大器的线性负载共源放大器线性电阻源级负反馈,可直接应用到差分放大器中形成差分放大器的线性负载负反馈.如图a 、b 所示.a b图 差分对中使用的源级负反馈 a 一个电阻 b 两个电阻图a 、b 中的差分输入的半电路相同,如同图a 所示.因此其负反馈的作用也与带线性电阻负反馈的共源放大器的效果一样.在图a 中, V GS 抬高了I S R S /2电压值比不带反馈的放大器,而当V id =0时,电阻上通过I S /2的电流,因而提高反馈深度以提高线性范围与输出压摆之间是一矛盾的关系,另外,失调与噪声都存在负反馈作用,所以对失调与噪声都有改善.而图b 中,仅用一个电阻,且电阻2R S 上无电流流过,因此失调与噪声不存在负反馈作用,所以容易产生较大的失调和噪声.在MOS 差分运算放大器中,要求R S 能很精确,但是由于工艺原因,其电阻值存在着很大误差,所以一般在制造中采用工作在很深三极管区的MOS 管作为电阻,此时的电阻呈线性特征,当V DS 很小时有:R on3=1/2K N V GS -V th .如图所示.图 通过工作在深线性区的MOSFET 实现负反馈的差分对然而,当输入摆幅较大时,不能保证M 3处于深线性区,因此它的导通电阻将会增大,从而引入了非线性.当图中的电阻R S 用两个工作于深线性区的NMOS 管来实现时,就构成了如图所示的电路.图 用两个工作在线性区的MOSFET 负反馈的差分对当V id =0时,M 3与M 4都处在深线性区.假设V id 为负值,即V G1<V G2,由于V D4=V G4-V GS2,晶体管M 4处在线性区,而M 4则因为其漏极电压大于栅源电压,最终将进入饱和区.因此,即使一个负反馈器件进入饱和区,电路仍能保持相对线性.在设计时,令W/L 1,2≈7W/L 3,4,则可得到较宽的线性范围.但是在图中,当M 3、M 4进入饱和区时,电阻增加,在管子上的压降增大,使电路脱离了线性区.3 改变输入对管的输入特性来克服放大器的非线性强制输入对管始终工作在深的线性区,如图所示,图中运放A 1、A2使得:V A =V B ≈V b,且不受输入电平变化的影响,而且要求V b <<V GS1-V th1,因此输入对管M 1、M 2始终工作于深线性区.13V b图 输入器件工作在线性区的差分对该电路的特点为:1 由于M 1、M 2工作于深线性区,故它们的跨导较小,且为:g m1=g m2=2K N1V DS =2K N1V b . 所以这种线性范围的扩大是以增益的降代为代价的.2 因为M 1、M 2的工作状态与V i 的共模电平有关,所以输入共模电平必须严格控制,并跟踪V b ,以便确定I D1和I D2.3 M 3,M 4与两个辅助放大器在输出端会产生很大的噪声.4 利用器件特性的互补法其思路是将放大器看作由一个电压-电流V/I转换器后面再接一个电流-电压I/V转换器构成.这样在理想情况下,电压-电流转换时的非线性用其后的电流-电压的非线性相互抵消,从而产生线性的放大器.但在实际中,由于存在着各种其它非理想效应都会在电路中产生非线性,从而减小了放大器的线性工作范围.。
放大器的非线性失真

放大器的非线性失真非线性失真是模拟电路中影响电路性能的重要因素之一。
本章先从非线性的定义入手,确定量化非线性的一个度量标准,然后研究放大器的非线性失真及其差动电路与反馈系统中的非线性,并介绍一些线性化的技术。
12.1 概述 非线性的定义电路非线性是指输出信号与输入信号之比不为一个常量,体现在输出与输入之间的关系不是一条具有固定斜率的直线,或体现为小信号增益随输入信号电平的变化而变化。
放大器的非线性定义:当输入为正弦信号时,由于放大器(管子)的非线性,使输出波形不是一个理想的正弦信号,输出波形产生了失真,这种由于放大器(管子)参数的非线性所引起的失真称为非线性失真。
由于非线性失真会使输出信号中产生高次谐波成分,所以又称为谐波失真。
非线性的度量方法1 泰勒级数系数表示法:用泰勒级数展开法对所关心的范围内输入输出特性用泰勒展开来近似:)()()()(33221 +++=t x t x t x t y ααα (12.1)对于小的x ,y (t)≈α1x ,表明α1是x ≈0附近的小信号增益,而α2,α3等即为非线性的系数,所以确定式(12.1)中的α1,α2等系数就可确定。
2 总谐波失真(THD )度量法:即输入信号为一个正弦信号,测量其输出端的谐波成分,对谐波成分求和,并以基频分量进行归一化来表示,称为“总谐波失真”(THD )。
把x(t)=Acosωt 代入式(12.1)中,则有:+++++=+++=)]3cos(cos 3[4)]2cos(1[2cos cos cos cos )(332213332221t t A t A t A t A t A t A t y ωωαωαωαωαωαωα (12.2)由上式可看出,高阶项产生了高次谐波,分别称为偶次与奇次谐波,且n 次谐波幅度近似正比于输入振幅的n 次方。
例如考虑一个三阶非线性系统,其总谐波失真为:2331233222)43()4()2(THD A A A A αααα++= (12.3) 3 采用输入/输出特性曲线与理想曲线(即直线)的最大偏差来度量非线性。
什么是电路中的放大器失真

什么是电路中的放大器失真放大器是电子电路中常见的一个重要组件,其主要功能是将输入信号放大至需要的幅度,并将其输出。
然而,在实际应用中,放大器常常会引入一定的失真,影响信号的传输和质量。
本文将介绍什么是电路中的放大器失真,以及其产生的原因和常见类型。
一、放大器失真的定义在电路中,放大器失真指的是放大器输出信号与输入信号之间存在的非线性关系,导致输出信号形状或幅度发生改变,与原始信号存在差异。
这种失真会导致原始信号的畸变,降低信号的准确性和保真度。
二、放大器失真的原因1. 非线性特性:放大器在放大信号时,其放大增益往往会随着输入信号的变化而变化。
当输入信号较小或靠近放大器的饱和区时,放大器会表现出非线性的放大特性,导致失真现象的发生。
2. 频率响应:放大器在不同频率下的放大特性可能有所不同,其中某些频率段上的放大增益会有所衰减或变化。
这种频率响应不均导致输出信号的失真。
3. 输出载荷:放大器的输出端常常需要连接负载电阻或其他电子组件。
不正确的负载匹配或负载电阻的变化也会导致放大器输出信号的失真。
4. 温度效应:放大器在工作时会产生一定的发热,而温度的变化会引起电子器件的参数变化。
因此,温度的变化可能导致放大器工作状态发生变化,从而导致失真的发生。
三、放大器失真的类型1. 线性失真:线性失真是放大器输出信号与输入信号之间存在的线性变化关系。
例如,信号增益的非线性变化将导致放大器输出的失真。
2. 非线性失真:非线性失真是放大器输出信号与输入信号之间存在的非线性变化关系。
非线性失真可以进一步细分为各种类型,如谐波失真、交叉失真等。
谐波失真指的是输出信号中包含输入信号频率的整数倍频率成分,而交叉失真则指的是输出信号中包含输入信号频率之外的频率成分。
3. 相位失真:相位失真是指放大器输出信号的相位与输入信号的相位之间存在的差异。
相位失真会导致信号波形的畸变或时序错误。
四、放大器失真的影响放大器失真对信号的传输和质量会产生多种影响,其中包括:1. 信号失真:放大器失真会引起输入信号的形状、幅度或频谱发生变化,从而导致信号的失真。
运算放大器负反馈放大电路输入负值后失真

运算放大器负反馈放大电路输入负值后失真文章标题:运算放大器负反馈放大电路输入负值后失真:原因与解决方法正文如下:一、问题描述运算放大器是现代电子技术中常用的重要电路组件,它可以将输入信号放大、滤波、求积分或微分等。
在某些使用场合下,运算放大器作为负反馈放大电路的核心部分,用于提高电路的稳定性和线性度。
但是,在一些特殊情况下,比如输入信号为负值的情况下,会发生失真现象,影响电路的正常工作。
二、失真原因当输入信号为负值时,运算放大器的反相输入端将比正相输入端具有更大的电位,这意味着反相输入端的输出信号将会大于正相输入端。
如果电路中使用了负反馈,在这种情况下反馈信号的“减小”作用将被放大器的“增大”效应抵消掉一部分,从而使放大电路输出失真,这就是负载失真。
三、解决方法为了解决运算放大器负反馈放大电路输入负值后失真的问题,我们可以采用以下方法:1.增加偏置电压:通过增加偏置电压来改善反相输入端的失真现象,即使输入信号为负值时,反相输入端的电位也不会太低。
但是偏置电压过大时,可能会引起其他电路参数的变化,因此应该进行适当的控制。
2.增大输入信号:如果输入信号值较小,可以通过增大输入信号来提升反馈信号的幅值。
这样,即使电路出现失真,因为幅值相对较大,失真效应也会相对减弱。
3.优化反馈电路:合理设计负反馈电路,可以使电路更稳定,减少失真现象。
比如,通过改变反馈电路的阻抗、增益等参数,可以优化反馈效应,避免失真现象的发生。
四、总结运算放大器负反馈放大电路输入负值后失真是一种常见的现象,但是它对电路的稳定性和准确性均会产生一定的影响。
为了避免失真现象的发生,我们可以采取上述方法进行改进和优化,进一步提高电路的性能和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国家电工电子实验教学中心模拟电子技术实验报告实验题目:放大电路失真研究学院:电子信息工程专业:电子科学与技术学生姓名:学号:任课教师:陆鹏飞2013 年 6 月7 日目录1 实验目的与知识背景 (1)1.1实验目的 (1)1.2知识点 (1)2 实验要求 (1)2.1基本要求 (1)2.2扩展要求 (3)3 失真原理及改进方法 (3)3.1饱和失真与截止失真 (3)3.2双向失真 (4)3.3交越失真 (4)3.4非对称失真 (5)4 仿真过程 (5)4.1对截止失真,饱和失真,双向失真以及标准放大的电路设计 (5)4.2对交越失真及其改进方法的电路设计 (8)4.3不对称失真及其改进方法的电路设计 (9)5 讨论 (10)6 总结与体会 (11)7 参考文献 (11)1 实验目的与知识背景1.1 实验目的1. 掌握失真放大电路的设计和解决电路的失真问题——提高系统地构思问题和解决问题的能力.2. 掌握消除放大电路各种失真技术——系统地归纳模拟电子技术中失真现象。
3. 具备通过现象分析电路结构特点——提高改善电路的能力。
1.2 知识点1.输出波形失真可发生在基本放大、功率放大和负反馈放大等电路中,输出波形失真有截止失真、饱和失真、双向失真、交越失真,以及输出产生的谐波失真和不对称失真等。
2. 射极偏置电路、乙类、甲乙类功率放大电路和负反馈电路。
3. 克服各种失真的技术。
2 实验要求2.1基本要求(1)输入一标准正弦波,频率2KHz,幅度50mV,输出正弦波频率2KHz,幅度1V。
输入波形输出波形(2)下图放大电路输入是标准正弦波,其输出为截止失真。
①设计电路并改进。
②讨论产生失真的机理,阐述解决问题的办法。
(3)下图放大电路输入是标准正弦波,其输出为饱和失真。
①设计电路并改进。
②讨论产生失真的机理,阐述解决问题的办法。
③npn型组成的共射放大电路和pnp型组成的共射放大电路在截止和饱和失真方面的不同。
(4)下图放大电路输入是标准正弦波,其输出为双向失真。
①设计电路并改进。
②讨论产生失真的机理,阐述解决问题的办法。
③共基放大电路、共集放大电路与共射放大电路在截止和饱和失真方面的不同。
(5)下图放大电路输入是标准正弦波,其输出为交越失真。
①设计电路并改进。
②讨论产生失真的机理,阐述解决问题的办法。
③双电源供电的功率放大器改成单电源供电会出现哪种失真?如何使单电源供电的功率放大器不失真?2.1扩展要求(1)下图放大电路输入是标准正弦波,其输出为不对称失真。
①设计电路并改进。
②讨论产生失真的机理,阐述解决问题的办法。
3 失真原理及改进方法3.1饱和失真与截止失真原理由于静态工作点的设置不当,导致信号会产生削定失真与削底失真的情况。
如下图,当工作点太高时,放大器能对输入的负半周信号实施正常的放大,而当输入信号为正半周时,因输入信号太大,使三极管进入饱和区,输出电流将不随输入电流而变化,输出电压也不随输入信号而变化,产生输出波形的饱和失真。
当工作点太低时,放大器能对输入的正半周信号实施正常的放大,而当输入信号为负半周时,因小于三极管的开启电压,三极管将进入截止区=0,=0,输出电压==Vcc将不随输入信号而变化,产生输出波形的截止失真。
●消除方法由失真原理,从静态工作点的调整入手。
对于饱和失真,降低静态工作点的数值,将其选在交流负载线的中点。
对于截止失真,提高电路静态工作点的数值是指到达交流负载线的中点。
注意:以上结论均对NPN型三极管的共射放大电路而言。
由于PNP管放大电路和NPN管放大电路的输出波形发生失真情况完全相反。
此外,放大电路三种基本组态中Uce与Uo关系不同,所以失真波形也有不同之处,具体见下表。
由以上分析可得,放大电路的静态工作点Q选得过低,将导致产生截止失真;Q点选得过高,将导致饱和失真;只有Q点选在交流负载线的中央,才可获得最大不失真输出电压幅值,亦可得到放大电路的最大输出动态范围。
3.2双向失真●原理双向失真是指即在三极管输出特性曲线的饱和区失真又在截止区失真,三极管有饱和状态又有截止状态,向上达到饱和状态,向下到达截止状态,出现这种非线性失真不是由于电路中某个电路元件选择的不合适,而是由于信号源输入的信号过大导致三极管在放大时出现了双向失真。
●消除方法改变这种失真的方法就是工作点Q要设置在输出特性曲线放大区的中间部位,减小输入的信号,选择一个合理的输入信号,使之正好工作在放大区域内。
3.3交越失真●原理交越失真是由于晶体管的门坎电压(即死区电压)而产生,减小或克服交越失真是人们一直关注的课题之一。
当三极管工作在纯乙类状态时,由于输入回路没有加基极偏流,而管子的ib必须在Ube大于一定数值(即门坎电压,硅管约0.6 V)后才有显著地增加。
所以在输入信号电压很低的时候,晶体管的集电极电流基本上为零,则负载所得到的电压或电流将出现一段“死区”,使得输出信号波形在两管交替导通处出现失真。
这种现象称为交越失真。
●消除方法为了克服交越失真的影响,我们可以通过改进电路的方法来实现。
常见的方法有:甲乙类双电源互补对称电路法和甲乙类单电源互补对称电路。
甲乙类互补对称法电路原理如下图所示。
由图可见, T3组成前置放大级,T1和T2组成互补输出级。
静态时, 在D1,D2上产生的压降为T1,T1提供了一个适当的偏压, 使之处于微导通状态。
由于电路的对称, 静态时=,=0,=0。
有信号时, 由于电路工作在甲乙类, 即使很小, 基本上也可以进行线性放大。
但是左图的缺点就是其偏置电压不易调整, 改进电路如右图所示, 在右图中流人T4的基极电流远小于流过R1、r2的电流, 则由图可以求出=(R1+R2)/R2, 因此, 利用T4管的be基本为一固定值, 只要调整R1、R2的比值, 就可以改变T1、T2的偏压值, 此法在集成电路中经常应用。
3.4非对称失真●原理不对称失真也是推挽放大器所特有的失真,它是由于推挽管特性不对称,而使输入信号的正、负半周不对称。
●消除方法采用负反馈,减小环内的非线性失真。
4 仿真过程4.1对截止失真,饱和失真,双向失真以及标准放大的电路设计●饱和失真输入信号为:正弦波,峰峰值50mv,频率2kHz电位器阻值:4%●标准放大输入信号为:正弦波,峰峰值50mv,频率2kHz 电位器阻值:28%●截至失真输入信号为:正弦波,峰峰值50mv,频率2kHz 电位器阻值:42%双向失真输入信号为:正弦波,峰峰值400mv,频率2kHz 电位器阻值:8%4.2对交越失真及其改进方法的电路设计输入信号:正弦波,峰峰值4V,频率2kHz当开关闭合时,出现交越失真当开关打开时,失真得到改善4.3不对称失真及其改进方法的电路设计输入信号:正弦波,峰峰值10v;频率2kHz当开关打开时,输出波形发生不对称失真当开关闭合,产生负反馈是,波形恢复,近似与原信号相等5 讨论(1)负反馈可解决波形失真,解决的是哪类失真?负反馈只能在一定程度上抑制管子的非线性失真,而且负反馈会压低增益,大环路负反馈还可能加剧互调失真,因此负反馈深度不宜过大。
非线性失真包括交越失真、不对称失真等。
(2)归纳失真现象,并阐述解决失真的技术。
削波失真:因工作点设置不当或信号幅度超限致使晶体管截止或饱和,正弦电压波头被削平,称为削波失真.随着信号幅度增大,工作点设置不当时正弦电压只有正波头或负波头被削平,发生单向削波失真;工作点设置合理时,则正、负波头都被削平,发生双向削波失真.削波失真属于硬伤.削波失真一旦发生就难以弥补.设置合理的工作点是避免削波失真的唯一措施。
非线性失真:对线性电阻,输入是正弦波电压,则输出电流亦是正弦波.电阻阻值变化时,输入是正弦波,则输出就会偏离正弦波.将放大器中输入正弦电压(电流)时输出电流(电压)偏离正弦波的现象叫做非线性失真.BJT放大器中的非线性失真电压(电流)波形的基本特征是一个波头矮胖,另一个瘦长.非线性失真属于柔性失真.非线性失真可以用若干方法来抑制或补偿。
(3)由单电源供电的运算放大器组成电路会出现哪种失真?不对称失真。
(4)电阻负载改成大容性负载会出现什么失真?饱和或截止失真。
(5)提高频率后若失真,属于哪类失真?交越失真。
(6)其他放大电路失真及解决办法。
频率失真、幅度失真、相位失真、瞬态互调失真等,利用负反馈解决。
6 总结与体会1.研究放大电路信号失真的原理与掌握克服失真的方法对实际运用具有重要的意义。
通过此次实验,我对模电中关于放大电路频率响应中的相关知识又有了进一步的了解与掌握。
特别是对失真及其克服方法这一块,我查阅了几本不同的教材,每一本教材的写法都有自己的特色,因此极大地加深了我对理论知识的理解。
2. BJT放大器谐波失真分为削波失真和非线性失真.设置工作点可避免单向削波失真,使放大器输出范围最大,为纠正非线性失真打下基础。
信号源内阻、负反馈及迭次反相放大都能减小BJT非线性失真,改善放大器线性.信号源内阻及负反馈基于抑制管子非线性的机理去减少放大器输出电压的非线性失真,迭次反相放大基于补偿机制去减少放大器输出电压的非线性失真.比较看,信号源内阻及负反馈只是有利于尽可能忠实地放大信号,对输入信号的非线性失真无能为力,而且负反馈会压低增益,大环路负反馈还可能加剧互调失真,因此负反馈深度不宜过大,而理论上负反馈就不能彻底抑制非线性失真.迭次反相放大不用任何代价就能补偿输入信号的非线性失真,且有可能补偿到零.总之,负反馈只能在一定程度上抑制管子的非线性失真,而迭次反相放大能获得极佳的高保真效果.3.为了找到关于放大电路失真方面的相关资料,我积极利用网上图书馆中的数据库,大量搜索,进步一锻炼了我利用网络工具查找文献的能力。
4.通过对收集的论文资料的阅读,我规范了自己的论文格式,进一步地加深了规范论文的写作格式,相信这对我们今后更多的科研论文,研究设计等有着很大帮助。
7 参考文献[1] 路勇. 模拟集成电路基础[M]. 中国铁道出版社, 2010.[2]童诗白, 华成英. 模拟电子技术基础[M]. 第四版. 高等教育出版社, 2006[3] 元增民. BJT放大电路失真类型及抑制失真的方法[J]. 长沙大学学报, 2012, 26(2).[4] 张巍. 晶体三极管放大电路的非线形失真及其解决办法[J]. 中小企业管理与科技,2009(21).[5] 牧仁. PNP与NPN管放大电路输出波形失真情况仿真比较[J]. 现代电子技术, 2010, 33(2).[6] 周萍. 图解法分析放大电路三种基本组态的最大输出幅值及失真[J]. 邯郸学院学报, 2005, 15(3).。