过程控制工程大作业

过程控制工程大作业
过程控制工程大作业

《过程控制工程》仿真大作业

《PID Controller Tuning to obtain desired closed loop responses for cascade control systems》——Yongho Lee,Sunwon Park,Moonyong Lee

小组成员:3071102302 张远

3071102313 陆偲仪

3071102268 胡帅男

Abstract

A new method for PID controller tuning based on process models for cascaded control systems is proposed in this paper. The method consists of first finding the ideal controller that gives the desired closed loop response and then finding the PID approximation of the ideal controller by Maclaurin series. This method can be applied to any open loop stable processes. Further more, it enables us to tune the PID controllers both for the inner loop and the outer loop simultaneously while existing tuning methods tune the inner loop first and the outer loop next. Closed loop responses of cascade control loops tuned by the proposed method are compared with those of existing methods such as the frequency response method and the ITAE method. The results show that the proposed tuning method is superior to the existing methods.

串级系统是提高单回路性能最好的方法之一,特别在干扰与操纵变量有关或输出为非线性的时候。这个好处使得串级系统在化工控制中被广泛使用。我们都知道串级控制系统的性能很大程度上依赖于主副回路的调整。然而,在对串级控制调节方法文献资料却相当有限,本文提出了一个利用麦克老林级数对于串级系统一般过程模型进行整定的新理论发展,并通过与现有的几种整定方法的比较,来说明提出的新方法的优越性。

一、文献研究内容与方法

文章的研究模型建立在如下图的典型串级PID控制回路上:

1、一般过程模型参数整定方法的发展。在串级系统中,主副回路的闭环传递函数为

在这里控制器Gc1和Gc2要符合设定点追踪(R1)和干扰(L1 L2)调节要求。

这部分包括一般过程模型参数整定方法的发展。其中分别介绍了副控制器和主控制器的设计。

A)对副控制器的设计。

副控制器的设计必须防止干扰量进入内环,并且使系统快速稳定。为了实现这一点,副变量要尽量快地遵循设定点。但是,超调量和振荡要小。如果副控制器使得设定点轨迹是稳定的过阻尼响应,则可符合上述要求。要调整副控制器使得设定点轨迹得到这样得响应,理论如下:

副回路的稳定过程模型如下:

p 2m (s)包含了可逆部分,p

2A

(s)包括了所有不可逆部分。

不可逆的部分有如下形式:

p

2A

(0)=1的要求对控制参数达到设定值是必须的,因为这个为控制器添加了积分作用。

这里,我们的目的是设计控制器G

C2

使得副回路的闭环传递函数C2/R2得到如下式所示的闭环响应:

1/(λ

2s + 1)r2为副回路带有可调节时间常数的IMC(内膜控制)滤波器。λ

2

和r2的选择要保证符合IMC控制器。反馈控制器G

C2

得到的响应如下式所示:

其中q

2为IMC控制器,由 P

2m

-1(s)/ (λ

2

s + 1)r2表示。因为 p

2A

(0)=1,则 G

C2

可以被表示为如下积分形式:

为了将上述理想控制器近似得到PID控制器,用麦克劳林级数将 G

C2

展开:

上式除了有无穷的高阶微分项外,得到的控制器还有比例项、积分项和微分项。因为(7)中的控制器和(5)中控制器相等,当(7)所有项都存在时,我们可以完美地得到需要的的闭环响应。当然这是不可能的,因为高阶的无穷微分项无法全部实现。在实际应用中,中低频率比高频率重要得多,所以(7)中只有前三项对得到需要的闭环性能起到决定作用。(7)中控制器可去掉后面得项,用前三项近似为PID控制器。

其中:

上式可用来得到控制器增益,积分、微分时间常数,还有闭环时间常数λ

2

积分和微分常数 (τ

I , τ

D

)在一些复杂的过程模型中可能会有负值,并与滤

波器时间常数选择无关。在这种情况下,简单PID控制器最好串连一个具有

1/(αs + 1) 形式的一阶滞后单元或具有1/(β

2s2+β

1

s + 1) 形式的二阶滞后

单元。

b)对主控制器的设计

pid控制器经过整定足以接近我们需要的响应。因此,我们可以假设副回路闭环

传递函数C

2/R

2

可以大概重新更精确地用eq4表示。将此C

2

/R

2

形式带入(2a)式

因此,主回路的过程模型为:

考虑主回路是稳定过程模型得到如下形式:

p 1m (s)包含了可逆部分,p

1A

(s)包括了所有不可逆部分。

我们的目标是设计控制器 G

C1,使得主回路闭环传递函数 C

1

/R

1

具有如下形

式:

则,主回路控制器的传递函数为:

其中q

1为主回路IMC(内膜控制)控制器,用 P

1m

-1(s)/(λ

1

s + 1)r1表示。同

上一节中介绍的方法,理想控制器 G

C1

也可近似为PID控制形式。

2、例子:对一阶纯滞后模型进行参数整定

因为FOPDT(一阶纯滞后)是最常用的对化工过程的近似模型,所以我们以主副回路均为FOPDT的模型为例。假设一个过程的主副回路控制器函数如下:

则,副回路模型可以分解为:

指定一个期望的闭环响应为:

理想的副回路控制器函数为:

根据(7)中PID参数,得到:

模型的主回路为:

其中 P

1m (s) and P

1A

(s)为:

相似的,指定一个期望的闭环相应:

主回路理想控制器函数为:

根据(7)中的PID参数,得到:

对FOPDT模型的调整规则总结如下表:

上述结果可直接应用于所有的串级控制模型。

3、对于时间常数λ

1、λ

2

的选取方法。

在上述方法中,λ

1、λ

2

是调整闭环系统响应速度的主要参数。λ

1

和λ

2

的选择要使得系统具有好的响应和鲁棒性。对于副回路干扰的抑制主要依赖副控制器,而对于主回路的干扰抑制和设定点的追踪则依赖于主控制器。则,λ

1

和λ2的选择一般都是独立的。对λ1和λ2的选择研究主要是在FOPDT模型中。

在实践中,闭环的带宽选择一般不超过开环带宽的10倍。因此,建议λ

1和λ

2

要比相应的开环时间常数小10倍。对于λ最优的选择是一个关于过程死区时间θ的函数。我们做了大量的仿真来根据系统性能和鲁棒性找到λ1/(θ1 + θ2) 和λ2/θ2的最佳比例。得到结果建议λ1/(θ1+ θ2) =0.5和λ2/θ 2 = 0.5。

二、仿真过程与结果

(一)仿真准备

仿真流程图如下:

G c1、G c2 PID整定公式如下:

(二)仿真检验

Example 1 Firstly, the following process model(Seborg et al., 1989) was studied.

根据所给条件,选择内环、外环整定系数:

λ1=1 λ2=0.2

则可以得到各项PID系数:

Frequency response method(PI/P mode):

K C2=4 K C1 =3.5, τI1=5.3

proposed method (PI/P mode):

K C2=5 K C1=6.2, τI1=6.2 proposed method (PID/PID mode):

K C2=5, τI2=1, τD2=0 K C1=6.2, τI1=6.2, τD1=1.484

根据matlab PID环节参数特性设置如下:

Frequency response method(PI/P mode):

P C2=4 P C1 =3.5, I C1=0.66

proposed method (PI/P mode):

P C2=5 P C1 =6.2, I C1=1

proposed method (PID/PID mode):

P C2=5, I C2=5, D C2=0 K C1 =6.2, I C1=1, D C1=9.2

得到如下仿真曲线:

Frequency response method

Proposed method (PI/P mode)

Proposed method (PID/PID mode)

Closed loop response due to load change (C1/L 2) for example 1.

Frequency response method

Proposed method (PI/P mode)

Proposed method (PID/PID mode) Closed loop response due to load change (C1/L1) for example 1.

Frequency response method

Proposed method (PI/P mode)

Proposed method (PID/PID mode)

Closed loop response due to set point change (C1/R1) for example 1. Example 2 Since many chemical processes can berepresented by FOPDT models, the following process (Krishnaswamy, 1990) was studied as the second example.

根据所给条件,选择内环、外环整定系数:

λ1=6 λ2=1

则可以得到各项PID系数:

Frequency response method(PI/P mode):

K C2=2.978 K C1=7.3, τI1=200

proposed method (PI/P mode):

K C2=3.444 K C1=5.83, τI1=105

proposed method (PID/PID mode):

K C2=3.444, τI2=20.666, τD2=0.6451 K C1 =5.83, τI1=105, τD1=4.8

根据matlab PID环节参数特性设置如下:

Frequency response method(PI/P mode):

P C2=2.978 P C1 =7.3, I C1=0.0365

proposed method (PI/P mode):

P C2=3.444 P C1 =5.83, I C1=0.055

Proposed method (PID/PID mode):

P C2=3.444, I C2=0.167, D C2=2.222 K C1 =5.83, I C1=0.056, D C1=27.984

得到如下仿真结果:

Frequency response method

Proposed method (PI/P mode)

Proposed method (PID/PID mode)

Closed loop response due to load change (C1/L2) for example 2.

Frequency response method

Proposed method (PI/P mode)

Proposed method (PID/PID mode) Closed loop response due to load change (C1/L1) for example 2.

Closed loop response due to set point change (C 1/R 1) for example 2.

Example 3 To evaluate the robustness against structural mismatch in the plant and the model, the following complicated process was tested. We added white noises to C 2 and C

1 to represent real process measurements.

根据所给条件,选择内环、外环整定系数:

λ1=30.85 λ2=1.83

则可以得到各项PID 系数:

Frequency response method(PI/P mode):

K C2=0.6625 K C1 =0.1373, τI1=485.37

proposed method (PI/P mode):

K C2=0.883 K C1 =0.09, τI1=90.53

proposed method (PID/PID mode):

K C2=0.883, τI2=14.5, τD2=1.117 K C1 =0.09, τI1=90.53, τD1=18.2

根据matlab PID 环节参数特性设置如下: Frequency response method(PI/P mode):

P C2=0.6625 P C1 =0.1373, I C1=0.00028288

Frequency response method Proposed method (PI/P mode) Proposed method (PID/PID mode)

proposed method (PI/P mode):

P C2=0.883 P C1 =0.09, I C1=0.00099415

proposed method (PID/PID mode):

P C2=0.883, I C2=0.060897, D C2=0.986311 K C1 =0.09, I C1=0.00099415, D C1=1.638

得到如下仿真结果:

Closed loop response due to load change (C1/L1) for example 3.

Closed loop response due to load change (C1/L1) for example 3.

Closed loop response due to set point change (C1/R1) for example 3

三、仿真结果比较与分析

下面将仿真结果与文中结果比较如下:

注:各图中时间轴响应时间不一致是由于保存数据重新作图时所致,在实际仿真过程中响应时间与文中亦相同。

Closed loop response due to load change (C1/L2) for example 1.

Closed loop response due to load change (C1/L1) for example 1.

Closed loop response due to load change (C1/L2) for example 2.

Closed loop response due to load change (C1/L1) for example 2.

Closed loop response due to load change (C1/L1) for example 3.

Closed loop response due to load change (C1/L2) for example 3.

Closed loop response due to set point change (C1/R1) for example 3.

据此对结果进行以下分析:

1、从仿真图像与文献中给出图像的比较可以看出,在example1与example2中,

图像相似度较高,较好的反应了作者的研究成果,但在example3中图像有些许区别,可以看出,作者在仿真中加入了噪声,以下对该例子加入噪声再次进行仿真得到以下结果:

Closed loop response due to load change (C1/L1) for example 3.

Closed loop response due to load change (C1/L2) for example 3.

控制工程大作业(打印轮的控制分析)

控制工程大作业(打印轮的 控制分析) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

控制工程基础大作业打印机中打印轮控制系统分析 学院:机械工程及自动化学院 班级:车辆工程2班 姓名: 学号:

图1 图1所示为打印机中打印轮控制系统的原理图。系统由打印轮 (负载)、直流电动机及用于速度反馈的增量编辑器等组成。打印轮一般有96个字符位置。控制打印轮的位置,就是使需要的字符放在硬拷贝打印锤前。打印轮直接安装在电动机轴上能在正反两个方向旋转。编码器是一种将直线或旋转位移变换为数码或脉冲信号的装置。 打印轮控制系统的控制目标是控制打印轮的位置。其原理是:当给出打印某个字符的指令时,通过指令传输电路,控制系统首先将它转换成总距离及行进方向信号,然后命令电动机驱动打印轮去校正位置。在此过程中,控制系统首先通过速度控制方式,驱动电动机打印轮系统按一定规律的转速旋转。当负载驱动到希望的位置附近后,通过位置控制方式,把位置误差控制到零,驱动打印轮在没有延迟或过大震荡的条件下尽快精确到位。 对于编码器—误差检测器,有 )()()(t t t t o i θθθ-=....................

)()(s t K t e e θ=......................② 式中:s K ——编码器增益。 在位置控制方式中,微处理机只不过把编码器的输出与给定参考位置进行比较,在送出与该两信号之差成比例的误差信号。 对于增益为A K 的功率放大器,有 )()(a t e K t e A =.........................③ 对于永磁直流电动机,有 )()()() (a t e t e t i R dt t di L b a a a a -=+...............④ )()(t w K t e M b b =...............................⑤ )()(T t i K t T a M =................................⑥ )()() (t T t Bw dt t dw J M M M =+................⑦ 式中:b K ——电动机反电动势常数; T K ——电动机转矩常数; M w ——电动机转速; M T ——电动机输出转矩; J ——折算到电动机轴上的总转到惯量; B ——折算到电动机轴上的总粘贴阻尼系数; 其余符号意义见图1。 电动机输出量为 )(d (d t w t t M M =) θ...............................⑧ )()(o t t M θθ=...................................⑨

计算机控制技术复习大作业及答案

2014年上学期《计算机控制技术》复习大作业及参考答案========================================================== 一、选择题(共20题) 1.由于计算机只能接收数字量,所以在模拟量输入时需经( A )转换。 A.A/D转换器B.双向可控硅 C.D/A转换器D.光电隔离器 2.若系统欲将一个D/A转换器输出的模拟量参数分配至几个执行机构,需要接入( D )器件完成控制量的切换工作。 A.锁存器锁存B.多路开关 C.A/D转换器转换D.反多路开关 3.某控制系统中,希望快速采样,保持器的保持电容CH应取值( A )。 A.比较小B.比较大C.取零值D.取负值 4. 在LED显示系统中,若采用共阳极显示器,则将段选模型送至( B )。 A.阳极B.阴极 C.阴极或阳极D.先送阴极再送阳极 5. 电机控制意味着对其转向和转速的控制,微型机控制系统的作法是通过(B )实现的。 A.改变定子的通电方向和通电占空比 B.改变转子的通电方向和通电占空比 C.改变定子的通电电压幅值 D.改变转子的通电电压幅值 6.计算机监督系统(SCC)中,SCC计算机的作用是(B) A.接收测量值和管理命令并提供给DDC计算机 B.按照一定的数学模型计算给定植并提供给DDC计算机 C.当DDC计算机出现故障时,SCC计算机也无法工作 D.SCC计算机与控制无关 7. 键盘锁定技术可以通过(C)实现。 A.设置标志位 B.控制键值锁存器的选通信号 C.A和B都行 D.定时读键值 8. RS-232-C串行总线电气特性规定逻辑“1”的电平是(C)。 A.0.3 伏以下B.0.7伏以上 C.-3伏以下D.+3伏以上 9. 在工业过程控制系统中采集的数据常搀杂有干扰信号,(D)提高信/躁比。 A.只能通过模拟滤波电路 B.只能通过数字滤波程序 C.可以通过数字滤波程序/模拟滤波电路 D.可以通过数字滤波程序和模拟滤波电路 10.步进电机常被用于准确定位系统,在下列说法中错误的是(B )。 A.步进电机可以直接接受数字量 B.步进电机可以直接接受模拟量 C.步进电机可实现转角和直线定位 D.步进电机可实现顺时针、逆时针转动

过程控制作业答案最新版本

第一章 概述 1.1 过程控制系统由哪些基本单元构成?画出其基本框图。 控制器、执行机构、被控过程、检测与传动装置、报警,保护,连锁等部件 1.2 按设定值的不同情况,自动控制系统有哪三类? 定值控制系统、随机控制系统、程序控制系统 1.3 简述控制系统的过渡过程单项品质指标,它们分别表征过程控制系统的什么性能? a.衰减比和衰减率:稳定性指标; b.最大动态偏差和超调量:动态准确性指标; c.余差:稳态准确性指标; d.调节时间和振荡频率:反应控制快速性指标。 第二章 过程控制系统建模方法 习题2.10 某水槽如图所示。其中F 为槽的截面积,R1,R2和R3均为线性水阻,Q1为流入量,Q2和Q3为流出量。要求: (1) 写出以水位H 为输出量,Q1为输入量的对象动态方程; (2) 写出对象的传递函数G(s),并指出其增益K 和时间常数T 的数值。 (1)物料平衡方程为123d ()d H Q Q Q F t -+= 增量关系式为 123d d H Q Q Q F t ??-?-?= 而22h Q R ??= , 33 h Q R ??=, 代入增量关系式,则有23123 ()d d R R h h F Q t R R +??+=? (2)两边拉氏变换有: 23 123 ()()()R R FsH s H s Q s R R ++ =

故传函为: 23232 3123 ()()()11R R R R H s K G s R R Q s Ts F s R R +=== +++ K=2323 R R R R +, T=23 23R R F R R + 第三章 过程控制系统设计 1. 有一蒸汽加热设备利用蒸汽将物料加热,并用搅拌器不停地搅拌物料,到物料达到所需温度后排出。试问: (1) 影响物料出口温度的主要因素有哪些? (2) 如果要设计一温度控制系统,你认为被控变量与操纵变量应选谁?为什么? (3) 如果物料在温度过低时会凝结,据此情况应如何选择控制阀的开、闭形式及控制器 的正反作用? 解:(1)物料进料量,搅拌器的搅拌速度,蒸汽流量 (2)被控变量:物料出口温度。因为其直观易控制,是加热系统的控制目标。 操作变量:蒸汽流量。因为其容易通过控制阀开闭进行调整,变化范围较大且对被 控变量有主要影响。 (3)由于温度低物料凝结所以要保持控制阀的常开状态,所以控制阀选择气关式。控制 器选择正作用。 2. 如下图所示为一锅炉锅筒液位控制系统,要求锅炉不能烧干。试画出该系统的框图,判断控制阀的气开、气关型式,确定控制器的正、反作用,并简述当加热室温度升高导致蒸汽蒸发量增加时,该控制系统是如何克服干扰的? 解:系统框图如下:

大工16春《可编程控制器》大作业题目及要求-答案

网络教育学院 《可编程控制器》大作业 题目:三相异步电动机正反转控制 学习中心: 层次:高起专 专业:电力系统自动化技术 年级: 2015年春季 学号: 学生姓名: 题目一:三相异步电动机正反转控制 设计要求:(1)首先对可编程序控制器(PLC)的产生与发展、主要性能指标、 分类、特点、功能与应用领域等进行简要介绍; (2)选用西门子S7-200 系列PLC,设计出能对三相异步电动机进 行正反转控制的主电路和继电器控制电路图; (3)对输入输出继电器及其它编程元件的地址进行分配,画出I/O 口接线图,列出PLC控制程序(梯形图进行截图,语句表可直接拷 贝)并对程序作出解释; (4)总结:需要说明的问题以及设计的心得体会。 三相异步电动机正反转控制 1 可编程序控制器PLC的概况 1.1 PLC的定义 早期的可编程控制器是为了取代继电器控制线路,采用存储器程序指令完成顺序控制而设计的。它仅有逻辑运算、定时、计数等功能,采用开关量控制,实际只能进行逻辑运算,所以称为可编程逻辑控制器,简称PLC(Programmable Logic Controller)。进入20世纪80年代后,采用了16位和少数32位微处理器构成PLC,使得可编程逻辑控制器在概念、设计、性能上都有了新的突破。采用微处理器之后,这种控制器的功能

不再局限于当初的逻辑运算,增加了数值运算、模拟量的处理、通信等功能,成为真正意义上的可编程控制器(Programmable Controller ),简称为PC 。但是为了与个人计算机PC (Personal Computer )相区别,长将可编程控制器仍成为PLC 。 随着可编程控制器的不断发展,其定义也在不断变化。国际电工委员会(IEC )曾于1982年11月颁布了可编程控制器标准草案第一稿,1985年1月发表了第二稿,1987年2月又颁布了第三稿。1987年颁布的可编程控制器的定义如下: “可编程逻辑控制器是专为在工业环境下应用而设计的一种数字运算操作的电子装置,是带有存储器、可以编制程序的控制器。它能够存储和执行命令,进行逻辑运算、顺序控制、定时、计数和算术运算等操作,并通过数字式和模拟式的输入、输出,控制各种类型的机械或生产过程。可编程控制器及其相关的外围设备,都应按易于工业控制系统形成一个整体、易于扩展其功能的原则设计。 1.2 PLC 的工作原理 PLC 实质上是一种专用与工业控制的计算机,其硬件结构基本上与微型计算机相近,在结构上分为固定式和组合式(模块式)两种,固定式PLC 包括CPU 板,I/O 板,显示面板,内存块,电源等,这些元素组合成一个不可拆卸的整体。模块式PLC 包括CPU 模块,I/O 模块,内存模块,电源模块,底板或机架。这些模块可以按照一定的规则组合配置。 按照可编程控制器系统的构成原理,可编程控制器系统由传感器,可编程控制器和执行器组成,可编程控制器通过循环扫描输入端口的状态,执行用户程序来实现控制任务,其操作过程如上图1所示。 PLC 输入模块的输入信号状态与传感器信号相对应,为传感器信号经过隔离和滤波后的有效信号。开关量输入电路通过识别传感器0、1电平,识别开关的通断。 信号状态,并入映像寄存器区域;CPU 根信号,并将其处理的结果送现代的PLC 已经具备了处理模拟量的功能,但是 PLC 输出模块具有一定的负载驱动

过程控制大作业2014

自动化仪表与过程控制课程大作业 1、(15分)如图所示为加热炉的两种控制方案。试分别画出(a )、(b )所示两种情况的方框图,说明其调节过程并比较这两种控制方案的特点。 2、(15分)如图所示为一液体储槽,需要对液位加以自动控制。为安全起见,储槽内液 体严格禁止滥出,试在下述两种情况下,分别确定调节阀的气开、气关型式及调节器的正、反作用。 (1)选择流入量Qi 为操纵变量; (2)选择流出量Q0为操纵变量。 (3)以上2种情况分别出其系统框图。 3、(20分)(用MATLAB 仿真实现)实验测得某液位过程的矩形脉冲响应数据如下: 矩形脉冲幅值△μ=20%阀门开度变化,脉冲宽度△t=20s : (1)将该矩形脉冲响应曲线转化为阶跃响应曲线; (2)根据阶跃响应曲线确定该过程的数学模型及相关参数(如K 、T 和τ等),并根据这些参数整定PI 控制器的参数,用仿真结果验证之。 4、(25分)已知副被控对象的传递函数为模型为1 1 )(+= s s G ,主被控对象传函为1 121 )(01+= s s G ,执行器传递函数为1)(=s G v ,主检测变送器的传递函数为1)(1=s G m ,

副检测变送器的传递函数为1)(2=s G m 。干扰源为0.4的单位阶跃信号。 (1)画出串级控制系统的框图及同等条件下的单回路系统框图; (2)在Matlab 的Simulink 下完成上面的两个系统; (3)设定PID 调节器的参数,并画出相应的单回路及串级控制系统的单位阶跃响应曲线; 5、(25分)已知被控对象的传递函数为 1121 )(+= s s G ,干扰通道的传递函数为 521 )(2++= s s s D ,执行器传递函数为1)(=s G v ,检测变送器的传递函数为1)(1=s G m , 干扰信号为0.4的单位阶跃信号。 (1)确定前馈控制器的传递函数Gff (s ),画出反馈-前馈控制系统的框图; (2)在Matlab 的Simulink 下完成上面的两个系统; (3)设定PID 调节器的参数,并画出相应的单位阶跃响应曲线 (4)加入干扰后,观察两系统的阶跃响应曲线的变化。 要求: 1、第1和第2题可以采用手写,其它3题要进行仿真设计,手写和打印均用A4纸; 2、严禁抄袭,发现雷同,一律不及格; 3、时间安排:12月10日下午4点前,以班级为单位收齐后交到东6B301,未位交的一律不准参加答辩。12月11日-12日在东6B301答辩,具体时间到时再通知,不参加答辩的按缺考处理。

过程控制作业

如何设计单回路控制系统? 单回路反馈控制系统是应用最为广泛的一种控制系统,它由四个基本环节组成,即被控对象或被控过程、测量变送装置、控制器和控制阀。为了使系统达到预期的控制质量指标要求,就需要很好的了解具体的生产工艺机理,掌握生产过程的规律,以便确定合理的控制方案。为了设计好单回路控制系统,需要对以下几个方面问题进行分析,这包括: ①如何正确选择被控变量和控制变量。 ②如何正确选择控制阀的开、闭形式及其流量特性。 ③如何正确选择控制器的控制规律及正反作用。 ④如何正确选择测量变送装置。 ⑤系统关联性分析。 ①正确选择被控变量与控制变量。 1.被控变量的选择 被控变量的选择是控制系统设计的核心问题。它选择得正确与否,将会直接关系到生产的稳定操作、产品产量和质量的提高以及生产安全与劳动条件的改善等。如果被控变量选择不当,不论采用何种控制仪表,组成什么样的控制系统,都不能达到预期的控制效果,满足不了生产的技术要求。为此,自控设计人员必须深入生产实际,进行调查研究,只有在熟悉生产工艺的基础上才能正确地选择出被控变

量。一般的过程都有较明确的要求。如对温度、压力、流量、液位控制系统,其相应的过程参数就是被控变量。通过分析,可以总结出如下几条选择被控变量的原则: (1)质量指标是产品质量的直接反映。在情况许可时,应选择质量指标参数作为被控变量。 (2)当不能选择质量指标参数作被控变量时,可选择一个与产品质量指标有单值对应关系的间接指标参数作为被控变量。 (3)所选的间接指标参数必须具有足够大的变化灵敏度,以便反映产品质量的变化。 (4)在被控变量选择时还需考虑到工艺的合理性和国内、外仪表生产的现状。 2.控制变量的选择 控制变量也称为操纵变量,是调节阀的输出,同时也是直接影响被控对象的输入信号 通过对干扰通道和控制通道的K、T、τ对控制质量的影响分析,可以总结出以下几个原则作为控制变量选择的依据。 (1)所选的控制变量必须是可控的; (2)所选的控制变量应是通道放大倍数比较大者,最好大于扰动通道的放大倍数; (3)所选的控制变量应使扰动通道时间常数愈大愈好,而控制通道时间常数应适当小一些为好,但不易过小; (4)所选的控制变量其通道纯滞后时间应愈小愈好;

计算机控制技术复习大作业与答案

《计算机控制技术》复习大作业及参考答案 ========================================================== 一、选择题(共20题) 1.由于计算机只能接收数字量,所以在模拟量输入时需经( A )转换。 A.A/D转换器B.双向可控硅 C.D/A转换器D.光电隔离器 2.若系统欲将一个D/A转换器输出的模拟量参数分配至几个执行机构,需要接入( D )器件完成控制量的切换工作。 A.锁存器锁存B.多路开关 C.A/D转换器转换D.反多路开关 3.某控制系统中,希望快速采样,保持器的保持电容CH应取值( A )。 A.比较小B.比较大C.取零值D.取负值 4. 在LED显示系统中,若采用共阳极显示器,则将段选模型送至( B )。 A.阳极B.阴极 C.阴极或阳极D.先送阴极再送阳极 5. 电机控制意味着对其转向和转速的控制,微型机控制系统的作法是通过(B )实现的。 A.改变定子的通电方向和通电占空比 B.改变转子的通电方向和通电占空比 C.改变定子的通电电压幅值 D.改变转子的通电电压幅值 6.计算机监督系统(SCC)中,SCC计算机的作用是(B) A.接收测量值和管理命令并提供给DDC计算机 B.按照一定的数学模型计算给定植并提供给DDC计算机 C.当DDC计算机出现故障时,SCC计算机也无法工作 D.SCC计算机与控制无关 7. 键盘锁定技术可以通过(C)实现。 A.设置标志位 B.控制键值锁存器的选通信号 C.A和B都行 D.定时读键值 8. RS-232-C串行总线电气特性规定逻辑“1”的电平是(C)。 A.0.3 伏以下B.0.7伏以上 C.-3伏以下D.+3伏以上 9. 在工业过程控制系统中采集的数据常搀杂有干扰信号,(D)提高信/躁比。 A.只能通过模拟滤波电路 B.只能通过数字滤波程序 C.可以通过数字滤波程序/模拟滤波电路 D.可以通过数字滤波程序和模拟滤波电路 10.步进电机常被用于准确定位系统,在下列说法中错误的是(B )。 A.步进电机可以直接接受数字量 B.步进电机可以直接接受模拟量 C.步进电机可实现转角和直线定位 D.步进电机可实现顺时针、逆时针转动

过程控制工程课后作业 答案

第一章纸质作业答案 一、调节阀的流量特性是指通过调节阀的流量与阀杆行程之间的关系。 调节阀的流量特性有线性型,等百分比型,快开型,抛物线型 调节阀流量特性选择的目的主要是从非线性补偿的角度来考虑,利用调节阀的非线性来补偿广义对象中其它环节的非线性,从而使整个广义对象的特性近似为线性。 二、简单控制系统是由一个被控对象、一个测量元件及变送器、一个控制器和一个执行器所构成的单闭环控制系统,也成为单回路控制系统。 简单控制系统的典型方块图为 三.按照已定的控制方案,确定使控制质量最好的控制器参数值。 经验凑试法、临界比例度法、衰减曲线法、响应曲线法 四、解: (1) 选择流出量 Q为操纵变量,控制阀安装在流出管线上, o 贮槽液位控制系统的控制流程图为 (2) 被控对象:液体贮槽

被控变量:贮槽液位 操纵变量:贮槽出口流量 主要扰动变量:贮槽进口流量 五、解: (1) 选择流入量 Q为操纵变量,控制阀安装在流入管线上, i 贮槽液位控制系统的控制流程图为 为了防止液体溢出,在控制阀气源突然中断时,控制阀应处于关闭状态,所以应选用气开形式控制阀,为“+”作为方向。 操纵变量即流入量 Q增加时,被控变量液位是上升的,故对象为“+”作用方向。由于 i 控制阀与被控对象都是“+”作用方向,为使控制系统具有负反馈作用,控制器应选择反作用。 (2) 选择流出量 Q为操纵变量,控制阀安装在流出管线上, o 贮槽液位控制系统的控制流程图为

为了防止液体溢出,在控制阀气源突然中断时,控制阀应处于全开状态,所以应选用气关形式控制阀,为“-”作为方向。 操纵变量即流出量 Q增加时,被控变量液位是下降的,故对象为“-”作用方向。由于 o 控制阀与被控对象都是“-”作用方向,为使控制系统具有负反馈作用,控制器应选择反作用。 六、(1)加入积分作用后,系统的稳定性变差,最大动态偏差增大、余差减小 加入适当的微分作用后,系统的稳定性编号,最大动态偏差减小,余差不变。 (2)为了得到相同的系统稳定性,加入积分作用后应增大比例度,加入微分作用后应适当的减小比例度。 第二章纸质作业答案 一.由两个控制器组成,分别接受来自被控对象不同部位的测量信号。一个控制器的输出作为下一个控制器的给定值,后者的输出去控制执行器以改变操纵变量。从系统的结构来看,两个控制器是串级工作的,称为串级控制系统。 方框图如下 二.答: 前馈控制系统方块图

过程控制期末大作业

已知飞轮升降系统模型对象: G(s) = e?30s (10s+1)2= e?30s 100s2+20s+1 要求:根据下列方法进行PID整定,写出整定后的PID参数,并画阶跃响应曲线表示M p、t s、t p。 1.根据响应曲线法整定参数; 2.使用衰减曲线法整定参数; 3.使用临界比例度法整定参数; 4.使用smith预估器法整定参数。 将四种方法图像放在一张图中比较,并用表格比较动态特性参数。 解: 1.根据响应曲线法整定参数: τ=30s,T=10s,K=1 则PID调节器的整定参数值为: K c K= 1.35(τ T )?1+ 0.27 = 1.35×(30 10 )?1+ 0.27 = 0.72 T i T = [2.5(τ T )+ 0.5(τ T )2]/[1 + 0.6(τ T )] = [2.5×(30 10 )+0.5(30 10 )2]/[1+0.6(30 10 )] = 4.286 T d T = 0.37(τ T )/[1 + 0.2(τ T )] = 0.37×(30 10 ) /[1+0.2(30 10 )] = 0.6938 进而可以求得理论的PID参数为:K p=K c= 0.7200 K i= K p T i = 0.72 42.86 = 0.01680 K d= K p T d= 0.72×6.938 = 4.995 将理论PID参数带入MATLAB仿真框图:

显示结果: 可以看出,曲线超调量虽然很小,但过渡过程时间依然很长,则仍需继续调节PID参数。 当K p= 0.68;K i= 0.019;K d=7时 显示结果: 此时M p<10%,t s较之前大大缩短,曲线效果好 2.使用衰减曲线法整定参数: 把调节器置成纯比例控制系统,用MATLAB进行试验,不断调节比例带,直

过程控制考试作业

自动化仪表与过程控制课程大作业 1、(15分)如图所示为加热炉的两种控制方案。试分别画出(a )、(b )所示两种情况的方框图,说明其调节过程并比较这两种控制方案的特点。 解:图A 为串级控制系统,主变量为加热炉出口温度T ,福变量为燃料油流量Q ,引入副变量Q 的目的是为了及时克服由于燃料油压力波动对主变量T 的影响,以提高主变量T 的控制质量。 图B 调节器TC 和FC 串级工作,但没有副回路,所以不是串级控制系统。如果FC 选为比例调节器,那么原油的流量变化仍能及时通过FC 来改变燃料油的流量,起到静态前馈作用,而TC 能根据被控量?的变化起到反馈作用。为前馈反馈控制系统,系统的被控变量时原油的出口温度T

两种控制系统的比较: (1)(1)串级控制包含一个主回路和一个副回路,改善了被控制过程的动态特性,增强了对一次和二次扰动的克服能力,提高了对回路参数变化的自适应能力。 (2)从前馈控制角度,由于增加了反馈控制,降低了对前馈控制模型的精度要求,并能对未选做前馈信号的干扰产生校正作用。从反馈控制角度,由于前馈控制的存在,对主要干扰作了及时的粗调作用,大大减少对控制的负担。 2、(20分)(用MATLAB仿真实现)某液位控制系统,在控制阀开度增加10%后,液位的响应数据如下: t(s) 0 10 20 30 40 50 60 70 80 90 100 h(mm) 0 0.8 2.8 4.5 5.4 5.9 6.1 6.2 6.3 6.3 6.3 (3)如果用具有延迟的一阶惯性环节近似,确定其参数K,T,,并根据这些参数整定PI控制器的参数,用仿真结果验证之。 (4)解:(1)输入命令 (5)t=[0 10 20 30 40 50 60 70 80 90 100]; (6)h=[0 0.8 2.8 4.5 5.4 5.9 6.1 6.2 6.3 6.3 6.3]; (7)plot(t,h); (8)xlabel('时间t(s)'); (9)ylabel('液位h(mm)'); (10)grid on; (11)hold on; (12)[x,y]=ginput(1) (13)[x1,y1]=ginput(1) (14)gtext('tao=5.5326') (15)gtext('T=34.3')

过程控制 第一到三章 作业

第一章作业 1.1 常用的评价控制系统动态性能的单项性能指标有哪些?它与误差积分指标 各有何特点? 答:(1)衰减率ψ、超调量σ、稳态误差e ss、调节时间t s、振荡频率ω;(2)单项指标用若干特征参数评价系统优劣,积分指标用误差积分综合评价系统优劣。 1.2 什么是对象的动态特性?为什么要研究对象的动态特性? 答:(1)指被控对象的输入发生变化时,其输出(被调量)随时间变化的规律;(2)实现生产过程自动化时,对象的动态特性可以为控制工程师设计出合理的控制系统满足要求提高主要依据。 1.3 通常描述对象动态特性的方法有哪些? 答:微分方程或传递函数。 1.4 过程控制中被控对象动态特性有哪些特点? 答:无振荡、稳定或中性稳定、有惯性或迟延、非线性但在工作点附近可线性化。 1.11 某水槽水位阶跃响应实验为: 其中阶跃扰动量Δμ=20%。 (1)画出水位的阶跃响应曲线;

(2)若该水位对象用一阶惯性环节近似,试确定其增益K和时间常数T。解:MATLAB编程如下: %作出标幺后的响应曲线 t=[ 0 10 20 40 60 80 100 150 200 300 400 ]; h=[ 0 9.5 18 33 45 55 63 78 86 95 98 ]; x=0:0.01:400; y=interp1(t,h,x,'spline'); %三次样条函数据己知的t、h插出x的值 yy=y/y(end); %输出标幺 plot(x,yy,'k'); xlabel('t/s'); ylabel('h/mm'); title('阶跃响应曲线','fontsize',10); grid; %找出最接近0.39和0.63的点 less1=find(yy<=0.39); more1=find(yy>=0.39); front1=less1(1,end);

过程控制作业题答案

《过程控制系统》思考题 一. 1.什么叫串级控制系统?绘制其结构方框图。 串级控制系统是由两个控制器的串接组成,一个控制器的输出做为另一个控制器的设定值,两个控制器有各自独立的测量输入,有一个控制器的给定由外部设定。 2.与单回路控制系统相比,串级控制系统有哪些主要特点? 多了一个副回路,形成双闭环。特点:主控制器输出改变副控制器的设定值,故副回路构成的是随动系统,设定值是变化的。在串级控制系统中,由于引入了一个副回路,不仅能及早克服进入副回路的扰动,而且又能改善过程特性。副调节器具有“粗调”的作用,主调节器具有“细调”的作用,从而使其控制品质得到进一步提高。 3.为什么说串级控制系统由于存在一个副回路而具有较强的抑制扰动的能力? ①副回路的快速作用,对于进入副回路的干扰快速地克服,减小了干扰对主变量的影响; ②引入副回路,改善了副对象的特性(减小副对象的相位滞后),提高

了主回路的响应速度,提高了干扰的抑制能力; ③副回路可以按照主回路的要求对副变量进行精确控制; ④串级系统提高了控制系统的鲁棒性。 4.串级控制系统在副参数的选择和副回路的设计中应遵循哪些主要原则? ①将主要干扰包括在副回路; ②副回路尽量包含多的干扰; ③为保证副回路的快速响应,副对象的滞后不能太长; ④为提高系统的鲁棒性,将具有非线性时变部分包含于副对象中; ⑤需要对流量实现精确的跟踪时,将流量选为副对象。 5.串级控制系统通常可用在哪些场合? * 应用于容量滞后较大的过程 * 应用于纯时延较大的过程 * 应用于扰动变化激烈而且幅度大的过程 * 应用于参数互相关联的过程 * 应用于非线性过程 6.前馈控制与反馈控制各有什么特点?绘制前馈控制系统结构方框图。 前馈:基于扰动来消除扰动对被控量 的影响; 动作“及时” ;

现代控制理论大作业概要

现代控制理论 (主汽温对象模型) 班级: 学号: 姓名:

目录 一. 背景及模型建立 1.火电厂主汽温研究背景及意义 2.主汽温对象的特性 3.主汽温对象的数学模型 二.分析 1.状态空间表达 2.化为约当标准型状态空间表达式并进行分析 3.系统状态空间表达式的求解 4.系统的能控性和能观性 5.系统的输入输出传递函数 6.分析系统的开环稳定性 7.闭环系统的极点配置 8.全维状态观测器的设计 9.带状态观测器的状态反馈控制系统的状态变量图 10.带状态观测器的闭环状态反馈控制系统的分析 三.结束语 1.主要内容 2.问题及分析 3.评价

一.背景及模型建立 1.火电厂主汽温研究背景及意义 火电厂锅炉主汽温控制决定着机组生产的经济性和安全性。由于锅炉的蒸汽容量非常大、过热汽管道很长,主汽温调节对象往往具有大惯性和大延迟,导致锅炉主汽温控制存在很多方面的问题,影响机组的整个工作效率。主汽温系统是表征锅炉特性的重要指标之一,主汽温的稳定对于机组的安全运行至关重要。其重要性主要表现在以下几个方面: (1) 汽温过高会加速锅炉受热面以及蒸汽管道金属的蠕变,缩短其使用寿命。例如,12CrMoV 钢在585℃环境下可保证其应用强度的时间约为10万小时,而在 595℃时,其保证应用强度的时间可能仅仅是 3 万小时。而且一旦受热面严重超温,管道材料的强度将会急剧下降,最终可能会导致爆管。再者,汽温过高也会严重影响汽轮机的汽缸、汽门、前几级喷嘴和叶片、高压缸前轴承等部件的机械强度,从而导致设备损坏或者使用年限缩短。 (2) 汽温过低,会使得机组循环热效率降低,增大煤耗。根据理论估计可知:过热汽温每降低10℃,会使得煤耗平均增加0.2%。同时,汽温降低还会造成汽轮机尾部的蒸汽湿度增大,其后果是,不仅汽轮机内部热效率降低,而且会加速汽轮机末几级叶片的侵蚀。此外,汽温过低会增大汽轮机所受的轴向推力,不利于汽轮机的安全运行。 (3) 汽温变化过大会使得管材及有关部件产生疲劳,此外还将引起汽轮机汽缸的转子与汽缸的胀差变化,甚至产生剧烈振动,危及机组安全运行。 据以上所述,工艺上对汽温控制系统的质量要求非常严格,一般控制误差范围在±5℃。主汽温太高会缩短管道的使用寿命,太低又会降低机组效率。所以必须实现汽温系统的良好控制。而汽温被控对象往往具有大惯性、大延时、非线性,时变一系列的特性,造成对象的复杂性,增加了控制的难度。现代控制系统中有很多关于主汽温的控制方案,本文我们着重研究带状态观测器的状态反馈控制对主汽温的控制[1] 。 2.主汽温对象的特性 2.1主汽温对象的静态特性 主汽温被控对象的静态特性是指汽温随锅炉负荷变化的静态关系。过热器的传热形式、结构和布置将直接影响过热器的静态特性。现代大容量锅炉多采用对流过热器、辐射过热器和屏式过热器。对流过热器布置在450℃~1000℃烟气温度的烟道中,受烟气的横向和纵向冲刷,烟气以对流方式将热量传给管道。而辐射过热器则是直接吸收火焰和高温烟气的辐射能。屏式过热器布置在炉膛内上部

过程控制大作业

水塔温度过程控制系统 学号:B11040924 姓名:刘华

1. 系统设计方案概述 本次设计采用串级控制系统对水塔温度进行控制。 过程控制系统由过程检测、变送和控制仪表、执行装置等组成,通过各种类型的仪表完成对过程变量的检测、变送和控制,并经执行装置作用于生产过程。 串级控制系统是两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。此系统改善了过程的动态特性,提高了系统控制质量,能迅速克服进入副回路的二次扰动,提高了系统的工作频率,对负荷变化的适应性较强。 串级控制系统工程应用场合如下: (1)应用于容量滞后较大的过程。 (2)应用于纯时延较大的过程。 (3)应用于扰动变化激烈而且幅度大的过程。 (4)应用于参数互相关联的过程。 (5)应用于非线性过程。 采用单片机作为主控制器,水塔温度为主被控对象,上水的流量为副被控对象,电磁阀为执行器,利用AD590传感器检测水塔温度,利用流量传感器检测上水流量。水塔温度串级控制系统框图如图1.1所示,系统原理图如图1.2所示。 图1.1水塔温度串级控制系统框图 图1.2 水塔温度串级控制系统原理图 2. 水塔温度串级控制系统仿真 水塔温度串级控制系统仿真,积分环节 Initial=0,两个检测变送环节参数设定时

间常数T=0.01s,扰动通道传函为时间常数T=2s。输入信号和扰动信号皆为单位阶跃信号。扰动作用时间F1为step time=50s, 仿真波形如图1.2所示。 图1.2 串级控制系统仿真波形 3.系统对象特性设计 水塔温度串级控制系统选择水塔温度为主被控对象,副被控对象为上水流量。当水塔温度变化的时候,通过控制上水流量改变水塔温度,并最终使其恒定。 主被控对象:水塔温度 =(2—1)副被控对象:上水流量 =(2—2)主控、副控回路检测环节传感器选择 主控对象检测元件选择为温度传感器AD590。 AD590是美国模拟器件公司生产的单片集成两端感温电流源。它的主要特性如下: 1、流过器件的电流(mA)等于器件所处环境的热力学温度(开尔文)度数,即: mA/K 式中:—流过器件(AD590)的电流,单位为mA; T—热力学温度,单位为K。 2、AD590的测温范围为-55℃~+150℃。 3、AD590的电源电压范围为4V~30V。电源电压可在4V~6V范围变化,电流变化1mA,相当于温度变化1K。AD590可以承受44V正向电压和20V反向电压,因而器件反接也不会被损坏。 4、输出电阻为710MW。 5、精度高。 副控回路检测元件选择电磁式流量传感器。 导电性的液体在流动时切割磁力线,也会产生感生电动势。因此可应用电磁感应定律来测定流速,电磁流量传感器就是根据这一原理制成的。虽然电磁流量传感器的使用条件是要求流体是导电的,但它还是有许多优点。 由于电极的距离正好为导管的内径,因此没有妨碍流体流动的障碍,压力损失极小。能够得到与容积流量成正比的输出信号。测量结果不受流体粘度的影响。由于电动势是在包含电极的导管的断面处作为平均流速测得的,因此受流速分布影响较小。测量范围

过程控制作业答案分解

作 业 第二章: 2-6某水槽如题图2-1所示。其中A 1为槽的截面积,R 1、R 2均为线性水阻,Q i 为流入量,Q 1和Q 2为流出量要求: (1)写出以水位h 1为输出量,Q i 为输入量的对象动态方程; (2)写出对象的传递函数G(s)并指出其增益K 和时间常数T 的数值。 图2-1 解:1)平衡状态: 02010Q Q Q i += 2)当非平衡时: i i i Q Q Q ?+=0;1011Q Q Q ?+=;2022Q Q Q ?+= 质量守恒:211 Q Q Q dt h d A i ?-?-?=? 对应每个阀门,线性水阻:11R h Q ?= ?;2 2R h Q ?=? 动态方程:i Q R h R h dt h d A ?=?+?+?2 11 3) 传递函数:)()()1 1(2 11s Q s H R R S A i =++ 1)11(1)()()(211 +=++== Ts K R R S A s Q s H s G i 这里:2 112 1212 111111R R A T R R R R R R K += +=+= ; 2 Q 1 1

2-7建立三容体系统h 3与控制量u 之间的动态方程和传递数,见题图2-2。 解:如图为三个单链单容对像模型。被控参考△h 3的动态方程: 3233 Q Q dt h d c ?-?=?;22R h Q ?= ?;33R h Q ?=?; 212 2Q Q dt h d c ?-?=?;11R h Q ?=? 11 1 Q Q dt h d c i ?-?=? u K Q i ?=? 得多容体动态方程: u KR h dt h d c R c R c R dt h d c c R R c c R R c c R R dt h d c c c R R R ?=?+?+++?+++?333 3322112 3 2313132322121333321321)()( 传递函数: 3 22133)()()(a s a s a s K s U s H s G +++== ; 这里: 3 213213 32132133 213213 3221123213213 1313232212111 ; c c c R R R kR K c c c R R R a c c c R R R c R c R c R a c c c R R R c c R R c c R R c c R R a == ++= ++=

过程装备控制技术及应用大作业

太阳能热水器温控及冷水回流系统 -------《过程装备控制技术及应用》大作业 目录 第一章执行概要 一、项目背景 (3) 二、技术及产品 (4) 三、盈利模式 (4) 第二章产品技术 一、温控系统的组成 (5) 二、回流系统的研究 (14) 第三章产品简介 一、原理简介 (20) 二、产品竞争的优劣势 (21) 三、产品定位 (22) 四、发展前景 (22) 第四章参考 一、参考书目 (24) 第一章执行概要 一、项目背景 (1)政治环境 欧盟市场已制定了淘汰电热水器的路线图,日、美等国采取财政补贴的手段鼓励空气能热泵热水器的购买,间接地推动了电热水器的逐步淘汰,而澳大利亚已规定新购买的热水器只能是太阳能、空气能热泵和天然气热水器,禁止了电热水器的新增购买。各国的节

能法规和措施对我国将会有很大的影响,特别是欧盟的节能环保措施影响着全世界。中科院广州能源研究所李凡教授表示,“我国也会紧随其后。” (2)社会环境 随着全球节能减排的呼声越来越高,低碳经济日益受到全球各国的推崇和大力发展,太阳能产品被给予厚望。太阳能热水器行业也已逐步成为我国可再生能源领域规模最大的行业。近5年来,太阳能热水器产业以每年30%~35%的速度增长,预计到2015年,全国住宅用太阳热水器将达到2.32亿平方米,行业产值超过1000多亿元,太阳能热水器将成为住宅用热水器最具潜力的品类。 (3)技术环境 为解决太阳能热水器水资源流失的技术难题, 一些厂家曾经进行了多年研究,提出过不少技术方案。有人提出,不用顶水法,用落水法。但是,我们认为,让太阳能热水器失去顶水功能的方案是不可取的,因为顶水法具有落水法不可替代的优点。也有人提出用浮球法。这虽然可以对热水箱及时补水,却增加了装置的复杂性和楼顶露天维修的种种麻烦, 因此, 在家用太阳能热水器中已被淘汰。此外,还有人试验过落球法、弹簧压力法、阀门锁定法,均未获成功。国内外相关技术处于研发阶段,当然相关产品也未投入市场,目前该类产品市场上呈空缺状态。 二、技术及产品 (1)产品名称 温控及冷水回流系统太阳能热水器 (2)产品工作原理 太阳能热水器冷水回流装置以单片机为核心,在真空管太阳能热水器的保温储水箱内增加有一个与电热水器类似的电热元件并固定在绝缘底座上,引出交流电源线入户,由辅助控制系统的继电器控制通断电。水位、水温探测器从保温储水箱顶部安装

自动化仪表与过程控制课程大作业2013

自动化仪表与过程控制课程大作业 1、(20分)如图所示热化工生产中的连续反应器示意图。 其工艺为:物料自顶部连续进入槽中,经反应产生的 热量由冷却夹套中的冷却水带走。为了保证产品质量,必须严格控制反应温度θ1。 原来选择的控制方案如图所示,控制精度无法达到预期要求。 (1)该系统是一个时间常数较大的系统,尤其是冷却水的进水流量常常波动,导致反应器内部温度动态偏差较大。试设计一个串级控制系统,提高控制精度。(画出控制系统连接图和方框图) (2)分析当冷却水的进水流量突然增大时,该系统是如何消除扰动、提高控制精度的。 2、(20分)(用MATLAB 仿真实现)某液位控制系统,在控制阀开度增加10%后,液位的响应数据如下: 如果用具有延迟的一阶惯性环节近似,确定其参数K,T 和τ,并根据这些参数整定PI 调节器的参数,用仿真结果验证之。 3、(20分)某隧道窑系统,考虑将燃料室温度作为副变量,烧成温度为主变量,燃烧室温度为副变量的串级控制系统中主、副对象的传递函数12,o o G G 分别为:11()(301) o G s s = +, 2 21 ()(101)(1)o G s s s = ++,其中有一个10s 的传输延迟,其传递函数为10()s d G s e -=。当延迟环节 分别放在主回路和副回路时,设计串级控制主、副PID 调节器的参数,并绘制出整定后的阶跃响应曲线,分析二次扰动系统的影响。 4、(15分)根据如图所示,当选择进水流量Q1为控制量时,设计水箱水位的单回路控制系统。 (1)要求画出系统的连接图和方框图; (2)若进水阀为气动阀,选择其气开、气关的形式,并确定调节器的正、反作用方式。要求有分析过程。

过程控制大作业

水塔温度过程控制系统 学号:B11040924 姓名:刘华

1、系统设计方案概述 本次设计采用串级控制系统对水塔温度进行控制。 过程控制系统由过程检测、变送与控制仪表、执行装置等组成,通过各种类型的仪表完成对过程变量的检测、变送与控制,并经执行装置作用于生产过程。 串级控制系统就是两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。此系统改善了过程的动态特性,提高了系统控制质量,能迅速克服进入副回路的二次扰动,提高了系统的工作频率,对负荷变化的适应性较强。 串级控制系统工程应用场合如下: (1)应用于容量滞后较大的过程。 (2)应用于纯时延较大的过程。 (3)应用于扰动变化激烈而且幅度大的过程。 (4)应用于参数互相关联的过程。 (5)应用于非线性过程。 采用单片机作为主控制器,水塔温度为主被控对象,上水的流量为副被控对象,电磁阀为执行器,利用AD590传感器检测水塔温度,利用流量传感器检测上水流量。水塔温度串级控制系统框图如图1、1所示,系统原理图如图1、2所示。 图1、1水塔温度串级控制系统框图 图1、2 水塔温度串级控制系统原理图 2、水塔温度串级控制系统仿真 水塔温度串级控制系统仿真,积分环节 Initial=0,两个检测变送环节参数设定时间

常数T=0、01s,扰动通道传函为时间常数T=2s。输入信号与扰动信号皆为单位阶跃信号。扰动作用时间F1为step time=50s, 仿真波形如图1、2所示。 图1、2 串级控制系统仿真波形 3、系统对象特性设计 水塔温度串级控制系统选择水塔温度为主被控对象,副被控对象为上水流量。当水塔温度变化的时候,通过控制上水流量改变水塔温度,并最终使其恒定。 主被控对象:水塔温度 =(2— 1) 副被控对象:上水流量 =(2— 2) 主控、副控回路检测环节传感器选择 主控对象检测元件选择为温度传感器AD590。 AD590就是美国模拟器件公司生产的单片集成两端感温电流源。它的主要特性如下: 1、流过器件的电流(mA)等于器件所处环境的热力学温度(开尔文)度数,即: mA/K式中:—流过器件(AD590)的电流,单位为mA; T—热力学温度,单位为K。 2、AD590的测温范围为-55℃~+150℃。 3、AD590的电源电压范围为4V~30V。电源电压可在4V~6V范围变化,电流变化1mA,相当于温度变化1K。AD590可以承受44V正向电压与20V反向电压,因而器件反接也不会被损坏。 4、输出电阻为710MW。 5、精度高。 副控回路检测元件选择电磁式流量传感器。 导电性的液体在流动时切割磁力线,也会产生感生电动势。因此可应用电磁感应定律

相关文档
最新文档