第二章 方程
2 第二章 薛定谔方程

第二章薛定谔方程(4学时)§2.1 薛定谔得出的波动方程§2.2 无限深方势阱中的粒子§2.3 势垒穿透§2.4 谐振子§2.1 薛定谔得出的波动方程在§1.5中我们已说明,微观粒子的状态用波函数ψ描述,波动性和粒子性的关系为:波的强度正比于粒子到达的概率.具体来说,若ψ(r,t)为波函数,d V为空间r点附近的体积元,则t时刻在此体积元内发现粒子的概率正比于|ψ(r,t)|2d V.|ψ(r,t)|2叫做相对概率密度.波函数一般是空间坐标和时间的复函数由于波函数ψ的概率解释,ψ可以相差一个任意常数因子,即ψ和Aψ代表相同的状态.其中A为任意复常数.这是因为将ψ换为Aψ,空间各点的相对概率没有变化.这一点与经典力学有本质区别,在经典力学中,代表波动的函数如果增大A倍,表示振幅增大了A倍,它代表的是另一个振动状态.正因为波函数可以相差一个任意常数,使ψ满足以下归一化条件:1ψd2=⎰V例如,如果ϕ是一个未归一化的波函数,则可令ψ=Aϕ,由归一化条件12222=ϕ=ϕ=ψ⎰⎰⎰dV A dV A dV得到:⎰ϕ=dVA 21, ψ=ϕϕ⎰dV21这样得到的波函数ψ已经满足归一化条件,我们就说ψ已归一,并用它代替ϕ来描述状态.设ψ(r,t )是归一化波函数,则|ψ(r,t )|2d V 的物理意义为t 时刻在r 点附近d V 体积元内发现粒子的概率.|ψ(r,t )|2称为概率密度.由于概率必须单值,有界,连续,所以要求ψ单值,有界,连续.这称为波函数的标准条件,它在决定波函数时起着重要作用. 在经典力学中,粒子的运动满足牛顿定律,它给出了粒子的运动状态随时间的变化规律.上节我们已说明,微观粒子的运动状态用波函数描述.波函数ψ是时间和空间的函数:ψ=ψ(x,y,z,t ).所谓微观粒子的运动规律,也就是描述状态的波函数ψ随时间的变化规律,即ψ所满足的方程,它在量子力学中的地位就相当于经典力学中牛顿方程的地位.这样的方程肯定不能从经典物理学导出,因为经典物理学根本没有涉及微观粒子的波粒二象性.波函数满足的方程由薛定谔首先找到,它的一般形式是包含时间和空间变量的微分方程.叫做薛定谔方程,在一维情形下,其一般形式为:),()],(2[),(222t x t x U xm t x t i ψ+∂∂-=ψ∂∂ 式中U (x ,t )为粒子的势函数。
第二章不定方程

3、无穷递降法 1659年,法国数学家费马写信给他的一位朋友卡
尔卡维,称自己创造了一种新的数学方法. 由于费马的 信并没有发表,人们一直无从了解他的这一方法.直到 1879年,人们在荷兰莱顿大学图书馆惠更斯的手稿中发 现了一篇论文,才知道这种方法就是无穷递降法.无穷 递降法是证明某些不定方程无解时常用的一种方法.其 证明模式大致是:先假设方程存在一个最小正整数解,
证:(必要条件)若方程(1)有解x1, x2 , , xn 则a1x1 a2x2 an xn N,
因为d (a1, a2, , an),所以d a1x1 a2x2 an xn N
充分条件:若d N ,用数学归纳法证(1)有解。 当n 2时,已证成立;假定以上条件对n 1元一 次不定方程是充分的。
第二章 不定方程
不定方程是指未知数个数多于方程个数,且对解有 一定限制(比如要求解为正整数等)的方程。是数论中 最古老的分支之一。古希腊的丢番图早在公元3世纪就 开始研究不定方程, 因此常称不定方程为丢番图方程。
中国是研究不定方程最早的国家,公元初的五家共 井问题就是一个不定方程组问题,公元5世纪的《 张丘
x 3t 8t1,y t 3t1, t1 Z t 2000 5t2,z 1000 3t2, t2 Z
将t 2000 5t2代入x, y消去t得
x 6000 15t2 8t1,
y 2000 5t2 3t1,
tZ
z 1000 3t2
就为所求的方程的解。
例2 用整数分离法求解15x 10y 6z 61。
对于高于二次的多元不定方程,人们知道得不多。 另一方面,不定方程与数学的其他分支如代数数论、 代数几何、组合数学等有着紧密的联系,在有限群论
和最优设计中也常常提出不定方程的问题, 这就使得不定方程这一古老的分支继续吸引着许多数 学家的注意,成为数论中重要的研究课题之一。
计算方法(2)第二章 方程的近似解法

(1)描图法
例如,求方程3x-1-cosx=0的隔根区间。
将方程等价变形为3x-1=cosx ,易见y=3x-1与y=cosx
的图像只有一个交点位于[0.5,1]内。
(2)逐步搜索法 运用零点定理可以得到如下逐步搜索法:
先确定方程f(x)=0的所有实根所在的区间为 [a,b],从x0=a 出发,以步长
定理2.2(收敛定理) 设方程x=φ(x),如果 (1)迭代函数φ(x)在区间[a,b]可导; (2)当x[a,b]时,φ(x)[a,b] ; (3)对于任意的x[a,b] ,有| ( x) | L 1 则有 ①方程x=φ(x)在区间[a,b]上有唯一的根α ; ②对于任意的初值 x0[a,b] ,由迭代公式
a o b x
图3
二分法计算过程简单,程序容易实现.可在大范 围内求根,但该方法收敛较慢,且不能求偶数重根和 复根,一般用于求根的初始近似值,而后再使用其它 的求根方法。 二分法收敛速度不快,其收敛速度仅与一个以 1/2为比值的等比级数相同 。
§2.2
迭代法
求解过程分以下二步: (1) 建立迭代公式。由公式f(x)=0出发将其分解为 等价形式x=φ(x),式中φ(x)叫做方程的迭代函数. (2) 进行迭代计算。由初值x0出发,按迭代函数进
3.若f(x1)· f(b)<0,则x*必在区间 [x1,b]内,此时令x1=a1, b =b1 。
………………
如此重复上述过程可以得到 一系列长度逐次减半的隔根 区间 [a,b]⊃[a1,b1]⊃…⊃[an,bn]⊃… 这些区间将收敛于方程的根α。 因而若k满足(ε为给定的精度)
xn bn an
基本思想
二分法就是将方程 的隔根区间对分,然后 再选择比原来区间缩小 一半的隔根区间,如此 继续下去,直到得到满 足精度要求的根为止的 一种简单的区间方法。
第二章 三类典型的偏微分方程

单位时间内通过 B 端面的热量为:
Q x2k TkT(xx2,t)
在 dt 时段内通过微元的两端流入的热量
d Q 1 ( Q x 1 Q x 2 ) d t k ( T ( x x 2 ,t) T ( x x 1 ,t) ) d t
x2 2T(x,t)
☆ 均匀杆的纵振动 考虑一均匀细杆,沿杆长方向作微小振动。假设在垂直
杆长方向的任一截面上各点的振动情况(即偏移平衡位置位 移)完全相同。试写出杆的振动方程。
在任一时刻t,此截面相对于平衡位置的位移为u(x, t)。 在杆中隔离出一小段(x, x + dx),分析受力:
通过截面x,受到弹性力P(x,t)S的作用 通过截面x + dx受到弹性力P(x + dx, t)S的作用 P(x, t)为单位面积所受的弹性力(应力),沿x方向为正.
(1)要研究的物理量是什么? 弦沿垂直方向的位移 u(x,t)
确定 弦的 运动 方程
(2)被研究的物理量遵循哪些 物理定理?牛顿第二定律.
(3)按物理定理写出数学物 理方程(即建立泛定方程)
条件:均匀柔软的细弦,在平衡位置附近产生振幅极小的 横振动。不受外力影响。
研究对象:u ( x , t ) 线上某点在 t 时刻沿垂直方向的位移。
等号两边用中值定理:并令 x 0
T2u (xx 2,t)g2u (tx 2,t)F (x,t) 等号两边除以
2tu2 a2x2u2 gf(x,t)
f (x,t) F(x,t)
为单位质量在 x 点处所受外力。
弦振动方程中只含有两个自变量:x , t 。由于它描写的是
弦的振动,因而它又称为一维波动方程。类似可以导出二维波 动方程(如膜振动)和三维波动方程,它们的形式分别为:
第二章 一元二次函数、方程和不等式(单元解读课件)

2.利用不等式的性质证明不等式注意事项 1利用不等式的性质及其推论可以证明一些不等式.解决此类问题 一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中 灵活准确地加以应用. 2应用不等式的性质进行推导时,应注意紧扣不等式的性质成立 的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.
能说明基本不等式的几何解释;能借助二次函数图象,说明二次函数与一元 二次方程、不等式的联系;能根据二次函数二次项系数和一元二次方程的根 画出二次函数图象,能够借助函数图象,求解一元二次不等式.
能将比较两个代数式大小的问题转化为两个代数式的差与0比大小的问题, 能将解方程 ax2 +bx+c=0 (a≠0) 的问题转化为研究函数 y ax2 bx c ,当 自变量为何值时,函数值 y=0的问题,能将解不等式 ax2 bx c>0 的问题 转化为研究函数 y ax2 bx c ,当自变量在什么范围时,函数值 y>0的 问题
人教A版2019必修第一册
第二章 一元二次函数、 方程和不等式单元解读
一:本章知识结构图
二: 单元目标
1.能够理解不等式的概念,掌握不等式的性质. 2.能够掌握基本不等式,能用基本不等式解决简单的最大值或最小值问题 3.经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现 实意义 4.能够借助二次函数的图象,了解一元二次不等式与相应函数、方程的联系. 5.能够借助二次函数求解一元二次不等式,并能用集合表示一元二次不等式的 解集 6.能够从函数的观点认识方程和不等式,感悟数学知识之间的关联,认识函数 的重要性.体会数学的整体性. 7.能够在本章的学习中,重点提升逻辑推理、数学运算和数学建模素养
6.利用基本不等式求最值 利用基本不等式求最值的关键是获得满足基本不等式成立条件,即 “一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的 “拆项、添项、配凑、变形”等方法创设应用基本不等式的条件.具体 可归纳为三句话:若不正,用其相反数,改变不等号方向;若不定应 凑出定和或定积;
第二章 薛定谔方程

2
py
2
pz 2 2 2 z
2
2 2 2 1 2 2 2 [ p p p x y z ] 2 2 2 2 x y z
1 2 2 2 p
或
2 2 p2 2 2
考虑电子双缝衍射 一个电子有 Ψ1 和 Ψ2 两种可能的状态,Ψ 是这 两种状态的叠加。
Ψ1
P
Ψ
S1
电子源
S2
Ψ2
感 光 屏
一般情况下,如果Ψ1和Ψ2 是体系的可能状态,那 末它们的线性叠加Ψ= C1Ψ1 + C2Ψ2 也是该体系的一 个可能状态,其中C1 和 C2 是复常数,这就是量子力 学的态叠加原理。 空间找到电子的几率则是: |Ψ|2 = |C1Ψ1+ C2Ψ2|2 = (C1*Ψ1*+ C2*Ψ2*) (C1Ψ1+ C2Ψ2) = |C1 Ψ1|2+ |C2Ψ2|2 + [C1*C2Ψ1*Ψ2 + C1C2*Ψ1Ψ2*] 电子穿过狭 缝1出现在 P点的几率 密度 电子穿过狭 缝2出现在 P点的几率 密度 相干项 正是由于相干项 的出现,才产生 了衍射花纹。
微观粒子量子状态用波函数完全描述,波函数确 定之后,粒子的任何一个力学量的平均值及其测量的 可能值和相应的几率分布也都被完全确定,波函数完 全描写微观粒子的状态。因此量子力学最核心的问题 就是要解决以下两个问题:
(1)在各种情况下,找出描述系统的各种可能的波函数; (2)波函数如何随时间演化。 这些问题在1926年Schrodinger 提出了波动方 程之后得到了圆满解决。
( 2)
(1)–(2)式
p2 对自由粒子, E 2
第二章--风流性质和能量方程
第二章矿井风流的基本性质§2—1 矿井空气的物理性质一、空气的密度指单位体积空气的质量,用ρ表示,单位:kg/m3。
ρ=vm式中:v—空气的体积,m3;m—v体积空气的质量,kg。
由理想气态方程,对于干空气:ρ干=3.484TP对于湿空气:ρ湿=(3.458~3.473)TP式中:P—空气绝对大气压力,kPa;T—热力学温度,T=(273.15+t)K;t—空气的温度,℃。
将标准大气压力P =101.325 kPa,t=0℃,φ=0代入上式,得ρ干=1.293 kg/m3。
将标准大气压力P =101.325 kPa,t=20℃,φ=60%代入上式,得ρ湿=1.20 kg/m3。
二、空气的重度指单位体积空气的重力,用γ表示,单位:N/m3。
γ=vW式中:v—空气的体积,m3;W—空气的重力,N。
将W=mg代入上式,得γ=ρg N/m3因此,对于干、湿空气γ干=1.293×9.81=12.684 (N/m3)γ湿=1.20×9.81=11.772 (N/m3)三、空气的比容指单位质量的空气具有的容积,用ν表示,单位:m3/kg。
ν=V/m=1/ρ显然,空气的比容与空气的密度互为倒数。
四、空气的比热指质量为1 kg的空气,温度升高(或降低)1℃时,所吸收(或放出)的热量,单位:k.J/kg. ℃。
五、空气的粘性指空气抗拒剪切力的性质,是空气在流动时产生阻力的内在因素。
由于空气的粘性,空气在巷道中流动时靠近巷道轴部流速快,靠近巷道边沿流速慢。
V小V大§2—2 井巷中的风速与测定一、井巷断面风速分布井巷风速指风流单位时间内流过的距离,用V表示,单位:m/s或m/min。
由于空气的粘性,空气在巷道轴部流动速率快,靠近边沿流速慢,我们所说的风速是指巷道的平均风速。
平均风速与最大风速的比值叫风速分布系数,用k速表示,即k速=V均/V大,一般在0.7~0.9之间。
对于不同的巷道砌碹巷道:k速≈0.83;木棚支护巷道:k速≈0.73;无支护巷道:k速≈0.75。
量子物理 第二章 薛定谔方程
v v Ψ ( r , t ) = ψ ( r ) f (t )
ih df 1 ⎡ h2 2 v ⎤ (1) ⇒ = − ⎢− ∇ + U ( r ) ⎥ψ = E f dt ψ ⎣ 2μ ⎦
(2)
⎡ h2 2 v ⎤ v v ∇ + U ( r ) ⎥ψ ( r ) = Eψ ( r ) ⎢− ⎣ 2μ ⎦
当
A≠0 B=0 nπ αn =
2a
,有
sin αa = 0
(6)
(n为偶数) ,有
当
A=0 B≠0
nπ αn = 2a
cos αa = 0
(7)
(n为奇数)
(6)和(7)两式统一写成
nπ αn = , 2a
n = 1,2,3, L
(8)
22
2.3 一维无限深势阱 The infinite potential well
(3)
10
2.2 定态薛定谔方程 Time independent Schrödinger equation
df ih = Ef (t ) dt
(4) (2) 令 则 (4)
i − Et h
⇒
f (t ) = Ce
(5)
i − Et h
v ⇒ Ψ ( r , t ) = ψ ( r )e
(6)
ω = E/ h E =hω
9
2.2 定态薛定谔方程 Time independent Schrödinger equation
1.定态,定态波函数 v ∂Ψ(r , t ) ⎡ h 2 2 v ⎤ v = ⎢− ∇ + U (r , t )⎥ Ψ(r , t ) ih ∂t ⎣ 2μ ⎦ 若
(1)
计算方法 02第二章 方程的近似解法
∈ (0.5, 0.75)
-1
3
二、代数方程实根的上下界
若f
( )
x
为 n 次多项式,则
f ( x) = 0
称为 n 次代数方程。
对于代数方程有如下定理: [定理] 设有 且 则 证明
f ( x ) = a0 x n + a1 x n −1 + L + an (a0 ≠ 0)
f ( x) = 0
A = max { a1 、 2 、 、 n } a L a
若同号,则取 于是得到区间
an −1 + bn −1 an = an −1,bn = 2 an −1 + bn −1 an = , bn = bn −1 2
1 。区间长为 n ( b − a ) , α ∈ ( an , bn )。 2
[ an,bn ]
若取α 的近似值
则绝对误差限为
例.求解方程
an + bn α = 2 1 b − a) n +1 ( 2
xn +1 − xn ≤ m xn − xn −1
xn + p − xn + p −1 ≤ m p xn − xn −1
xn + p − xn ≤ xn + p − xn + p −1 + xn + p −1 − xn + p − 2 + L + xn +1 − xn
其中p为任意正整数
……
≤ (m p + m p −1 + L + m) xn − xn −1
1 区间长为 ( b − a ) , α ∈ (a1 ,b1 ). 2
7
第二章一元二次方程-配方法、公式法(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元二次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调配方法和公式法这两个重点。对于难点部分,如配方法的转化思想和公式法的应用,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用图形或实物演示配方法的基本原理。
课堂上的实践活动和小组讨论非常活跃,学生们能够积极参与,提出自己的观点。我尝试作为一个引导者,提出一些开放性问题,让学生们思考一元二次方程在实际生活中的应用。从成果分享来看,学生们对于这个话题有很深的思考,这让我感到很欣慰。
然而,我也注意到在小组讨论中,部分学生可能过于依赖同伴,没有独立思考。在未来的教学中,我需要更加关注这部分学生,鼓励他们在讨论中提出自己的见解,提高他们的自主学习能力。
c.能够运用配方法求解典型的一元二次方程。
(2)掌握一元二次方程求解公式的推导和应用:公式法是求解一元二次方程的通用方法,重点在于:
a.理解韦达定理的推导过程;
b.掌握一元二次方程求解公式的形式;
c.学会使用公式法求解一元二次方程,包括计算判别式、求解根号内部分等;
d.能够根据实际问题选择合适的求解方法。
具体内容包括:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 第二章 方程(组)和不等式 课时7.一元一次方程及其应用 【课前热身】 1.在等式367y的两边同时 ,得到313y. 2.方程538x的根是 . 3.x的5倍比x的2倍大12可列方程为 . 4.写一个以2x为解的方程 . 5.如果1x是方程234xm的根,则m的值是 .
6.如果方程2130mx是一元一次方程,则m . 【考点链接】 1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果ba,那么ca ; ② 如果ba,那么ac ;如果ba0c,那么ca . 2. 方程、一元一次方程的概念 ⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同. ⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方
程叫做一元一次方程;它的一般形式为 0a. 3. 解一元一次方程的步骤: ①去 ;②去 ;③移 ;④合并 ;⑤系数化为1. 4.易错知识辨析: (1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21x,1222xx等不是一元一次方程. (2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号. 【典例精析】 例1 解方程
(1) 3175301xxx; (2)21101136xx.
例2 当m取什么整数时,关于x的方程1514()2323mxx的解是正整数? 2
例3 (08福州)今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失.“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表: 班级 (1)班 (2)班 (3)班 金额(元) 2000 吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息: 信息一:这三个班的捐款总金额是7700元; 信息二:(2)班的捐款金额比(3)班的捐款金额多300元; 信息三:(1)班学生平均每人捐款的金额大于..48元,小于..51元.
请根据以上信息,帮助吴老师解决下列问题: (1)求出(2)班与(3)班的捐款金额各是多少元; (2)求出(1)班的学生人数. 【中考演练】
1.若5x-5的值与2x-9的值互为相反数,则x=_____.
2. 关于x的方程0)1(2ax的解是3,则a的值为________________. 3. 某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x元,则得到方程( )
A.15025%x B. 25%150x C.%25150xx D. 15025%x
4.解方程16110312xx时,去分母、去括号后,正确结果是( ) A. 111014xx B. 111024xx C. 611024xx D. 611024xx
5.解下列方程:
(1) 3175301xxx; (2)121253xxx.
6. 某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10 % ,乙种机器产量要比第一季度增产20 %.该厂第一季度生产甲、乙两种机器各多少台? 3
课时8.二元一次方程组及其应用 【课前热身】 1. 在方程yx413=5中,用含x的代数式表示y为y= ;当x=3时,y= .
2.如果x=3,y=2是方程326byx的解,则b= . 3. 请写出一个适合方程13yx的一组解: . 4. 如果xyyxbaba2427773和是同类项,则x、y的值是( ) A.x=-3,y=2 B.x=2,y=-3 C.x=-2,y=3 D.x=3,y=-2 【考点链接】 1.二元一次方程:含有 未知数(元)并且未知数的次数是 的整式方程. 2. 二元一次方程组:由2个或2个以上的 组成的方程组叫二元一次方程组. 3.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解. 4.二元一次方程组的解: 使二元一次方程组的 ,叫做二元一次方程组的解. 5. 解二元一次方程的方法步骤:
二元一次方程组 方程.
消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种. 6.易错知识辨析: (1)二元一次方程有无数个解,它的解是一组未知数的值; (2)二元一次方程组的解是两个二元一次方程的公共解,是一对确定的数值; (3)利用加减法消元时,一定注意要各项系数的符号. 【典例精析】 例1 解下列方程组:
(1)4519323abab (2)2207441xyxy
例2 某厂工人小王某月工作的部分信息如下: 信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25元; 信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件. 生产产品件数与所用时间之间的关系见下表: 生产甲产品件数(件) 生产乙产品件数(件) 所用总时间(分) 10 10 350 30 20 850 信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:
消元 转化 4
(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分? (2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?
例3 若方程组31xyxy与方程组84mxnymxny的解相同,求m、n的值. 【中考演练】 1. 若11yx是方程组1242ayxbyax的解,则______________ba. 2. 在方程3x+4y=16中,当x=3时,y=___;若x、y都是正整数,这个方程的解为_____. 3. 下列方程组中,是二元一次方程组的是( )
A.9114yxyx B.75zyyx C.6231yxx D.1yxxyyx
4. 关于x、y的方程组myxmyx932的解是方程3x+2y=34的一组解,那么m=( ) A.2 B.-1 C.1 D.-2 5.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表: 捐款(元) 1 2 3 4 人 数 6 7 表格中捐款2元和3元的人数不小心被墨水污染已看不清楚. 若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组
A.272366xyxyB.2723100xyxyC.273266xyxy D.2732100xyxy 6.解方程组:
①1392xyyx ②1213343144yxyx
7. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度? 5
课时9.一元二次方程及其应用 【课前热身】 1.方程3(1)0xx的二次项系数是 ,一次项系数是 ,常数项是 .
2.关于x的一元二次方程1(3)(1)30nnxnxn中,则一次项系数是 . 3.一元二次方程2230xx的根是 . 4.某地2005年外贸收入为2.5亿元,2007年外贸收入达到了4亿元,若平均每年的增长率为x,则可以列出方程为 .
5. 关于x的一元二次方程225250xxpp的一个根为1,则实数p=( ) A.4 B.0或2 C.1 D.1 【考点链接】 1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数. 2. 一元二次方程的常用解法:
(1)直接开平方法:形如)0(2aax或)0()(2aabx的一元二次方程,就可用直接开平方的方法. (2)配方法:用配方法解一元二次方程02aocbxax的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()xmn的形式,⑤如果是非负
数,即0n,就可以用直接开平方求出方程的解.如果n<0,则原方程无解. (3)公式法:一元二次方程20(0)axbxca的求根公式是 221,2
4(40)2bbacxbaca.
(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3.易错知识辨析: (1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0a. (2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1. (4)用直接开平方的方法时要记得取正、负. 【典例精析】 例1 选用合适的方法解下列方程: