3.傅里叶变换傅里叶级数

3.傅里叶变换傅里叶级数

1

1、求信号

的傅里叶变换,并绘出其幅度谱和相位谱。 2、求频域信号

的傅里叶反变换,并绘出其时域信号图。

3、 a 、求下面所示信号的傅立叶变换幅度谱;

b 、利用求的的傅立叶变换还原时域信号波形,并进行比较说明。

4、设矩形信号,利用Matlab 命令绘出该信号及其频谱图。同时绘出

的频谱图,并加以比较。

5、利用MATLAB 分别求下列周期信号的傅里叶级数。

a.绘出信号的幅度谱

b.利用所求傅里叶级数进行周期信号的合成,并与原始信号进行对比,分析。

)5.0()5.0()(--+=t u t u t f )2()2/(t f t f 和

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

傅里叶变换与傅里叶级数

重温傅里叶—笔记篇 本文记录的大多是基础的公式,还有一些我认为比较重要的有参考价值的说明。(如果对这些公式已经很熟悉,可以直接看第三部分:总结性说明) 重温傅里叶—笔记篇 一、傅里叶级数 $关于三角函数系的正交性: 三角函数系包括: 1,cos x,sinx,cos2x,sin 2x,……cos nx,sinnx,…… “正交性”是说,三角函数系中的任何一项与另一项的乘积,在(-π, π) 区间内的积分为0。(任何两相的积总可以展成两个频率为整数倍基频的正余弦函数之和或差,而这两个展开后的正余弦在(-π, π)上积分都为0)。 不同频率(但都是整数倍基频)的两个正弦函数之积,在(-π, π)上积分恒为0。 同频率的两个正弦函数之积,只有在这两个正弦的相位正交时,其在(-π, π)上积分才是0。 三角函数系中除“1”以外的任何一项的平方,在(-π, π)上的积分恒为π,“1”在这个区间上的积分为2π。

$ 上公式! ①当周期为2π时: 式(1): 上式成立的条件是f(x)满足狄立克雷充分条件: 1.在任意有限区间内连续,或只有有限多个第一类间断点; 2.任意的有限区间,都可被分成有限多个单调区间(另一种说法是:任意有限区间内只有有限多个极值点,其实是一样的)

式(1)第一行中的a0/2 就是f(x)的周期平均值,而且第一行的式子只对f(x)是连续函数的情况成立;如果f(x)不连续,则应表示成“(1/2) ×[f(x-0)+f(x+0)]”,即f(x)左右极限的算术平均。下面的类似情况都是这样,之后就不再专门说明,这些大家应该都懂。 第三、四行中,n的取值都是:1,2,3,4,……n,……(都为正,且不包含0)。 ②当周期为2L时(这也是最一般的情形): 式(2): 第一行中的a0/2 就是f(x)的周期平均值; 第三、四行中,n的取值都是:1,2,3,4,……n,……(都为正,且不包含0)。

将下列各周期函数展开成傅里叶级数(下面给出函数在一个...

习题11-8 1. 将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的表达式): (1))2 12 1(1)(2<≤--=x x x f ; 解 因为f (x )=1-x 2为偶函数, 所以b n =0(n =1, 2, ? ? ?), 而 611)1(4)1(2/1221 0221 020=-=-=??dx x dx x a , ?-=21022/1c o s )1(2/12dx x n x a n π 2 2 121 2 )1(2c o s )1(4π πn x d x n x n +-= -=? (n =1, 2, ? ? ?), 由于f (x )在(-∞, +∞)内连续, 所以 ∑ ∞ =+-+=1 2 1 2 2c o s )1(1 1211)(n n x n n x f ππ , x ∈(-∞, +∞). (2)?? ? ???? <≤-<≤<≤-=1 21 12 1 0 101 )(x x x x x f ; 解 2 1)(1 2 121 1 11 -=-+==????--dx dx xdx dx x f a n , ?? ??-+==--1 2 121 1 11 c o s c o s c o s c o s )(x d x n x d x n x d x n x x d x n x f a n ππππ 2 s i n 2])1(1[122πππ n n n n +--= (n =1, 2, ? ? ?), dx x n xdx n xdx n x xdx n x f b n ?? ??-+==--1 2 1210 1 1 1 sin sin sin sin )(ππππ π ππ n n n 12 c o s 2+-= (n =1, 2, ? ? ?).

傅里叶级数及变换的本质解释和形象阐述

傅里叶级数及变换的本质解释和形象阐述 ——老师不会这么讲,书上也不会讲很多人学信号与系统、数字信号处理学了几年,关于傅里叶级数和傅里叶变换可能还是一知半解,只能套用公式,根本不理解为什么要这么算,也就是有什么实际含义——可以说,几乎所有信号与系统里面的数学公式都是有实实在在的物理含义的!那么,什么是傅里叶变换,它是怎样一种变换,具体有怎么变换,有没有确切一点或者形象一点的物理解释呢?下面笔者将尝试将自己的理解比较本质和形象地讲出来,形式是思考探讨渐进的模式,也就是我自己的思考过程,希望对大家有所帮助。 首先,要知道傅里叶变换是一种变换,准确点说是投影。傅里叶变换的投影问题,一直想不明白那一系列的正交函数集,到底是什么样一个函数集合,或者说是怎么样的一个空间。所谓三角傅里叶级数当成谐波分析的时候很好理解——同一个时间轴,也就是说同一个维度的分解和叠加,肯定没错,也很实用。但是要是从投影(或者说变换)的角度来说,怎么解释呢?这一系列正弦余弦的函数,在一个区间内,是一个完备的正交函数集,每一个函数所带的系数(或者叫权重),就是原函数在这个函数的方向上的一个投影(说方向不准确,但找不到其他的词)。那么,原函数到底是一个什么样的函数,和各正交基函数又是怎样的一种关系呢?这个投影又是怎么投的呢?三维或者二维空间,一个矢量在各正交基的投影很好理解,那么,傅里

叶变换的正交基函数,也是这样一种相互垂直的关系么???投影也是取余弦值么? 这可以很容易地想清,我们只用余弦或者只用正弦就可以,如cos(2pi*nf0)系列,显然每两个函数图像之间不可能是垂直关系,相反可以看出这是在同一个维度里面的!所以上面两个答案是否定的。 那么,到底是怎么正交、怎么投影的呢。出现这个问题,是因为开始看书的时候我看得太粗心太浅显,没有认真透彻地理解函数正交的含义,没想到那才是最重要最根本的,从那里面再深刻理解一下,问题就迎刃而解。 函数正交和矢量正交完全不一样,是两个概念。函数正交是两个函数,一个不变另一个取共轭值然后逐点相乘再求积分的结果,积分就涉及到一个区间,这也很重要。如果满足:当这两个函数不同时,积分值为0;当两函数相同,积分值不为0。那么这两个函数在这个区间上正交。现在再回过头去看正弦或者余弦函数序列,在各个周期内,都满足上述条件,在正弦和余弦函数之间同样满足,所以这些函数是正交的。至于完备,很明显看出,不去证明了。 第一个问题解决了,现在看怎么去投影了。为更易于理解,我们取指数傅里叶变换为例。众所周知exp(jwt)表示的是一个圆周,我们用来作傅里叶变换的因子,正是这个形式(exp(-jwt)),这里我们还要理解一下傅里叶变换和傅里叶级数的区别,前者求的是复指数傅里叶级数的系数,即每个正交函数的系数(权重),复指数傅里叶级数的正交函数集正是exp(jwt),所以求系数刚好乘以一个共轭

傅里叶变换和傅里叶级数的收敛问题

1、傅里叶变换和傅里叶级数的收敛问题 由于傅里叶级数是一个无穷级数,因而存在收敛问题。这包含两方面的意思:是否任何周期信号都可以表示为傅里叶级数;如果一个信号能够表示为傅里叶级数,是否对任何t 值级数都收敛于原来的信号。关于傅里叶级数的收敛,有两组稍有不同的条件。 第一组条件:如果周期信号()t x 在一个周期内平方可积,即 ()∞

吉布斯现象: 当简单地把信号频谱截断时,相当于给信号频谱加上了一个矩形窗口函数,正是由于矩形窗口函数的时域特性导致了在间断点处的吉布斯现象的产生。 2、周期序列的傅里叶级数展开和傅里叶变换之间的问题 假定()t x 是一个长度为N 的有限长序列,将()t x 以N 为周期延拓而成的周期序列为()n x ~,则有 ()()∑∞-∞=-= r rN n x n x ~ 或表示为()()()N n x n x =~。于是()n x ~ 与()n x 的关系表示为: ()()()N n x n x =~ ()()()n R n x n x N ~= 将()n x ~表示为离散时间傅里叶级数有: ()()kn N N n W k X N n x --=?=∑10~~ 1 ()()kn N N n W n x k X ?=∑-=10~ ~ 其中()k X ~是傅里叶级数的系数,这样做的目的是使其表达形式与离散时间傅里叶变换的形式相类似。如果将()k X ~的主值周期记为()k X ,10-≤≤N k ,由于以上两式中的求和范围均取为区间0~N-1,在次区间内()n x ~ =()n x ,因此可以得到: ()()kn N N n W n x k X ∑-==10~, 10-≤≤N k ()()kn N N n W k X N n x --=∑=10~1, 10-≤≤N n 表明时域N 点有限长序列()n x 可以变换成频域N 点有限长序列()k X 。显然,DFT 与DFS 之间存在以下关系: ()()()N k X k X =~

傅里叶级数与傅里叶变换关系与应用

论文题目傅里叶级数与傅里叶变换的关系与应用 目录 摘要: 0 关键词 0 Abstract 0 1绪论 (1) 2傅里叶级数的概念 (1) 2.1周期函数 (2) 2.2傅里叶级数的定义 (2) 3 傅里叶变换的概念及性质 (10) 3.1傅里叶变换的概念 (10) 3.2傅立叶变换的性质 (11) 4傅里叶变换与傅里叶级数之间的区别与联系 (12) 5傅里叶级数和傅里叶变换的应用 (12) 5.1傅里叶级数的应用 (12) 5.2傅里叶变换的应用 (13) 参考文献 (15)

傅里叶级数与傅里叶变换的关系与应用 摘要:傅里叶级数是对周期性现象做数学上的分析,而傅里叶变换则可以看作傅里叶级数的极限形式,它也可以看作是对周期现象进行数学上的分析。除此之外,傅里叶变换还是处理信号领域的一种很重要的算法。 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。很多波形可以作为信号的成分,例如余弦波,方波,锯齿波等等,傅里叶变换作为信号的成分。在电子类学科,物理学科,信号处理学科等众多领域都有着广泛的应用。 傅里叶级数针对的是周期性函数,傅里叶变换针对的是非周期性函数,它们在本质上都是一种把信号表示成复正选信号的叠加,存在相似的特性。 关键词:傅里叶级数;傅里叶变换;周期性 Fourier series And Fourier Transforms Abstract: Fourier series is made mathematical analysis to cyclical phenomenon, and Fourier transform can be seen as the limit form of Fourier series, it also can be regarded as a mathematical analysis of cycle phenomenon. In addition, the Fourier transform is a kind of very important in the field of signal processing algorithms. Fourier transform is a method of signal analysis, it can analyze signal component, also can use these ingredients synthetic signal. Many waveform can be used as a signal of ingredients, such as cosine wave, square wave, sawtooth wave, etc., the Fourier transform as a signal of composition. In electronics disciplines, physics, signal processing disciplines etc many fields have a wide range of applications. Fourier series is for periodic function, Fourier transform for is a periodic function, they are in essence a kind of papers said the signal into a complex signal superposition, similar features. Key words: Fourier series; Fourier Transform; Periodic

傅里叶级数及变换的本质解释和形象阐述

傅里叶级数及变换的本质解释和形象阐述(更正版) ——老师不会这么讲,书上也不会讲 注:原来上传到百度文库的文档有较多问题,或者阐述不清楚,因原文档无法删除,只能重新上传一次了。此为更正版。 很多人学信号与系统、数字信号处理学了几年,关于傅里叶级数和傅里叶变换可能还是一知半解,只能套用公式,根本不理解为什么要这么算,也就是有什么实际含义——可以说,几乎所有信号与系统里面的数学公式都是有实实在在的物理含义的!那么,傅里叶变换到底是怎样一种变换?具体又怎么变换?有没有确切一点,或者形象一点的物理解释呢?下面笔者将尝试从以一种可理解的、物理的方式来解释,并尽量形象地讲出来,形式是探究、渐进的模式,也就是我自己的思考过程,希望对大家有所帮助。 首先,要知道傅里叶变换是一种变换,准确点说是投影。傅里叶变换的投影问题,一直想不明白那一系列的正交函数集,到底是什么样一个函数集合,或者说是怎么样的一个空间。所谓三角傅里叶级数当成谐波分析的时候很好理解——同一个时间轴,也就是说同一个维度的分解和叠加,肯定没错,也很实用。但是要是从投影(或者说变换)的角度来说,怎么解释呢?书上说:这一系列正弦余弦的函数,在一个区间内,是一个完备的正交函数集,每一个函数所带的系数(或者叫权重),就是原函数在这个函数的方向上的一个投影(说方向不准确,但找不到其他的词)。那么,原函数到底是一个什么样的函数,和各正交基函数又是怎样的一种关系呢?这个投影又是怎么投的呢?三维或者二维空间,一个矢量在各正交基上的投影很好理解,因为各矢量正交基在空间是垂直关系,原矢量在各正交基上的投影就是其模值乘以与各正交基夹角余弦值。那么,傅里叶变换的正交基函数,也是这样一种相互垂直的关系么?投影也是取余弦值么?

傅里叶Fourier级数的指数形式与傅里叶变换

(4) 2 T 2 T f (t)dt 傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅 里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种 信号与系统进行分析。 通过对描述实际对象数学模型的数学分析、 求解,对所得结果给以物 理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号 的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换 域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的 z 变换。 而傅里叶变换的理论基础是傅里叶积分定理。 傅里叶积分定理的数学表达式就是傅里叶级数 的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里 叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。 我们 承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展 式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数f (t ),在[-T ,T ]上满足狄里克莱条件:1o f (t )连续或只有 2 2 数。在连续点处 有限个第一类间断点; 2。 只有有限个极值点。 那么f (t )在nT,T ]上就可以展成傅里叶级 f(t) a 0 ,. (a n cosn ?t b n sin n ?t) (1) 其中 a n T 2 f (t) cosn tdt, (n 二 0,1,2,), _2 根据欧拉(Euler )公式: b n ;认)州艸(n=1,2,3,), (3) e" - cos : j si , (1)式化为 f(t)二色二 a 2 J e jn e" n jn ? £ j jn ? t +b e —e M n 2j 若令 a n - j b n 一 2 jn ;.-:t . a n jb n ?弓曲 2 」,

ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开: 1. 三角形式: 周期信号()f t ,周期T ,基波频率12w T π=, 所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞ ==++∑ 其中:202 1()T T a f t dt T -=? 2122()cos T T n a f t nw tdt T -=? 212 2()sin T T n b f t nw tdt T -=? 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式: 011 ()cos()n n n f t c c nw t ?∞ ==++∑ 其中:00c a = n c = n n n b tg a φ=- (3)物理意义: (4)幅度谱和相位谱 2. 指数形式: 完备正交函数集 :复指数函数集{}1 jnw t e 1()jnw t n n f t F e ∞ =-∞ = ∑ 其中122 1()T jnw t T n F f t e dt T --=?

注意:(1)幅度谱和相位谱n j n n F F e φ= :偶谱和奇谱 与三角形式间的关系 (2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞ ==+∑ 0n b = 或011 ()cos()n n n f t c c nw t ?∞ ==++∑,00c a = ||n n c a = 0, 0,0n n n a a ?π>?=? ??=??

周期性函数分解的傅里叶级数

周期性函数分解的傅里叶级数 周期电压、电流等都可以用一个周期函数表示,即 210),()(、、 =+=k kt t f t f 式中T 是周期函数的周期,且 210、、 =k 如果给定的周期函数在有限的区间内,只有有限个第一类间断点和有限个极大值和极小值,那么就可以展开成一个收敛的级数(三角级数) 设给定的周期函数)(t f ,则)(t f 可展开成 ) ()(1)sin cos (sin cos )2sin 2cos ()sin cos ()(1022110 ∑∞ =++=+++++++=k k k k k t k b t k a a t k b t k a t b t a t b t a a t f ωωωωωωωω 上式中的系数,可按下列公式计算: ????? ?? ? - - -= ====== = π ππ π ππωωπ ωωπωωωπ ωωπω) (sin )(1 ) (sin )(1sin )(2)(cos )(1 ) (cos )(1cos )(2)(1 )(1 20 020 00 22 0t td k t f t td k t f tdt k t f T b t td k t f t td k t f tdt k t f T a dt t f T dt t f T a T k T k T T T )(2 这些公式的对导,主要的依据是利用三角函数的定积分的特点。 设m.n 是任意整数,则下列定积分成立: ?=π 200 sin mxdx ? =π 20 cos mxdx ?=π 200cos sin nxdx mx , n m ≠ ?=π 200 sin sin nxdx mx , n m ≠ ? =π 200cos cos nxdx mx , n m ≠ ? =π π 20 2)(sin dx mx ,

傅里叶(Fourier)级数的指数形式与傅里叶变换复习过程

傅里叶(F o u r i e r)级数的指数形式与傅里 叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T -上满足狄里克莱条件:1o )(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T -上就 可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= ,

傅里叶变换与傅里叶级数

重温傅里叶—笔记篇 本文记录得大多就是基础得公式,还有一些我认为比较重要得有参考价值得说明、(如果对这些公式已经很熟悉,可以直接瞧第三部分:总结性说明) 重温傅里叶—笔记篇 一、傅里叶级数 $关于三角函数系得正交性: 三角函数系包括: 1, cosx, sinx , cos2x, sin 2x, ……cos nx, sin nx, …… “正交性"就是说,三角函数系中得任何一项与另一项得乘积,在(-π, π) 区间内得积分为0。(任何两相得积总可以展成两个频率为整数倍基频得正余弦函数之与或差,而这两个展开后得正余弦在(—π,π)上积分都为0)。 不同频率(但都就是整数倍基频)得两个正弦函数之积,在(-π, π)上积分恒为0。 同频率得两个正弦函数之积,只有在这两个正弦得相位正交时,其在(-π,π)上积分才就是0、 三角函数系中除“1”以外得任何一项得平方,在(—π,π)上得积分恒为π,“1”在这个区间上得积分为2π。 $

上公式! ①当周期为2π时: 式(1): 上式成立得条件就是f(x)满足狄立克雷充分条件: 1。在任意有限区间内连续,或只有有限多个第一类间断点; 2. 任意得有限区间,都可被分成有限多个单调区间(另一种说法就是:任意有限区间内只有有限多个极值点,其实就是一样得) 式(1)第一行中得a0/2 就就是f(x)得周期平均值,而且第一行得式子只对f(x)就是连续函数得情况成立;如果f(x)不连续,则应表示成“(1/2)×[f(x—0)+f(x+0)]”,即

f(x)左右极限得算术平均。下面得类似情况都就是这样,之后就不再专门说明,这些大家应该都懂。 第三、四行中,n得取值都就是:1,2,3,4,……n,……(都为正,且不包含0)。 ②当周期为2L时(这也就是最一般得情形): 式(2): 第一行中得a0/2 就就是f(x)得周期平均值; 第三、四行中,n得取值都就是:1,2,3,4,……n,……(都为正,且不包含0)。 $ 傅里叶级数得复数表达方式

周期信号的傅里叶级数

《信号、系统与信号处理实验I》 实验报告 实验名称:周期信号的傅里叶级数 姓名:韩文草 学号:15081614 专业:通信工程 实验时间:2016.11.7 杭州电子科技大学 通信工程学院

一、实验目的 二、实验内容

三、实验过程及实验结果 1.1 t = 0:0.02:2*pi; %0-2π时间间隔为0.01 y = zeros(10, max(size(t))); %10*629(t的长度)的矩阵 x = zeros(10, max(size(t))); for k = 1:2:9 %奇次谐波1,3,5,7,9 x1 = 3*sin(k * t)/k; %各次谐波正弦分量 x(k,:) = x(k,:) + x1; %x第k(1,3,5,7,9)行存放k次谐波的629个值y((k+1)/2,:) = x(k,:); %矩阵非零行向量移至1-5行 subplot(7,1,(k+1) /2); plot(t,x(k,:)); end subplot(2,1,1); plot(t, y(1:5,:)); %绘制y矩阵中1-5行随时间波形 grid; halft = ceil(length(t)/2); %行向量长度减半(由对称前后段一致)subplot(2,1,2); %绘制三维图形:矩阵y中全部行向量的一半 mesh(t(1:halft), [1:10], y(:,1:halft));

1.2 t = -4.5 : 0.001 : 5.5; t1 = -4.499 : 0.001 : 5.5; x = [ones(1,1000) , zeros(1,1000)]; x = [x , x , x , x , x]; subplot(1 , 2 , 1); plot(t1 , x , 'b','linewidth', 1.5); axis([-4.5 , 5.5 , -0.5 , 1.5]); N = 10; c0 = 0.5; f1 = c0 * ones(1 , length(t)) for n = 1:N f1 = f1 + cos(pi * n * t)*sinc(n/2); end subplot(1,2,2); plot(t , f1 , 'r' , 'linewidth', 1.5); axis([-4.5, 5.5, -0.5, 1.5]);

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier)级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler)公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应

用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T -上满足狄里克莱条件:1o ) (t f 连续或只有有限个第一类间断 点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T -上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 ) sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2=, ) ,2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ) ,3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θ θθ sin cos j e j +=,(1)式 化为 ∑∞=--? ? ? ???-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1

周期信的傅里叶级数

计算机与信息工程学院实验报告 一、 实验目的 1、 分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 2、 观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 3、 掌握用傅里叶级数进行谐波分析的方法。 4、 观察矩形脉冲信号分解出的各谐波分量可以通过叠加合成出原矩形脉 冲信号。 专业:通信工程 2013— 2014学年第二学期 年级/班级:2012级通信工程

实验仪器或设备 一台装有MATLAB勺计算机一台 三、设计原理 1.信号的时间特性与频率特性 信号可以表示为随时间变化的物理量,比如电压u(t )和电流i (t )等, 其特性主要表现为随时间的变化,波形幅值的大小、持续时间的长短、变化速率的快慢、波动的速度及重复周期的大小等变化,信号的这些特性称为时间特性。 信号还可以分解为一个直流分量和许多不同频率的正弦分量之和。主要表现在各频率正弦分量所占比重的大小不同;主要频率分量所占的频率范围也不同,信号的这些特性称为信号的频率特性。无论是信号的时间特性还是频率特性都包含了信号的全部信息量。2?信号的频谱 信号的时间特性和频率特性是对信号的两种不同的描述方式。根据傅里叶级数原理,任意一个时域的周期信号f(t),只要满足狄利克莱 (Dirichlet) 条件,就可以将其展幵成三角形式或指数形式的傅里叶级数。例如,对于一个周期为T的时域周期信号f(t),可以用三角形式的傅里叶级数求出它的各次分量,在区间(t1,t1+T )内表示为

3?信号的时间特性与频率特性关系 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图 4-1来形象地表示。其中图4-1(a)是信号在幅度--时间--频率三维坐标系统中的图形;图4-1(b)是信号在幅度--时间坐标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图4-1(c)是信号在 幅度--频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱称为

傅里叶级数与傅里叶变换的关系

通过拉普拉斯变换求解线性微分方程的探讨 摘要 通过拉普拉斯变换主要用于求解线性微分方程(或积分方程)。经过变换,原来函数所遵从的微分(或积分)方程变成了像函数所遵从的代数方程,代数方程比较容易求解,从而化难为易,本论文将介绍通过”三“步求解线性微分(或)积分方程。 关键词:拉普拉斯变换 线性方程 原函数 像函数 反演 (一) 拉普拉斯变换的定义 傅里叶积分与傅里叶变换存在的条件是原函数()f x 在任一区间满足狄里希利条件,并且在 (,)-∞∞区间上绝对可积。这是一个相当强的条件,以致于许多常见的函数(如多项式,三角函 数等)都不满足这一条件。因此需要引入——拉普拉斯变换。 拉普拉斯变换常用于初始值问题,即已知某个物理量的初始时刻 0t =的值(0)f ,而求解它在初始时刻之后的变化情况()f t ,至于它在初始时刻之前的值,我们 并不感兴趣,不妨置 ()0f t = (0)t < 为了获得宽松的变换条件,把()f t 加工为()g t , ()()t g t e f t σ-= 这里t e σ-是收敛因子,就是说,正的实数σ的值选得如此之大,以保证()g t 在区间(,)-∞∞上绝 对可积,。于是,可以对()g t 实施傅里叶变换 ()0 11()()()22i t i t G g t e dt f t e dt ?σ??π π ∞ ∞ --+-∞ = = ? ? 将i σ?+记作p ,并将()G ?改记作 () 2f p π ,则 0 ()()pt f p f t e dt ∞ -= ? (1) 其中积分 ()pt f t e dt ∞ -?称为拉普拉斯积分,()f p 称为()f t 的拉普拉斯变换函数.(1)代表从() f t 到()f p 的一种积分变换,称为拉普拉斯变换(简称拉式变换),pt e -称为拉普拉斯变换的核。 ()G ?的傅里叶逆变换是

傅里叶变换与傅里叶级数

傅里叶级数和傅里叶变换的区别与联系 以上我们分别讨论了傅里叶级数和傅里叶变换的定义及其存在条件,现简要讨论一 下二者的区别。 前已述及,傅里叶级数对应的是周期信号,而傅里叶变换对应的是非周期信号;前者要求信号在一个周期内的能量是有限的,而后者要求信号在整个时间区间内的能量是有此外,傅里叶级数的系数X(kΩ2。)是离散的,而傅里叶变换x(jn)是Ω的连续函数。 由此可见,傅里叶级数与傅里叶变换二者的物理含义不同,因而量纲也不同。 X(kΩ。)代表了周期信号x(t)的第k次谐波幅度的大小,而x(js2)是频谱密度的概念 为说明这一点,我们可将一个非周期信号视为周期丁趋于无穷大的周期信号。由Ω。= 2π/T可知,若T→∞则必有Ω。→o,kΩ。→Ω,将(3.1.3)式两边同乘以T,并取T→∞时的极限,可得

该式表明,一个周期信号的傅里叶变换是由频率轴上间距为Ω。的冲激序列(Drac函数) 所组成,这些冲激序列的强度等于相应的傅里叶系数乘以2兀。这样的离散频谱又称为 “线谱”。由冲激函数的定义和频谱密度的物理概念可知,周期信号的频谱应理解为在无 穷小的频率范围内取得了一个“无限大”的频谱密度。无限大是从冲激函数的角度来理解 的。冲激函数的强度为2zcX(kf2。),单纯地从X(kf2。)来理解,它无密度的概念,它代表了在kf2。处的谐波的大小。 由此可以看出,本不具备傅里叶变换条件的周期信号,在引入了冲激信号后也可以作傅里叶变换。当然,变换的结果也应从冲激信号的角度来理解。这样,由(3.1.18)式,我们可以把傅里叶级数和傅里叶变换统一在一个理论框架下来进行讨论,并建立起二者的 联系。 由上述的讨论,我们不难得出如下的结论:时域连续的周期信号的傅里叶变换在频域是离散的、非周期的。 当周期信号的周期T趋于无穷大时,|由(3.1.18)式给出的离散频谱将变成连续谱,它对应的是周期信号的一个周期的傅里叶变换,但由于周期为无穷大,因此,它对应的实际上是(3.1.7)式的非周期信号的傅里叶变换。由此我们可得出另一个结论:时域连续的非周期信号的傅里叶变换在频域上是连续的、非周期的。 读者在有关“信号与系统”的教科书(例如,参考文献E2,8,13])中都可看到有关连续 时间信号傅里叶变换与傅里叶级数的详述,本书不再对此作进一步的讨论。下面仅给出 几个常用周期信号傅里叶变换的例子。

傅里叶级数与傅里叶变换

傅里叶级数与傅里叶积分变换整理 1 基本概念 首先理清下面的概念: 三角函数形式傅里叶级数(系数含1/T ) 三角函数形式傅里叶级数改写为复指数形式傅里叶级数(系数含1/T ) 复指数形式傅里叶积分,系数1/T 变为1/(2π) 三角函数形式傅里叶积分(将复指数核函数改写为三角函数形式,利用奇偶性变为余弦核函数). 复指数形式傅里叶积分与更一般的积分变换:象函数,象原函数和核 2 基本公式和变换过程 欧拉公式,是连接复指数和三角函数,频域和时域的桥梁 cos()sin()i e t i t ωωω=+ 三角函数改写为复指数形式: cos 2 i i e e θθ θ-+=,sin 2i i e e i θθθ--= 2.1 三角函数形式的傅里叶级数 “级数”就是对数列求和。

01 ()(cos sin )2T n n n a f x a n x b n x ωω∞ ==++∑ 其中 /20/2 /2 /2 /2 /222()2()cos 2()sin T T T T n T T T n T T T a f x dx T a f x n xdx T b f x n xdx T πωωω---= ===??? 注意这里的系数含1/T 2.2 复指数形式的傅里叶级数 我们可以把三角函数形式的傅里叶级数改写为复指数形式,最后甚至合并成一个简单的式子: 0101011 /2 000/2 /2/2 ()() 222()2221()21()cos ()sin 2n n in x in x in x in x T n n n in x in x n n n n n i x i x n n n n T i x T T T n n n T T T T a e e e e f x a b i a a ib a ib e e c c e c e a c f x e dx T a ib c f x n dx i f x n dx T ωωωωωωωωωω--∞=∞-=∞ ∞ -==-??---+-=++-+=++=++==-==-∑∑∑∑??,其中 /2 /2/2/2 /2 /21()1()2()n T T i n x T T T i n x n n n T T i x T n f x e dx T a ib c f x e dx T f x c e ωωω-??-??--∞ -∞? ?=????+===???∑最后 其中/2 /2 1()n T i x n T T c f x e dx T ω--=?,n n ωω= 即/2/21()()n n T i x i x T T T f x f x e dx e T ωω∞ --∞-??=???? ∑?

相关文档
最新文档