立体几何大题部分-高考数学解题方法归纳总结专题训练

立体几何大题部分-高考数学解题方法归纳总结专题训练
立体几何大题部分-高考数学解题方法归纳总结专题训练

专题12 立体几何大题部分

【训练目标】

1、掌握三视图与直观图之间的互换,会求常见几何体的体积和表面积;

2、掌握空间点线面的位置关系,以及位置关系的判定定理和性质定理;并能依此判断命题的真假;

3、掌握空间角即异面直线所成角,直线与平面所成角,二面角的求法;

4、掌握等体积法求点面距;

5、掌握几何体体积的几种求法;

6、掌握利用空间向量解决立体几何问题。

7、掌握常见几何体的外接球问题。

【温馨小提示】

立体几何素来都是高考的一个中点,小题,大题都有,一般在17分到22分之间,对于大多数人来说,立体几何就是送分题,因为只要有良好的空间感,熟记那些判定定理和性质定理,然后熟练空间角和距离的求法,特别是掌握了空间向量的方法,更觉得拿分轻松。

【名校试题荟萃】

1、已知直三棱柱中,,为中点,,.

⑴求证:平面;

⑵求三棱锥的体积.

【答案】(1)见解析(2)

【解析】

(1)证明:连结交于点,连结,

则和分别为和的中点,所以,

而平面,平面,

所以平面

.

(2)因为平面,

所以点

和到平面

的距离相等,从而有

.

2、如图,四棱锥P ABCD -中,底面ABCD 是直角梯形,, PAD

?是正三角形, E 是PD 的中点.

(1)求证: AD PC ⊥;

(2)判定CE 是否平行于平面PAB ,请说明理由. 【答案】(1)见解析 (2)平行

(2)CE 平行于平面PAB ,

理由如下:取PA的中点为F,连接,

EF BF.

可知,

又,

所以四边形BCEF为平行四边形,故//

CE BF.

又BF?平面,

PAB CE?平面PAB,

所以//

CE平面PAB.

3、在四棱锥P ABCD

-中,PD⊥平面ABCD,且底面ABCD为边长为2的菱形,60

BAD

∠=?,2

PD=.

(1)证明:面PAC⊥面PDB;

(2)在图中作出点D在平面PBC内的正投影M(说明作法及其理由),并求四面体PBDM的体积.

【答案】(1)见解析(2)43 21

【解析】

(1)因为PD⊥平面ABCD,,所以PD AC

⊥,

在菱形ABCD中,AC BD

⊥,且,所以,

又因为,所以面.

(2)取BC的中点E,连接DE,PE,易得BDC

△是等边三角形,所以BC DE

⊥,

又因为PD ⊥平面ABCD ,所以PD BC ⊥,又,所以,

在面PDE 中,过D 作DM PE ⊥于M ,即M 是点D 在平面PBC 内的正投影,

则DM BC ⊥,又

,所以

,经计算得3DE =,在Rt PDE △中,2PD =,

,,,

4、如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,

OAB ?,△OAC ,△ODE ,△ODF 都是正三角形。

(1)证明:直线BC ∥面OEF ;

(2)在线段DF 上是否存在一点M ,使得二面角的余弦值是

13

13

3,若不存在请说明理由,若存在请求出M 点所在的位置。

【答案】(1)见解析 (2)M 为DF 中点

(本题可先证明BC //EF 后得证;也可建立空间直角坐标系得证,请酌情给分。)

(2)设OD 的中点为G ,以G 为原点,GE 、GD 、GF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系。易知,)0,1,0(-O ,)0,0,3(E ,)3,0,0(F ,)0,1,0(D . 设DF DM λ=,]1,0[∈λ.可得

5、如图,在三棱锥P ABC -中,PA ⊥底面ABC ,2AB =,4AC =,

,D 为BC 的中点.

(1)求证:AD PB ⊥;

(2)若二面角A PB C --的大小为45?,求三棱锥P ABC -的体积. 【答案】(1)见解析 (2)4 【解析】

(1)在ABC △中,由余弦定理得,则27BC =.

因为D 为BC 的中点,则

因为,则

,所以3AD =.因为

,则AB AD ⊥.(5分)

因为PA ⊥底面ABC ,则PA AD ⊥, 所以AD ⊥平面PAB ,从而AD PB ⊥.

(2)分别以直线AB ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系,如图.

设PA a =,则点()2,0,0B ,()

0,3,0D ,()0,0,P a . 所以

6、如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠DAB =60°,∠ADP =90°,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.

(1)在棱AB 上是否存在一点E ,使得AF ∥平面PCE ,并说明理由;

(2)当二面角D -FC -B 的余弦值为

2

4

时,求直线PB 与平面A BCD 所成的角. 【答案】(1)点E 为棱AB 的中点 (2)60° 【解析】

(1)在棱AB 上存在点E ,使得AF ∥平面PCE ,点E 为棱AB 的中点.

理由如下:取PC 的中点Q ,连结EQ 、FQ , 由题意,FQ ∥DC 且FQ =12CD ,AE ∥CD 且AE =1

2

CD ,

故AE ∥FQ 且AE =FQ.所以,四边形AEQF 为平行四边形.所以,AF ∥EQ ,又EQ?平面PEC ,AF?平面PEC ,所

以,AF ∥平面PEC.

设平面FBC 的法向量为m =()x ,y ,z , 则由

得???2y -az =0,

3x

-y =0,

令x =1,则y =3,z =23a ,

所以取m =? ?

???1,3,23a ,显然可取平面DFC 的法向量n =()1,0,0,

由题意:

2

4

=||cos 〈m ,n 〉=1

1+3+12a 2

,所以a = 3. 由于PD ⊥平面ABCD ,所以PB 在平面ABCD 内的射影为BD , 所以∠PBD 为直线PB 与平面ABCD 所成的角,

易知在Rt △PBD 中,tan ∠PBD =PD

BD =a =3,从而∠PBD =60°,

所以直线PB 与平面ABCD 所成的角为60°.

7、已知三棱柱ABC -A ′B ′C ′的侧棱垂直于底面,AB =AC ,∠BAC =90°,点M ,N 分别是A ′B 和B ′C ′的中点。

(1)证明:MN ∥平面AA ′C ′C ;

(2)设AB =λAA ′,当λ为何值时,CN ⊥平面A ′MN ,试证明你的结论. 【答案】(1)见解析 (2) 2

(2)连接BN ,设A ′A =a ,则AB =λa ,由题意知BC =2λa ,NC =BN =a 2+12

λ2a 2,

∵三棱柱ABC -A ′B ′

C

′的侧棱垂直于底面,∴平面A

′B ′C ′⊥平面BB ′C ′C , ∵AB =AC ,点N 是B ′C ′的中点,∴A ′N ⊥平面BB ′C ′C ,∴CN ⊥A ′N .

要使CN ⊥平面A ′MN ,只需CN ⊥BN 即可,∴CN 2+BN 2=BC 2,2? ??

??a 2+12λ2a 2=2λ2a 2

?λ=2,

∴当λ=2时,CN ⊥平面A ′MN .

8、如图,四棱锥P ABCD -中,底面ABCD 是直角梯形,

.

(1)求证:平面PBC ⊥平面ABCD ; (2)若PC PB =,求点D 到平面PAB 的距离. 【答案】(1)见解析 (2)

22

【解析】

(1)证明:取BC 中点M ,连接,DM PM 可知且MD BC ⊥

又,∴在Rt PBC ?有1PM =

又2PD =Q ,,即MD PM ⊥,

平面PBC ,BC ?平面PBC

MD ∴⊥平面PBC ,又MD ?Q 平面ABCD

∴平面PBC ⊥平面ABCD

(2)设点D 到平面PAB 的距离为h

,22

h ∴=

所以点D 到平面PAB 的距离为

2

2。

9、如图,在三棱柱

中,点,P G 分别是111,AA B C 的中点,已知1AA ⊥平面

ABC ,

,.

(1)求异面直线1A G 与AB 所成角的余弦值.

(2)求证: 1

AG ⊥平面11BCC B . (3)求直线1PC 与平面11BCC B 所成角的正弦值.

【答案】(1)

74 (2)见解析 (3)75

(2)在三棱柱

中,

∵1AA ⊥平面ABC ,1A G ?平面ABC ,∴11AA AG ⊥,∴11BB AG ⊥, 又

,∴1

AG ⊥平面11BCC B . (3)解:取BC 的中点H ,连接,AH HG ;取HG 的中点O ,连接1,OP OC . ∵1

PO AG P ,∴PO ⊥平面11BCC B , ∴1PC O ∠是1PC 与平面11BCC B 所成的角.

由已知得, , ,

∴,

∴直线1PC 与平面11BCC B 所成角的正弦值为

7

5

. 10、如图,在底面是正三角形的三棱锥P ﹣ABC 中,PA=AB=2,PB=PC=22. (1)求证:PA ⊥平面ABC ;

(2)若点D 在线段PC 上,且直线BD 与平面ABC 所成角为

6

π

,求二面角D ﹣AB ﹣C 的余弦值.

【答案】(1)见解析(2)

(2)以A为原点,AC为y轴,AP为z轴,建立空间直角坐标系,

B(,1,0),C(0,2,0),P(0,0,2),

设D(0,b,c),,0≤λ≤1,则(0,b,c﹣2)=(0,2λ,﹣2λ),∴D(0,2λ,2﹣2λ),=(﹣,2λ﹣1,2﹣2λ),

∵直线BD与平面ABC所成角为,平面ABC的法向量=(0,0,1),

∴sin==,

解得或λ=2(舍),

∴D(0,1,1),=(),=(0,1,1),

设平面ABD的法向量=(x,y,z),

则,取x=1,得=(1,﹣,),

平面ABC的法向量=(0,0,1),

设二面角D﹣AB﹣C的平面角为θ,

则cosθ===.

∴二面角D ﹣AB ﹣C 的余弦值为. 11、如图,在斜三棱柱

中,

,AC AB ,

,侧面11BCC B

与底面ABC 所成的二面角为120°,F E ,分别是棱11C B 、A A 1的中点 (1)求A A 1与底面ABC 所成的角; (2)证明//1E A 平面FC B 1;

(3)求经过C B A A ,,,1四点的球的体积.

【答案】

(1)60° (2)见解析 (3)

πa 3

由于四边形A 1AGE 为平行四边形,得∠A 1AG=60°.

(Ⅱ)证明:设EG 与B 1C 的交点为P ,则点P 为EG 的中点.连接PF . 在平行四边形AGEA 1中,因F 为A 1A 的中点,故A 1E ∥FP . 而FP ?平面B 1FC ,A 1E ?平面B 1FC ,所以A 1E ∥平面B 1FC .

12、如图,在四面体ABCD 中,BA BC =,.

(1)证明:BD AC ⊥;

(2)若,2BA =,四面体ABCD 的体积为2,求二面角B AC D --的余弦值.

【答案】(1)见解析 (2)105

- 【解析】

(1)如图,作Rt △ABD 斜边BD 上的高AE ,连结CE . 因为BA BC =,

,所以Rt △ABD ≌Rt △BCD .可得CE BD ⊥.所以BD ⊥平面

AEC ,于是BD AC ⊥.

是平面BAC 的法向量,则0

0AB AC ??=???=??m m u u u r u u u r

,即,可取.

设是平面DAC 的法向量,则0

AC AD ??=???=??n n u u u r u u u r

,即,可取.

因为,二面角B AC D --的平面角为钝角,所以二面角B AC D --的余弦

值为105

-

z x y

A

B

C

D

E

1.(本题满分15分)如图,平面PAC ⊥平面ABC ,ABC ?是以AC 为斜边的等腰直角三角形。,,E F O 分别为,,PA PB PC 的中点,16,10AC PA PC ===。 (I ) 设C 是OC 的中点,证明://PC 平面BOE ; (II )证明:在ABO ?内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离。 2.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 是侧棱CC 1上的一点,CP=m , (Ⅰ)试确定m ,使得直线AP 与平面BDB 1D 1所成角的正切值为 32; (Ⅱ)在线段A 1C 1上是否存在一个定点Q ,使得对任意的m ,D 1Q 在平面APD 1上的射影垂直于AP ,并证明你的结论。 3. 如图甲,△ABC 是边长为6的等边三角形,E ,D 分别为AB 、AC 靠近B 、C 的三等分 点,点G 为BC 边的中点.线段AG 交线段ED 于F 点,将△AED 沿ED 翻折,使平面AED ⊥平面BCDE ,连接AB 、AC 、AG 形成如图乙所示的几何体。 (I )求证BC ⊥平面AFG ; (II )求二面角B -AE -D 的余弦值. . x y z

4在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,2AC BC BD AE ===,M 是AB 的中点. (1)求证:CM EM ⊥; (2)求CM 与平面CDE 所成的角 5. 如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE CF ∥, 90BCF CEF ∠=∠=o ,3AD =2EF =. (Ⅰ)求证:AE ∥平面DCF ; (Ⅱ)当AB 的长为何值时,二面角A EF C --的大小为60o ? 6. 如图,在矩形ABCD 中,点E ,F 分别在线段AB ,AD 上,AE=EB=AF=.43 2 =FD 沿直线EF 将AEF ?翻折成,'EF A ?使平面⊥EF A '平面BEF. (I )求二面角C FD A --'的余弦值; (II )点M ,N 分别在线段FD ,BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与'A 重合,求线段FM 的长. E M A C B D D A B E F C (第18题)

立体几何高考真题大题 1.(2016 高考新课标 1 卷)如图 , 在以 A,B,C,D,E,F为顶点的五面体中, 面 ABEF为正方形 ,AF=2FD,AFD 90 ,且二面角D-AF-E与二面角C-BE-F都是 60 . D C F (Ⅰ)证明:平面ABEF平面EFDC; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析;(Ⅱ) 2 19 19 【解析】 试题分析:(Ⅰ)先证明 F平面FDC ,结合F平面 F ,可得平面F 平面 FDC .(Ⅱ)建立空间坐标系, 分别求出平面C的法向量 m 及平面 C 的法 向量 n ,再利用 cos n, m n m 求二面角.n m 试题解析:(Ⅰ)由已知可得F DF, F F, 所以F平面 FDC . 又F平面F,故平面 F 平面FDC . (Ⅱ)过 D 作DG F ,垂足为 G ,由(Ⅰ)知 DG平面 F . 以 G 为坐标原点,GF 的方向为 x 轴正方向, GF 为单位长度, 建立如图所示的空间直角坐标系 G xyz . 由(Ⅰ)知DF为二面角D F的平面角,故DF60,则DF 2, DG3,可得1,4,0 ,3,4,0,3,0,0, D0,0, 3 . 由已知 ,// F,所以//平面FDC . 又平面CD平面FDC DC,故//CD , CD// F . 由//F,可得平面FDC ,所以 C F为二面角 C F 的平面角, C F60 .从而可得C2,0,3.

设 n x, y, z 是平面C的法向量,则 n C 0, 即x 3z 0, n0 4 y0 所以可取 n3,0, 3 . 设 m 是平面 m C0 CD 的法向量,则, m0 同理可取 m0, 3, 4 .则 cos n, m n m 2 19. n m19 故二面角C 219的余弦值为. 19 考点:垂直问题的证明及空间向量的应用 【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明, 空间中线面位置关 系的证明主要包括线线、线面、面面三者的平行与垂直关系, 其中推理论证的关键是结 合空间想象能力进行推理, 要防止步骤不完整或考虑不全致推理片面, 该类题目难度不 大 , 以中档题为主.第二问一般考查角度问题, 多用空间向量解决. 2 .( 2016 高考新课标 2 理数)如图,菱形ABCD 的对角线AC 与BD交于点 O , AB 5,AC 6,点 E, F 分别在 AD,CD 上, AE CF 5 ,EF交BD于点H.将4 DEF 沿 EF 折到 D EF 位置,OD10. (Ⅰ)证明: D H平面 ABCD ; (Ⅱ)求二面角 B D A C 的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)295 .25

上海高考数学大题解题技巧 一、立体几何题 1.证明线面位置关系,一般不需要去建系,更简单; 2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 二、三角函数题 注意归一公式、二倍角公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!),正弦定理,余弦定理的应用。 三、函数(极值、最值、不等式恒成立(或逆用求参)问题) 1.先求函数的定义域,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号); 2.注意最后一问有应用前面结论的意识; 3.注意分论讨论的思想; 4.不等式问题有构造函数的意识; 5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法); 四、圆锥曲线问题 1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法; 2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等; 3.战术上整体思路要保10分,争12分,想16分。 五、数列题 1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用数列的单调性(或者放缩法);如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3.如果是新定义型,一定要严格的套定义做题(仔细理解新定义)。 4.战术上整体思路要保10分,争12分,想16分。

立体几何高考真题大题 1.(2016高考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD, 90AFD ∠=o ,且二面角D-AF-E 与二面角C-BE-F 都是60o . (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析; (Ⅱ)19 - 【解析】 试题分析:(Ⅰ)先证明F A ⊥平面FDC E ,结合F A ?平面F ABE ,可得平面F ABE ⊥平 面FDC E .(Ⅱ)建立空间坐标系,分别求出平面C B E 的法向量m u r 及平面C B E 的法向量 n r ,再利用cos ,n m n m n m ?=r r r r r r 求二面角. 试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ?平面F ABE ,故平面F ABE ⊥平面FDC E . (Ⅱ)过D 作DG F ⊥E ,垂足为G ,由(Ⅰ)知DG ⊥平面F ABE . 以G 为坐标原点,GF u u u r 的方向为x 轴正方向,GF u u u r 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(Ⅰ)知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =o ,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E - ,(D . 由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB I 平面FDC DC E =,故//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角, C F 60∠E =o .从而可得(C -. 所以(C E =u u u r ,()0,4,0EB =u u u r ,(C 3,A =--u u u r ,()4,0,0AB =-u u u r . 设(),,n x y z =r 是平面C B E 的法向量,则 C 0 0n n ??E =???EB =??u u u r r u u u r r , 即040x y ?=?? =??, 所以可取(3,0,n =r .

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

高考立体几何大题20 题汇总情况 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

(2012江西省)(本小题满分12分) 如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5, BC=42,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG. (1) 求证:平面DEG ⊥平面CFG ; (2)求多面体C DEFG 的体积。 2012,山东(19) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点,求证:DM ∥平面BEC . 2012浙江20.(本题满分15分)如图,在侧棱锥垂直 底面的四棱锥1111ABCD A B C D -中,,AD BC //AD 11,2,2,4,2,AB AB AD BC AA E DD ⊥====是的中 点,F 是平面11B C E 与直线1AA 的交点。 (Ⅰ)证明:(i) 11;EF A D //ii ()111;BA B C EF ⊥平面 (Ⅱ)求1BC 与平面11B C EF 所成的角的正弦值。 (第20题图) F E C 1 B 1 D 1A 1 A D B C

(2010四川)18、(本小题满分12分)已知正方体''''ABCD A B C D -中,点M 是棱'AA 的中点,点O 是对角线'BD 的中点, (Ⅰ)求证:OM 为异面直线'AA 与'BD 的公垂线; (Ⅱ)求二面角''M BC B --的大小; 2010辽宁文(19)(本小题满分12分) 如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面11A B C ⊥平面11A BC ; (Ⅱ)设D 是11A C 上的点,且1//AB 平面1B CD ,求11:A D DC 的值。

高考数学大题题型解答技巧 六月,有一份期待,年轻绘就畅想的星海,思想的热血随考卷涌动,灵魂的脉搏应分 数澎湃,扶犁黑土地上耕耘,总希冀有一眼金黄黄的未来。下面就是小编给大家带来 的高考数学大题题型解答技巧,希望大家喜欢! 高考数学大题必考题型(一) 排列组合篇 1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单 的应用问题。 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5.了解随机事件的发生存在着规律性和随机事件概率的意义。 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件 的概率。 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事 件的概率乘法公式计算一些事件的概率。 8.会计算事件在n次独立重复试验中恰好发生k次的概率. 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的 课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从 历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是 常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺 少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握

1.(2013年高考辽宁卷(文))如 图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点 (I)求证:BC PAC ⊥平面; (II)设//.Q PA G AOC QG PBC ?为的中点,为的重心,求证:平面 2.2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中 心, A 1O ⊥平面ABCD , 12AB AA == (Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积. O D 1 B 1 C 1 D A C A 1

3.(2013年高考福建卷(文))如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =, 60PAD ∠=o .(1)当正视图方向与向量AD u u u r 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程); (2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积. 4. 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD ,且AB=1,AD=2,E 、F 分别为PC 和BD 的中点. (1)证明:EF ∥面PAD ; (2)证明:面PDC ⊥面PAD ; (3)求四棱锥P —ABCD 的体积.

5.(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ?沿AF 折起,得到如图5所示的三棱锥A BCF -,其中2BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23 AD =时,求三棱锥F DEG -的体积F DEG V -. 图 4G E F A B C D 图 5D G B F C A E 6.(2013年高考北京卷(文))如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ;(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD

高考数学解答题解题技巧 大题是高考数学科目的重要组成部分,也是比分占得很重的一部分,考生需要掌握解题技巧,才能正确答题,下面学习啦小编给大家带来高考数学大题的最佳解题技巧,希望对你有帮助。 一、三角函数题 三角函数题是高考数学试卷的第一道解答题,试题难度一般不大,但其战略意义重大,所以稳拿该题12分对学生至关重要。主要有以下几类: 1.运用同角三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。 2.运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。 3.解三角形问题,判断三角形形状,正余弦定理的应用。 注意辅助角公式、诱导公式的正确性(转化成同名同角三角函数时,套用辅助角公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输! 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2、证明不等式时,有时构造函数,利用函数单调性很简单,所以要有构造函数的意识。构造新数列思想,如“累加、累乘、错位相减、倒序相加、裂项求和”等方法的应用与创新。 3、数列自身内部问题的综合考查,如前n项和与通项公式的关系问题、递推数列问题的考查一直是高考的热点,求数列的通项与求数列的和是最常见的题目,数列求和与极限等综合性探索性问题也考查较多。 全国卷的数列大题上手容易,但这不意味着容易拿满分,因为考的很广,像复习时没放在心上的冷门求和方法也会考查。因此全国卷考生复习时不能偷懒耍滑,老师讲解的各种数列解题方法都要掌握,深入复习好累加累乘法、待定系数法、错位相减法等方法。例如总能得到命题人青睐的错位相减法,因难度较大抱着侥幸心理的学生就会放低了对自己的学习要求。 三、立体几何题

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

立体几何题型归类总结(总8 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

立体几何专题复习 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ① ???????? →???????→?? ??? 底面是正多形 棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为正方形 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.球 球的性质: ①球心与截面圆心的连线垂直于截面; ★② r =d 、 球的半径为R 、截面的半径为r ) ★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.

注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2 3 44,3 S R V R ππ== 球球(其中R 为球的半径)

俯视图 二、【典型例题】 考点一:三视图 1.一空间几何体的三视图如图1所示,则该几何体的体积为_________________. 第1题 2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________. 第2题 第3题 3.一个几何体的三视图如图3所示,则这个几何体的体积为 . 4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 . 第4题 第5题 2 2 侧(左)视图 2 2 2 正(主)视 3 俯视图 1 1 2 a

1.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上, ∠ABM=60 。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB =AC (Ⅱ)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小 3.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ; (II )求 AD 与平面ABE 所成角的正弦值. 4.如图,四棱锥P ABCD -的底面是正方形, PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中 点 时,求AE 与平面PDB 所成的角的大小. 5.如图,在四棱锥P ABCD -中,底面ABCD 是矩形, PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . B C D E O A P B M

(1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 6.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠=(I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 7.如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1), 都有AC ⊥BE : (Ⅱ)若二面角C -AE -D 的大小为600C ,求λ的值。 8.如图3,在正三棱柱111ABC A B C -中,AB =4, 17AA =,点D 是BC 的中点,点E 在AC 上,且DE ⊥1A E .(Ⅰ)证明:平面1A DE ⊥平面 11ACC A ;(Ⅱ)求直线AD 和平面1A DE 所成角的正弦值。 9.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面;

高考数学选择题解题技巧 数学选择题在当今高考试卷中,不但题目多,而且占分比例高。数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。 解答选择题的基本策略是准确、迅速。准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要避免“超时失分”现象的发生。 高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。 1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。 例1、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为 ( ) 125 27 . 12536.12554.12581.D C B A 解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。 125 27)106(104)106(33 3223= ?+??C C 故选A 。 例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直。其中正确命题的个数为( ) A .0 B .1 C .2 D .3 解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正确的,故选D 。 例3、已知F 1、F 2是椭圆162x +9 2 y =1的两焦点,经点F 2的的直线交椭圆于点A 、B ,若|AB|=5,则|AF 1|+|BF 1|等于 ( ) A .11 B .10 C .9 D .16 解析:由椭圆的定义可得|AF 1|+|AF 2|=2a=8,|BF 1|+|BF 2|=2a=8,两式相加后将|AB|=5=|AF 2|+|BF 2|代入,得|AF 1|+|BF 1|=11,故选A 。 例4、已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) 解析:∵a>0,∴y 1=2-ax 是减函数,∵ log (2)a y ax =-在[0,1]上是减函数。 ∴a>1,且2-a>0,∴1tan α>cot α(2 4 π απ < <-),则α∈( ) A .(2π- ,4π-) B .(4π-,0) C .(0,4π) D .(4π,2 π) 解析:因24παπ<<-,取α=-6 π 代入sin α>tan α>cot α,满足条件式,则排除A 、C 、D ,故选B 。 例6、一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( ) A .-24 B .84 C .72 D .36 解析:结论中不含n ,故本题结论的正确性与n 取值无关,可对n 取特殊值,如n=1,此时a 1=48,a 2=S 2-S 1=12,a 3=a 1+2d= -24,所以前3n 项和为36,故选D 。 (2)特殊函数 例7、如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-5 B.减函数且最小值是-5 C.增函数且最大值为-5 D.减函数且最大值是-5

1.(14分)如图,在底面是正方形的四棱锥P ABCD -中,PA ⊥面ABCD ,BD 交AC 于点,E F 是PC 中点,G 为AC 上一点。 (Ⅰ)求证:BD ⊥FG ; (Ⅱ)确定点G 在线段AC 上的位置,使FG //平面PBD ,并说明理由; (Ⅲ)当二面角B PC D --的大小为23 π时,求PC 与底面ABCD 所成 角的正切值。 2.(本小题满分14分) 如图,三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112,AA AC AC AB BC ====, 且AB BC ⊥,O 为AC 中点. (Ⅰ)证明:1A O ⊥平面ABC ; (Ⅱ)求直线1A C 与平面1A AB 所成角的正弦值; (Ⅲ)在1BC 上是否存在一点E ,使得//OE 平面1A AB ,若不存在,说明理由;若存在, 确定点E 的位置. 1 A B C O A 1 B 1

3.如图1,在直角梯形ABCD 中,AD //BC ,D 2 π ∠BA = ,C 1AB =B =,D 2A =,E 是D A 的中点, O 是C A 与BE 的交点.将?ABE 沿BE 折起到1?A BE 的位置,如图2. (I )证明:CD ⊥平面1C A O ; (II )若平面1A BE ⊥平面CD B E ,求平面1C A B 与平面1CD A 夹角的余弦值. 4.(2016·兰州诊断)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,AB ∥ CD ,=21AB BC CD ==,,顶点1D 在底面ABCD 内的射影恰为点C (1)求证:1AD ⊥BC ; (2)若直线1DD 与直线AB 所成的角为3 π ,求平面11ABC D 与平面ABCD 所成角(锐角)的余弦值.

立体几何咼考真题大题 1. (2016高考新课标1 卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方 形,AF=2FD, NAFD =90:且二面角 D-AF-E 与二面角 C-BE-F 都是 60: (I )证明:平面 ABEF 丄平面EFDC (n )求二面角 E-BC-A 的余弦值. 【答案】(I )见解析;(n ) -2蜃 19 【解析】 试题分析:(I )先证明AF 丄平面E FDC ,结合直F U 平面AB E F ,可得平面ABE F 丄 平面E FDC . (n )建立空间坐标系,分别求出平面E C E 的法向量m 及平面E C E 的法 试题解析:(I )由已知可得 A F 丄DF, A F 丄F E|,所以A F 丄平面E FDC . 又A F U 平面 AE E F ,故平面AEE F 丄平面|E F D C . _ (n )过D 作DG 丄E F ,垂足为G ,由(I )知DG 丄平面[A E 百F . 以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直 角坐标系G —xyz . 由(I )知N DF E 为二面角D -A F -E 的平面角,故N DF E =60:贝U DF = 2 , DG|=3,可得九(1,4,0 ), B(—3,4,0 ), E(—3,0,0 ), D (0,0, 73 ). 由已知,AE //E F ,所以AE //平面E FDC . 又平面 A ECD n 平面 |E FDC = DC ,故〕AB //CD , CD//EF . 由EE //A F ,可得EE 丄平面I E F DC ,所以N C E F |为二面角C —EE —F 的平面角, 向量n ,再利用cos (n,m ) 求二面角. n ||m |

高考数学大题题型总结及答题技巧 高考数学大题题型一般有5种,关于后面的大题,通常17题是三角函数,18题是立 体几何,19题是导数,但也不排除变更的可能,前面三道题和后面两道大题比起来会简单很多。 如何学好高中数学高中数学解题方法与技巧怎样学好高中数学高中数学怎么学成绩提 高快 17题三角函数 17题考的知识点比较简单,只要在平时多加注意和总结就不成问题,但是重要的公式譬如二倍角公式等一定要熟记,这些是做题的基础; 18题立体几何 18题的第一小题通常是证明题,有时利用现成的条件马上就可以证明,但是也不排除需要做辅助线有一点难度的可能,而且形势越来越偏向后一种,所以在平时要多多注意需 要做辅助线的证明题,第二小题通常是求线面角和线线角的大小,也有可能是求相关的体积,不过这样也是变相的让你求线面角或线线角的大小,至于求面面角大小,我们老师说 不大可能,因为求面面角的难度稍大所需要的时间也会比较多,这样对后面的发挥会有比 较大的影响,虽然高考的目的是选拔人才,但是全省的平均分也不能太低。 点击查看:高考数学大题有哪几种题型 提醒一点:如果做第二小题时没有很快有思路,那就果断选择向量法,向量法的难点 是空间直角坐标系的建立,一定要找到三条相互垂直的线分别作为x轴y轴z轴,相互垂 直一定要是能证明出来的,如果单凭感觉建立空间直角坐标系万一错了后面的就完全错了。 19题导数 19题的难点是求导,如果你对复杂函数的求导掌握的很熟练,那第一小题就不用担心啦,第二小题会比较有难度,但是基础还是求导,无论有没有思路都要先求导,说不定在 求导的过程中就找到思路了; 最适合高考学生的书,淘宝搜索《高考蝶变》购买 20题圆锥曲线 20题是圆锥曲线,第一小题还是比较基础的但完全正确的前提是要掌握椭圆、双曲线、抛物线的定义,因为很有可能会出现让你判断某某是椭圆、双曲线、还是抛物线的题目。 第二小题比较难,但是简单在有一定的套路,做题做多了就知道的套路就是1.设立坐标,一般是求什么设什么.2.将坐标带入所在曲线的方程中.3.利用韦达定理求出x1+x2,x1x2,y1+y2,y1y2.4.所求的内容尽力转换为与x1、x2、y1、y2相关的式子,在转换的过程中

1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点.. 向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面. ⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在 任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[??∈θ) (向量与向量所成角])180,0[ ∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)

高考数学几何大题解题技巧 1、平行、垂直位置关系的论证的策略 1由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。 2利用题设条件的性质适当添加辅助线或面是解题的常用方法之一。 3三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。 2、空间角的计算方法与技巧 主要步骤:一作、二证、三算;若用向量,那就是一证、二算。 1两条异面直线所成的角①平移法:②补形法:③向量法: 2直线和平面所成的角 ①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用 向量计算。 ②用公式计算。 3二面角 ①平面角的作法:i定义法;ii三垂线定理及其逆定理法;iii垂面法。 ②平面角的计算法: i找到平面角,然后在三角形中计算解三角形或用向量计算;ii射影面积法;iii向量 夹角公式。 3、空间距离的计算方法与技巧 1求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角 形中求解,也可以借助于面积相等求出点到直线的距离。 2求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直 接作出公垂线的情况下,可转化为线面距离求解这种情况高考不做要求。 3求点到平面的距离:一般找出或作出过此点与已知平面垂直的平面,利用面面垂直 的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有 时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与 平面的距离一般均转化为点到平面的距离来求解。

4、熟记一些常用的小结论 诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。 5、平面图形的翻折、立体图形的展开等一类问题 要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。 6、与球有关的题型 只能应用“老方法”,求出球的半径即可。 7、立体几何读题 1弄清楚图形是什么几何体,规则的、不规则的、组合体等。 2弄清楚几何体结构特征。面面、线面、线线之间有哪些关系平行、垂直、相等。 3重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。 8、解题程序划分为四个过程 ①弄清问题。也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。 ②拟定计划。找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。 ③执行计划。以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。 ④回顾。对所得的结论进行验证,对解题方法进行总结。 感谢您的阅读,祝您生活愉快。

近几年高考理科立体几何大题汇编 1.(2018年III卷)如图,边长为2的正方形 ABCD所在的平面与半圆弧CD所在平面垂直,M是 CD上异于C,D的点. (1)证明:平面AMD⊥平面BMC; (2)当三棱锥M ABC 体积最大时,求面MAB与面MCD所成二面角的正弦值. 2、[2014·新课标全国卷Ⅱ] 四棱锥P-ABCD中,底 面ABCD为矩形,PA⊥平面ABCD,E为PD的中 点. (1)证明:PB∥平面AEC; (2)设二面角D-AE-C为60°,AP=1,AD= 3,求三棱锥E-ACD的体积.

3.(2017?新课标Ⅰ卷)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°. (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值. 4.(菱形建系)[2014·新课标全国卷Ⅰ] 如图

三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C. (1)证明:AC=AB1; (2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.

5.(菱形建系)【2015高考新课标1】如图,四边形ABCD为菱形,∠ ABC=120°, E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)证明:平面AEC⊥平面 AFC; (Ⅱ)求直线AE与直线CF所成角的余弦值. AD BC的中点,以6.(翻折)(2018年I卷)如图,四边形ABCD为正方形,,E F分别为, DF为折痕把DFC ⊥. △折起,使点C到达点P的位置,且PF BF (1)证明:平面PEF⊥平面ABFD; (2)求DP与平面ABFD所成角的正弦值.

相关文档
最新文档