5.5 平面向量的综合应用

合集下载

§5.4 平面向量的综合应用

§5.4 平面向量的综合应用

§5.4 平面向量的综合应用考情考向分析 主要考查平面向量与函数、三角函数、不等式、数列、解析几何等综合性问题,求参数范围、最值等问题是考查的热点,一般以填空题的形式出现,偶尔会出现在解答题中,属于中档题.1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题. 2.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.3.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数)、解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题.知识拓展1.若G 是△ABC 的重心,则GA →+GB →+GC →=0.2.若直线l 的方程为Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若AB →∥AC →,则A ,B ,C 三点共线.( √ )(2)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )(3)若平面四边形ABCD 满足AB →+CD →=0,(AB →-AD →)·AC →=0,则该四边形一定是菱形.( √ ) (4)设定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是x +2y -4=0.( √ ) (5)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ ) 题组二 教材改编2.[P89习题T10]已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为________三角形. 答案 直角解析 AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6), ∴|AB →|=22+(-2)2=22,|AC →|=16+64=45, |BC →|=36+36=62, ∴|AB →|2+|BC →|2=|AC →|2, ∴△ABC 为直角三角形.3.[P93习题T7]若O 为△ABC 所在平面内一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 为________三角形.答案 等腰解析 ∵OB →-OC →=CB →=AB →-AC →,OB →+OC →-2OA →=(OB →-OA →)+(OC →-OA →)=AB →+AC →, 由已知(OB →-OC →)·(OB →+OC →-2OA →)=0,得(AB →-AC →)·(AB →+AC →)=0, 即(AB →-AC →)⊥(AB →+AC →). ∴△ABC 为等腰三角形. 题组三 易错自纠4.在△ABC 中,已知AB →=(2,3),AC →=(1,k ),且△ABC 的一个内角为直角,则实数k 的值为________________. 答案 -23或113或3±132解析 ①若A =90°,则有AB →·AC →=0,即2+3k =0, 解得k =-23;②若B =90°,则有AB →·BC →=0, 因为BC →=AC →-AB →=(-1,k -3), 所以-2+3(k -3)=0,解得k =113;③若C =90°,则有AC →·BC →=0,即-1+k (k -3)=0, 解得k =3±132.综上所述,k =-23或113或3±132.5.在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为________. 答案 5解析 依题意得AC →·BD →=1×(-4)+2×2=0, 所以AC →⊥BD →,所以四边形ABCD 的面积为 12|AC →|·|BD →|=12×5×20=5. 6.(2017·江苏南通中学月考)已知向量a ,b 满足|a |=1,|b |=2,且(a +b )⊥a ,则a 与b 的夹角为________. 答案 120°解析 设a 与b 的夹角为θ,则0°≤θ≤180°,由题意,得(a +b )·a =0,∴a 2+a ·b =1+1×2cos θ=0,∴cos θ=-12,∴θ=120°.题型一 向量在平面几何中的应用典例 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________. 答案 12解析 在平行四边形ABCD 中,取AB 的中点F , 则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·⎝ ⎛⎭⎪⎫AD →-12AB →=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝ ⎛⎭⎪⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________.答案 重心解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究本例(2)中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________. 答案 内心解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.思维升华 向量与平面几何综合问题的解法 (1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.跟踪训练 (1)在△ABC 中,已知向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为________三角形. 答案 等边解析 AB→|AB →|,AC→|AC →|分别为平行于AB →,AC →的单位向量,由平行四边形法则可知AB →|AB →|+AC →|AC →|为∠BAC 的平分线.因为⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又AB→|AB →|·AC→|AC →|=⎪⎪⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪⎪⎪AC →|AC →|·cos∠BAC =12,所以cos ∠BAC =12,又0<∠BAC <π,故∠BAC =π3,所以△ABC 为等边三角形. (2)如图,在平行四边形ABCD 中,AB =1,AD =2,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 边上的中点,则EF →·FG →+GH →·HE →=________.答案 32解析 取HF 中点O ,则EF →·FG →=EF →·EH →=EO →2-OH →2=1-⎝ ⎛⎭⎪⎫122=34,GH →·HE →=GH →·GF →=GO →2-OH →2=1-⎝ ⎛⎭⎪⎫122=34,因此EF →·FG →+GH →·HE →=32.题型二 向量在解析几何中的应用典例 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A ,B ,C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________________. 答案 2x +y -3=0解析 ∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为________. 答案 6解析 由题意,得F (-1,0),设P (x 0,y 0),则有x 204+y 203=1,解得y 2=3⎝ ⎛⎭⎪⎫1-x 204,因为FP →=(x 0+1,y 0),OP →=(x 0,y 0),所以OP →·FP →=x 0(x 0+1)+y 20=x 20+x 0+3⎝ ⎛⎭⎪⎫1-x 204=x 204+x 0+3,对应的抛物线的对称轴方程为x 0=-2,因为-2≤x 0≤2,故当x 0=2时,OP →·FP →取得最大值224+2+3=6.思维升华 向量在解析几何中的“两个”作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a ·b =0(a ,b 为非零向量),a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较简捷的方法.跟踪训练 (1)在平面直角坐标系中,O 为坐标原点,直线l :x -ky +1=0与圆C :x 2+y 2=4相交于A ,B 两点,OM →=OA →+OB →,若点M 在圆C 上,则实数k =________. 答案 0解析 设AB 的中点为D ,则有OM →=OA →+OB →=2OD →, ∴|OM →|=2|OD →|=R =2(R 为圆C 的半径), ∴|OD →|=1.由点到直线的距离公式,得1=|0-0+1|k 2+1,解得k =0.(2)(2017·江苏灌云中学质检)设F 1,F 2为椭圆x 24+y 2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P ,Q 两点,当四边形PF 1QF 2面积最大时,PF 1→·PF 2→的值为________. 答案 -2解析 由题意得c =a 2-b 2=3, 又12PF QF S 四边形=122SPF F =2×12×F 1F 2·h (h 为P 点纵坐标的绝对值), 所以当h =b =1时,12PF QF S 四形边取得最大值, 此时|PF 1→|=|PF 2→|=2,且∠F 1PF 2=120°. 所以PF 1→·PF 2→=|PF 1→||PF 2→|·cos 120°=2×2×⎝ ⎛⎭⎪⎫-12=-2.题型三 向量的其他应用命题点1 向量在不等式中的应用典例 已知在Rt △ABC 中,∠C =90°,AB →·AC →=9,S △ABC =6,P 为线段AB 上的点,且CP →=x ·CA →|CA →|+y ·CB→|CB →|,则xy 的最大值为________. 答案 3解析 在Rt △ABC 中,由AB →·AC →=9, 得AB ·AC ·cos A =9,由面积为6,得AB ·AC ·sin A =12, 由以上两式解得tan A =43,所以sin A =45,cos A =35,所以AB ·AC =15,所以AB =5,AC =3,BC =4. 又P 为线段AB 上的点,且CP →=x 3·CA →+y 4·CB →,故x 3+y 4=1≥2x 3·y4, 即xy ≤3,当且仅当x 3=y 4=12,即x =32,y =2时取等号.命题点2 向量在解三角形中的应用典例 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则△ABC 最小角的正弦值等于________. 答案 35解析 ∵20aBC →+15bCA →+12cAB →=0, ∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0, ∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0,解得⎩⎪⎨⎪⎧b =43a ,c =53a ,∴△ABC 最小角为角A ,∴cos A =b 2+c 2-a 22bc =169a 2+259a 2-a22×43a ×53a =45,∴sin A =35.跟踪训练 (1)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M ,N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是______.答案 3解析 由图象可知,M ⎝ ⎛⎭⎪⎫12,1,N ()x N ,-1, 所以OM →·ON →=⎝ ⎛⎭⎪⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝ ⎛⎭⎪⎫2-12=3. (2)如图,在矩形ABCD 中,AB =2,AD =1,点E ,F 分别为DC ,BC 边上的动点,且满足EF =1,则AE →·AF →的最大值为________.答案 4解析 取EF 的中点M ,则M 点的轨迹是以C 点为圆心,12为半径的圆的四分之一(在矩形内的四分之一),而AE →·AF →=(AE →+AF →)2-(AE →-AF →)24=4AM →2-FE →24=AM →2-14≤⎣⎢⎡⎦⎥⎤22+⎝ ⎛⎭⎪⎫122-14=4,当且仅当M 是BC 的中点时,(AE →·AF →)max =4.1.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是________三角形. 答案 直角解析 由(BC →+BA →)·AC →=|AC →|2, 得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,2AC →·BA →=0,∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形.2.已知向量m =(1,cos θ),n =(sin θ,-2),且m ⊥n ,则sin 2θ+6cos 2θ的值为________. 答案 2解析 由题意可得m ·n =sin θ-2cos θ=0,则tan θ=2,所以sin 2θ+6cos 2θ=2sin θcos θ+6cos 2θsin 2θ+cos 2θ=2tan θ+6tan 2θ+1=2. 3.在△ABC 中,D 为△ABC 所在平面内一点,且AD →=13AB →+12AC →,则S △BCD S △ABD=________.答案 13解析 如图,由已知得点D 在△ABC 中与AB 平行的中位线上,且在靠近BC 边的三等分点处,从而有S △ABD =12S △ABC ,S △ACD =13S △ABC ,S △BCD =⎝⎛⎭⎪⎫1-12-13S △ABC =16S △ABC , 所以S △BCD S △ABD =13. 4.(2017·江苏如皋中学月考)在平面直角坐标系xOy 中,已知OA →=(3,-1),OB →=(0,2),若OC →⊥AB →,AC →=λOB →,则实数λ的值为________. 答案 2解析 ∵在平面直角坐标系xOy 中,OA →=(3,-1), OB →=(0,2),∴AB →=(-3,3),设C (x ,y ),则AC →=(x -3,y +1), ∵OC →⊥AB →,AC →=λOB →,∴-3x +3y =0,(x -3,y +1)=(0,2λ),∴⎩⎪⎨⎪⎧ x -3=0,y +1=2λ,x =y ,解得x =y =3,λ=2.5.已知F 1,F 2分别为椭圆C :x 29+y 28=1的左、右焦点,点E 是椭圆C 上的动点,则EF 1→·EF 2→的最大值、最小值分别为________.答案 8,7解析 由题意可知椭圆的左、右焦点坐标分别为F 1(-1,0),F 2(1,0),设E (x ,y )(-3≤x ≤3),则EF 1→=(-1-x ,-y ),EF 2→=(1-x ,-y ),所以EF 1→·EF 2→=x 2-1+y 2=x 2-1+8-89x 2=x 29+7,所以当x =0时,EF 1→·EF 2→有最小值7,当x =±3时,EF 1→·EF 2→有最大值8.6.若直线ax -y =0(a ≠0)与函数f (x )=2cos 2x +1ln 2+x 2-x的图象交于不同的两点A ,B ,且点C (6,0),若点D (m ,n )满足DA →+DB →=CD →,则m +n =________.答案 2解析 因为f (-x )=2cos 2(-x )+1ln 2-x 2+x =2cos 2x +1-ln 2+x 2-x=-f (x ),且直线ax -y =0过坐标原点,所以直线与函数f (x )=2cos 2x +1ln 2+x 2-x 的图象的两个交点A ,B 关于原点对称,即x A +x B =0,y A +y B =0,又DA →=(x A -m ,y A -n ),DB →=(x B -m ,y B -n ),CD →=(m -6,n ),由DA →+DB →=CD →,得x A -m +x B -m =m -6,y A -n +y B -n =n ,解得m =2,n =0,所以m +n =2.7.在菱形ABCD 中,若AC =4,则CA →·AB →=________.答案 -8解析 设∠CAB =θ,AB =BC =a ,由余弦定理得a 2=16+a 2-8a cos θ,∴a cos θ=2,∴CA →·AB →=4×a ×cos(π-θ)=-4a cos θ=-8.8.已知|a |=2|b |,|b |≠0,且关于x 的方程x 2+|a |x -a ·b =0有两个相等的实根,则向量a 与b 的夹角是________.答案 2π3解析 由已知可得Δ=|a |2+4a ·b =0,即4|b |2+4×2|b |2cos θ=0,∴cos θ=-12. 又∵θ∈[0,π],∴θ=2π3. 9.已知O 为△ABC 内一点,且OA →+OC →+2OB →=0,则△AOC 与△ABC 的面积之比是________.答案 1∶2解析 如图所示,取AC 的中点D ,∴OA →+OC →=2OD →,∴OD →=BO →,∴O 为BD 的中点,∴面积比为高之比.即S △AOC S △ABC =DO BD =12. 10.如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(PA →+PB →)·PC →的最小值为________.答案 -92解析 ∵圆心O 是直径AB 的中点,∴PA →+PB →=2PO →,∴(PA →+PB →)·PC →=2PO →·PC →.∵|PO →|+|PC →|=3≥2|PO →|·|PC →|,∴|PO →|·|PC →|≤94, 即(PA →+PB →)·PC →=2PO →·PC →=-2|PO →|·|PC →|≥-92, 当且仅当|PO →|=|PC →|=32时,等号成立.故最小值为-92. 11.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足PA →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程. 解 设M (x ,y )为所求轨迹上任一点,设A (a,0),Q (0,b )(b >0),则PA →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ),由PA →·AM →=0,得a (x -a )+3y =0.①由AM →=-32MQ →,得 (x -a ,y )=-32(-x ,b -y )=⎝ ⎛⎭⎪⎫32x ,32(y -b ), ∴⎩⎪⎨⎪⎧ x -a =32x ,y =32y -32b ,∴⎩⎪⎨⎪⎧ a =-x 2,b =y 3.∵b >0,∴y >0,把a =-x 2代入到①中,得-x 2⎝ ⎛⎭⎪⎫x +x 2+3y =0, 整理得y =14x 2(x ≠0). ∴动点M 的轨迹方程为y =14x 2(x ≠0). 12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )BA →·BC →=cCB →·CA →.(1)求角B 的大小;(2)若|BA →-BC →|=6,求△ABC 面积的最大值.解 (1)由题意,得(2a -c )cos B =b cos C .根据正弦定理,得 (2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B =sin(C +B ), 即2sin A cos B =sin A ,因为A ∈(0,π),所以sin A >0.所以cos B =22,又B ∈(0,π),所以B =π4.(2)因为|BA →-BC →|=6,所以|CA →|= 6.即b =6,根据余弦定理及基本不等式,得6=a 2+c 2-2ac ≥2ac -2ac =(2-2)ac (当且仅当a =c 时取等号),即ac ≤3(2+2),故△ABC 的面积S =12ac sin B ≤3(2+1)2, 即△ABC 的面积的最大值为32+32.13.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , λ∈(0,+∞),则________.(填序号) ①动点P 的轨迹一定通过△ABC 的重心;②动点P 的轨迹一定通过△ABC 的内心;③动点P 的轨迹一定通过△ABC 的外心;④动点P 的轨迹一定通过△ABC 的垂心.答案 ④解析 由条件,得AP →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , 从而AP →·BC →=λ⎝ ⎛⎭⎪⎪⎫AB →·BC →|AB →|cos B +AC →·BC →|AC →|cos C =λ·|AB →||BC →|cos(180°-B )|AB →|cos B +λ·|AC →||BC →|cos C |AC →|cos C=0, 所以AP →⊥BC →,则动点P 的轨迹一定通过△ABC 的垂心.14.已知O 为△ABC 的外心,且BO →=λBA →+μBC →.(1)若∠C =90°,则λ+μ=________;(2)若∠ABC =60°,则λ+μ的最大值为________.答案 (1)12 (2)23解析 (1)若∠C =90°,则O 为AB 边的中点,BO →=12BA →,即λ=12,μ=0,故λ+μ=12.(2)设△ABC 的三边长分别为a ,b ,c ,因为O 为△ABC 的外心,且BO →=λBA →+μBC →,所以⎩⎪⎨⎪⎧ BO →·BA →=λBA →2+μBA →·BC →,BO →·BC →=λBA →·BC →+μBC →2,即⎩⎪⎨⎪⎧ 12c 2=λc 2+12μac ,12a 2=12λac +μa 2, 化简得⎩⎪⎨⎪⎧ λc +12μa =12c ,12λc +μa =12a ,解得⎩⎪⎨⎪⎧ λ=23-a 3c ,μ=23-c 3a ,则λ+μ=43-⎝ ⎛⎭⎪⎫a 3c +c 3a ≤43-23=23.15.(2017·江苏南京一中质检)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.答案 12解析 在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →, 又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·⎝⎛⎭⎪⎫AD →-12AB → =AD →2-12AD →·AB →+AD →·AB →-12AB →2 =|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2 =1+12×12|AB →|-12|AB →|2=1. ∴⎝ ⎛⎭⎪⎫12-|AB →||AB →|=0, 又|AB →|≠0,∴|AB →|=12. 16.已知在△ABC 中,AB <AC ,∠BAC =90°,边AB ,AC 的长分别为方程x 2-2(1+3)x +43=0的两个实数根,若斜边BC 上有异于端点的E ,F 两点,且EF =1,∠EAF =θ,则tan θ的取值范围为________.答案 ⎝ ⎛⎦⎥⎤39,4311 解析 由题可知AB =2,AC =23,BC =AB 2+AC2=4.建立如图所示的坐标系,则A (0,0),B (2,0),C (0,23).设BF →=λBC →⎝ ⎛⎭⎪⎫λ∈⎝ ⎛⎭⎪⎫0,34, BE →=⎝ ⎛⎭⎪⎫λ+14BC →, 则F (2-2λ,23λ),E ⎝ ⎛⎭⎪⎫32-2λ,23λ+32. 所以AE →·AF →=(2-2λ,23λ)·⎝ ⎛⎭⎪⎫32-2λ,23λ+32 =3-4λ-3λ+4λ2+12λ2+3λ=16λ2-4λ+3=16⎝ ⎛⎭⎪⎫λ-182+114∈⎣⎢⎡⎭⎪⎫114,9. 因为点A 到BC 边的距离d =AB ·AC BC=3, 所以△AEF 的面积S △AEF =12EF ·3=32为定值. 所以S △AEF AE →·AF →=12|AE →||AF →|sin θ|AE →||AF →|cos θ=12tan θ, 故tan θ=2S △AEF AE →·AF →=3AE →·AF →∈⎝ ⎛⎦⎥⎤39,4311.。

2024年高一数学真题分类汇编(天津专用)平面向量(解析版)

2024年高一数学真题分类汇编(天津专用)平面向量(解析版)

专题01平面向量考点一、向量的基本概念和线性运算考点二、向量共线定理的应用考点三、向量共线和垂直考点四、向量的数量积及夹角考点五、向量的投影1、数量积及其最值问题2、平面向量的综合应用向量的基本概念和线性运算1.(20·21高一·全国·课时练习)下列说法正确的是()A .向量AB与向量BA 是相等向量B .与实数类似,对于两个向量a ,b 有a b = ,a b > ,a b <r r三种关系C .两个向量平行时,表示向量的有向线段所在的直线一定平行D .若两个非零向量是共线向量,则向量所在的直线可以平行,也可以重合【答案】D【分析】根据向量的基本概念辨析可知.【详解】解:对于A ,向量AB与向量BA 是相反向量,所以A 错误;对于B ,因为向量是有方向和大小的量,所以两个向量不能比较大小,所以B 错误;对于C ,当两个向量平行时,表示向量的有向线段所在的直线平行或共线,所以C 错误;,由共线向量的定义可知,当两个向量是共线向量时,有向量所在的直线可以平行,也可以3.(2023高一·天津市下学期期中)已知向量A.()5,7B.()5,9【答案】Aa=2(4,8)A .1233AB AD-+C .1536AB AD -AP 1233PQ BQ BP BC =-=- 故选:A.8.(20·21高一下·山西吕梁AP AB AC λμ=+,则λ+A .49【答案】B3A .2B .4【答案】A【分析】设CP CD λ=,可得出AP的坐标,再由两向量共线列方程可求出,则向量【点睛】本题考查投影向量的计算,涉及向量投影的计算,考查计算能力,属于基础题则有BD AC ⊥,且BD 所以()AB BA BC BA ⋅+=- 故答案为:32-.【答案】74/1.75【分析】以B 为坐标原点,建立平面直角坐标系,利用平面向量数量积的坐标运算即可求解【详解】以B 为坐标原点,建立平面直角坐标系,如图:()()()2,0,0,2,0,0C A B ,设()2,D x ,()2,2AC =- ,BD 2AC BD ⋅=- ,则42x -=()2,3D ∴, 点M 为边AB 设()0,M t ,[]0,2t ∈,MC 【答案】2-19-【分析】以B 为坐标原点可建立平面直角坐标系,求得D 点坐标,由向量数量积坐标运算可得则()0,0B ,()2,0C ,()0,2A ,E ()2,2CD x ∴=- ,22,2CE ⎛⎫=- ⎪ ⎪⎝⎭ 向量CD 在向量CE 上的投影向量的模为BP 26.(20·21高一上·广西·期末)如图,在菱形。

5-3 专题研究 平面向量的综合应用 PPT课件 【2021衡水中学高考一轮总复习 理科数学】

5-3 专题研究  平面向量的综合应用 PPT课件  【2021衡水中学高考一轮总复习 理科数学】
π 因为AB∥CD,CD=2,∠BAD= 4 ,
第10页
高考一轮总复习 · 数学·理(新课标版)
所以2|A→B|=|A→B||A→D|cosπ4 , 化简得|A→D|=2 2. 故A→D·A→C=A→D·(A→D+D→C)=|A→D|2+A→D·D→C=(2 2)2+
π 2 2×2cos 4 =12.
第7页
高考一轮总复习 · 数学·理(新课标版)
方法三:如图2,取AB的中点F,连接EF,则
→ AE
·
→ BE

→ EA
·E→B
=(E→F+
F→A)·(E→F-F→A
)=E→F2-F→A2=E→F2-14
.可知当且仅
当|E→F|最小时A→E·B→E取最小值,分别过F,B作CD的垂线,垂足
分别为H,G,当点E与H重合时,EF取到最小值,易知EF为梯
高考一轮总复习 · 数学·理(新课标版)
例1 (1)(2018·天津,理)如图,在平面四边形
ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,
AB=AD=1.若点E为边CD上的动点,则
→ AE
·
→ BE

最小值为( )
21
3
A.16
B.2
25 C.16
D.3
第5页
高考一轮总复习 · 数学·理(新课标版)
第12页
高考一轮总复习 · 数学·理(新课标版)
【讲评】 方法一侧重于考查数量积公式a·b=|a||b|cosθ在 解题中的运用,解题过程具有一定的技巧性,需要借助向量
加、减法的运算及其几何意义进行适当变形;方法二通过建立
平面直角坐标系,借助数量积的坐标运算公式a·b=x1x2+y1y2求 解,较为简捷、明了.

平面向量与平面几何的综合应用

平面向量与平面几何的综合应用

平面向量与平面几何的综合应用在数学中,平面向量和平面几何是两个重要的概念。

平面向量可以用来表示有大小和方向的量,而平面几何则是研究平面内各种图形和它们之间的关系。

在本文中,我们将探讨平面向量和平面几何的综合应用。

一、向量的加减法向量的加减法是指将两个向量进行运算得到一个新向量的过程,在实际应用中非常常见。

例如,在平面直角坐标系中,我们可以利用向量加减法求出两点之间的距离。

另一个应用是力的平衡,即多个力作用在同一物体上时,它们的合力为零,即所有向量的和等于零。

这样,我们就可以通过向量的加减法来求解未知的力量。

二、向量的数量积向量的数量积是两个向量之间的数乘,结果是一个标量。

这个标量可以用来表示两个向量之间的夹角。

在平面几何中,我们可以利用向量的数量积来求出线段之间的夹角和平行四边形的面积。

三、向量的叉积向量的叉积是两个向量之间的向量积,也称为矢量积。

向量的叉积可以用来求解平行四边形的面积和立体图形的体积。

在平面几何中,我们可以利用向量的叉积来求出三角形的面积。

四、平面几何中的向量应用在平面几何中,向量可以用来求解平面内各种图形的问题。

例如,我们可以利用向量来证明两条直线平行或垂直。

另一个应用是平面图形的对称性判定,即若两点关于某个点对称,则连接这两点的向量互为相反数。

五、向量和解析几何向量和解析几何也是密切相关的概念。

向量可以用来简化解析几何的计算,例如,利用向量可以求解直线的方程和平面的方程。

此外,向量还可以用来表示参数方程和一般方程。

六、综合应用实例下面我们来看一个综合应用的实例。

在坐标系中,设三角形ABC 的顶点坐标分别为A(1,2),B(4,3)和C(2,5),求解以下问题:(1)求解三角形ABC的周长和面积。

(2)求解角ABC的大小。

(3)求解BC的中垂线和AB延长线的交点坐标。

解法:(1)我们可以利用向量的加减法来求解各边的长度,然后再用海伦公式来求解面积。

设向量AB=a,向量AC=b,则有向量BC=b-a。

高考数学 5.4 平面向量综合应用复习课件

高考数学 5.4 平面向量综合应用复习课件

12
题型二 向量在物理中的应用 例 2 一质点受到平面上的三个力 F1,F2,
F3(单位:牛顿)的作用而处于平衡状态,已 知 F1,F2 成 60°角,且 F1,F2 的大小分别
为 2 和 4,则 F3 的大小为__2___7___.
解析 由已知得:F1+F2+F3=0, ∴F3=-(F1+F2) ∴F23=F21+F22+2F1·F2=28,∴|F3|=2 7.
a
8
5.某人先位移向量 a:“向东走 3 km”,接着再位移向 量 b:“向北走 3 km”,则 a+b 表示向东北走 3 2 km.
解析 要求 a+b,可利用向量和的三角形法则来求 解,如图所示,适当选取比例尺作O→A=a=“向东 走 3 km”,A→B=b=“向北走 3 km”,则O→B=O→A+ A→B=a+b. |O→B|= 32+32=3 2 (km), 又O→A与O→B的夹角是 45°,所以 a+b 表示向东北走
sin α-3),
∴ AC BC =(cos α-3)cos α+sin α(sin α-3)
=-1,
即 cos2α+sin2α-3(cos α+sin α)=-1,
∴cos
α+sin
α=23,∴sinα+π4=
2 3.
a
24
(2) | OA + OC |= 13,∴(3+cos α)2+sin2α=13,
满足 PA AM =0,A→M=-32M→Q,当点 A 在
x 轴上移动时,求动点 M 的轨迹方程.
思维启迪 利用 PA AM =0 和A→M=-32M→Q,求
出点 M 的坐标所满足的关系,进而求解.
a
16
解 设 M(x,y)为所求轨迹上任一点,

2025数学大一轮复习讲义北师大版 第五章 §5.4 平面向量中的综合应用

2025数学大一轮复习讲义北师大版  第五章 §5.4 平面向量中的综合应用

对于 A,由题意可得P→A·P→B-P→B·P→C=P→B·(P→A-P→C)=P→B·C→A=0,
所以PB⊥AC,同理可得PA⊥BC,PC⊥AB,故P为△ABC的垂心,
故A正确;
对于
B,如图设A→E=
→ AB →
,A→F=
→ AC →
,则|A→E|=|A→F|=1,
|AB|
|AC|
以AE,AF为邻边作平行四边形AEQF,则平行四边形
32yx·32xy=3,
故2x+y的最小值为3.
命题点2 与数量积有关的最值(范围)问题 例 3 (2024·开封模拟)已知等边△ABC 的边长为 3,P 为△ABC 所在平面
内的动点,且|P→A|=1,则P→B·P→C的取值范围是
A.-32,92 C.[1,4]
√B.-12,121
D.[1,7]
方法一 如图,建立平面直角坐标系,
设P(cos θ,sin θ),θ∈[0,2π],
∴B(
3,0),C
23,23,
∴P→B=(
3-cos
θ,-sin
θ),P→C=
23-cos
θ,32-sin
θ,
∴P→B·P→C=(
3-cos
θ)
23-cos
θ-sin
θ32-sin
θ=52-32
3 cos
设△ABC外接圆的半径为R,
则 R2=R22+ 222,
解得 R=1,CD=1+ 22,
∴S△ABC=12|AB||CD|=12×
2×1+
22=1+2
2 .
思维升华
用向量方法解决平面几何问题的步骤 平面几何问题―设――向――量→向量问题―计――算→解决向量问题―还――原→解决几何问题.

平面向量的综合应用[培优课]高中数学课件 5-4

第五章 平面向量与复数§5.4 平面向量的综合应用[培优课]设△ABC的内角A,B,C所对的边分别为a,b,c,当且仅当c=3b时,等号成立.即3b2+a2=4a·b,思维升华√A.等边三角形B.直角三角形C.等腰三角形D.三边均不相等的三角形即∠BAC=60°,可得△ABC是等边三角形.√即2x2+9x-126=0,因为x>0,故解得x=6,即AB=6,命题点1 与平面向量基本定理有关的最值(范围)问题√故2x+y的最小值为3.命题点2 与数量积有关的最值(范围)问题命题点3 与模有关的最值(范围)问题例4 已知a,b是单位向量,a·b=0,且向量c满足|c-a-b|=1,则|c|的取值范围是√a,b是单位向量,a·b=0,∴(x-1)2+(y-1)2=1,|c|表示以(1,1)为圆心,1为半径的圆上的点到原点的距离,思维升华向量求最值(范围)的常用方法(1)利用三角函数求最值(范围).(2)利用基本不等式求最值(范围).(3)建立坐标系,设变量构造函数求最值(范围).(4)数形结合,应用图形的几何性质求最值.√∴xy=18.√(3)(2022·北京)在△ABC中,AC=3,BC=4,∠C=90°.P为△ABC所在平面内的动点,且PC=1,则的取值范围是A.[-5,3]B.[-3,5]√C.[-6,4]D.[-4,6]以C为坐标原点,CA,CB所在直线分别为x轴、y轴建立平面直角坐标系(图略),则A(3,0),B(0,4).设P(x,y),√A.菱形B.矩形C.正方形D.等腰梯形故四边形ABCD为平行四边形,故AC⊥BD即四边形ABCD为菱形.A.与圆C 的半径有关B.与圆C 的半径无关C.与弦AB 的长度有关D.与点A ,B 的位置有关√√如图,连接AB,过C作CD⊥AB交AB于D,则D是AB的中点,A.8B.9C.12D.16√∵E为线段AD上的动点,∴A,D,E三点共线,∴x+3y=1且x>0,y>0,√√建立如图所示的平面直角坐标系,设P(x,y),则A(0,0),B(1,0),C(1,2),6.设向量a,b,c满足|a|=1,|b|=2,a·b=0,c·(a+b-c)=0,则|c|的最大值等于√向量a,b,c满足|a|=1,|b|=2,a·b=0,不妨设a=(1,0),b=(0,2),c=(x,y),∵c·(a+b-c)=0,∴(x,y)·(1-x,2-y)=x(1-x)+y(2-y)=0,即x2+y2-x-2y=0,7.(多选)(2022·珠海模拟)已知点O在△ABC所在的平面内,则以下说法正确的有√√同理可证O为AB,AC边上中线的三等分点,所以O为△ABC的重心,选项A正确;故O为△ABC的内心,选项B错误;所以OB⊥CA,OA⊥CB,OC⊥AB,即点O是△ABC的垂心,选项D错误.8.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,每逢新春佳节,我国许多地区的人们都有贴窗花的习俗,以此达到装点环境、渲染气氛的目的,并寄托着辞旧迎新、接福纳祥的愿望.图①是一张由卷曲纹和回纹构成的正六边形剪纸窗花,已知图②中正六边形ABCDEF的边长为2,圆O的圆心为正六边形的中心,半径为1,若点P在正六边形的边上运动,MN为圆的直径,则的取值范围是√如图所示,取AF的中点Q,9.(2022·晋中模拟)已知在直角梯形ABCD中,AD∥BC,∠ADC=90°,7AD=2,BC=1,P是腰DC上的动点,则的最小值为____.设C(0,a),P(0,b),B(1,a),A(2,0),0≤b≤a,。

平面向量教案

A.a sin A=b sin B B.a cos A=b cos B C.a sin B=b sin A D.a cos B=b cos A2.△ABC中,sin2A=sin2B+sin2C,则△ABC为()A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形3.在△ABC中,较短的两边为,且A=45°,则角C的大小是()A.15°B.75C.120°D.60°4.在△ABC中,已知,则·等于()A.-2B.2C.±2D.±45.设A是△ABC中的最小角,且,则实数a的取值范围是()A.a≥3B.a>-1C.-1<a≤3D.a>06.在△ABC中,三边长AB=7,BC=5,AC=6,则·等于()A.19B.-14C.-18D.-197.在△ABC中,A>B是sin A>sin B成立的什么条件( )A.充分不必要B.必要不充分C.充要D.既不充分也不必要8.若△ABC的3条边的长分别为3,4,6,则它的较大的锐角的平分线分三角形所成的两个三角形的面积比是( )A.1∶1B.1∶2C.1∶4D.3∶49.已知向量,,若与垂直,则实数=()A.1B.-1C.0D.210.已知向量a=,向量b=,则|2a-b|的最大值是()A.4B.-4C.2D.-211.已知a、b是非零向量,则|a|=|b|是(a+b)与(a-b)垂直的()A.充分但不必要条件 B.必要但不充分条件C.充要条件D.既不充分也不必要条件12.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长()A.1公里B.sin10°公里C.cos10°公里D.cos20°公里第Ⅱ卷(非选择题,共90分)二、填空题13.在△ABC中,BC=3,AB=2,且,A=.14.在△ABC中,已知AB=l,∠C=50°,当∠B=时,BC的长取得最大值.15.向量a、b满足(a-b)·(2a+b)=-4,且|a|=2,|b|=4,则a与b夹角的余弦值等于。

高考数学大一轮复习第五章平面向量5.4平面向量的综合应用课件理苏教版

x≥a, 1
的最大值是最小值的 8 倍,则实数 a 的值是__8___.
答案
解析
命题点2 向量在解三角形中的应用
例 4 在△ABC 中,角 A,B,C 的对边分别是 a,b,c,若 20aB→C+15bC→A
+12cA→B=0,则△ABC
3 最小角的正弦值等于___5__.
答案
解析
命题点3 向量在物理中的应用 例5 如图,一质点受到平面上的三个力F1,F2,F3(单位:牛顿)的作用而处 于平衡状态.已知F1,F2成60°角,且F1,F2的大小分别为2和4,则F3的大小 为_____.2 7 答案 解析
1 2 3 4 5 6 7 8 9 10 11 12 13 14
在 x 轴上的投影为1π2,则 ω,φ 的值分别为
_2_,__π3__. 审题路线图
答案
解析
课时作业
1.(教材改编)已知平面向量a,b,满足|a|= 3 ,|b|=2,a·b=-3,则|a+ 2b|=___7__.
答案
解析
由题意可得|a+2b|= |a+2b|2 = a2+4a·b+4b2= 7.
满足O→M·C→M=0,则yx=__±___3__.
答案
解析
∵O→M·C→M=0,∴OM⊥CM, ∴OM是圆的切线,设OM的方程为y=kx, 由 1|2+k|k2= 3,得 k=± 3,即yx=± 3.
思维升华
向量在解析几何中的“两个”作用 (1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题 的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之 间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题. (2)工具作用:利用a⊥b⇔a·b=0(a,b为非零向量),a∥b⇔a=λb(b≠0),可 解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几 何中的垂直、平行问题是一种比较简捷的方法.

2021高中数学一轮复习课件第五章 平面向量、复数第三节 第二课时 平面向量的综合应用


速度垂直于对岸行驶,则这艘船的航行速度的大小为________,
方向与水流方向的夹角为________.
解析:如图所示,设
―→ AB
表示水流速度,
―→ AC
表示船
垂直于对岸行驶的速度,以AB为一边,AC为一对角
―→ 线作▱ABCD,则 AD 就表示船的航行速度.
∵|
―→ AB
|=4
3
,|
―→ AC
|=12,∴|
心;由
―→ NA

―→ NB

―→ NC
=0知,N为△ABC的重心;因为
―→ PA
―→ ·PB

―→ PB
―→ ·PC
,所以(
―→ PA

―→ PC
―→ )·PB
=0,所以
―→ CA
·―P→B =0,所以―C→A ⊥―P→B ,即CA⊥PB,同理AP⊥BC,
CP⊥AB,所以P为△ABC的垂心,故选C.
返回
[解题技法] 向量在解析几何中的2个作用
向量在解析几何问题中出现,多用于“包装”,解决此 载体 类问题时关键是利用向量的意义、运算脱去“向量外 作用 衣”,导出曲线上点的坐标之间的关系,从而解决有关
距离、斜率、夹角、轨迹、最值等问题
利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、 工具 作用 平行问题,特别是向量垂直、平行的坐标表示在解决解
形的内心.
(6)对于△ABC,O,P为平面内的任意两点,若
―→ OP

―O→A +λ
―→ AB ―→

―→ AC ―→
(λ>0),则直线AP过△ABC的内心.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档