新北师大版八年级数学下册《五章 分式与分式方程 4. 分式方程 认识分式方程》教案_3
北师大版八年级数学下册54.《分式方程》教学设计

3.强化学生的问题意识,引导学生善于发现、提出和解决问题。
4.突出学生的主体地位,教师扮演引导者、组织者和合作者的角色,促进师生互动、生生互动。
5.注重培养学生的综合素质,将分式方程知识与实际生活相结合,提高学生的应用能力。
四、教学内容与过程
4.小组成果展示:每组选派一名代表进行成果展示,分享解题过程和经验。
(四)课堂练习
1.练习题设计:设计难易程度不同的练习题,涵盖分式方程的各种类型,使学生在练习中巩固所学知识。
2.学生独立完成:要求学生在规定时间内独立完成练习题,提高学生的解题能力。
3.解题指导:针对学生练习中出现的共性问题,进行集中讲解,帮助学生突破难点。
(一)导入新课
1.教学活动设计:以学生熟悉的生活场景为背景,提出一个关于速度的问题。例如:“小明和小华同时从同一地点出发,小明以4千米/小时的速度跑步,小华以5千米/小时的速度骑自行车,问他们分别在多长时间后相遇?”
2.引导学生思考:这个问题中涉及到哪些数学知识?能否用我们学过的方程来解决这个问题?
7.课后作业与反思:布置适量的课后作业,要求学生独立完成,并进行自我反思,总结解题过程中的优点和不足。
8.教学评价:采用多元化评价方式,关注学生的知识掌握程度、解题能力、合作意识等方面,全面评估学生的学习效果。
在教学过程中,教师应注重以下方面:
1.关注学生个体差异,因材施教,使每位学生都能在原有基础上得到提高。
4.布置课后作业:布置适量的课后作业,要求学生独立完成,并进行自我反思。
五、作业布置
为了巩固学生对分式方程知识的掌握,培养其运用所学解决实际问题的能力,特布置以下作业:
北师大版数学八年级下册5.4.2《分式方程的解法》 教案

4分式方程第2课时分式方程的解法教学目标【知识与技能】1.知道解分式方程的步骤;2.明确分式方程产生增根的原因及分式方程检验的方法;【过程与方法】经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想.【情感态度】在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.【教学重点】掌握分式方程的解法【教学难点】掌握分式方程的解法、解分式方程要验根.教学过程一.问题导引,初步认知我们已经学过一元一次方程,你还记得一元一次方程的解法吗?你能想象一下,如何得到分式方程的解吗?二.思考探究,获取新知探究:分式方程的解法1.解下列分式方程:【教学说明】通过观察,使学生发现可以将分式方程通过去分母转化成一元一次方程来求解.通过教师对例题讲解,让学生明确解分式方程的一般步骤.【归纳结论】1.解分式方程的一般步骤:(1)去分母(即在方程的两边都乘以最简公分母),把原分式方程化为_____;(2)解这个整式方程;(3)检验2.下列哪种解法准确?解分式方程解法一:将原方程变形为方程两边都乘以x-2,得:1-x=-1-2解这个方程,得:x=4.解法二:将原方程变形为方程两边都乘以x-2 ,得:1-x=-1-2(x-2)解这个方程,得:x=2你认为x=2是原方程的根?与同伴交流.【归纳结论】增根概念:将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根;认识增根:①增根是去分母后所得的根;②增根使最简公分母的值为0;③增根不是原方程的根.三.运用新知,深化理解A.2个 B.3个 C.4个 D.5个答案:B.()是分式方程,()是整式方程.答案:B;A、C3.王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元.后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元,原定的人数是多少?如果设原定是x人,那么x满足怎样的分式方程?解:方程两边都乘以y(y-1),得2y2+y(y-1)=(y-1)(3y-1),2y2+y2-y=3y2-4y+1,3y=1,解得y=1/3.检验:当y=1/3时,y(y-1)=1/3×1/3-1=-2/9≠0,∴y=1/3是原方程的解,∴原方程的解为y=1/3.解:两边同时乘以(x+1)(x-2),得x(x-2)-(x+1)(x-2)=3.解这个方程,得x=-1.检验:x=-1时(x+1)(x-2)=0,x=-1不是原分式方程的解,∴原分式方程无解.(3)解:方程的两边同乘(x-1)(x+1),得3x+3-x-3=0,解得x=0.检验:把x=0代入(x-1)(x+1)=-1≠0.∴原方程的解为:x=0.(4)解:方程的两边同乘(x+2)(x-2),得2-(x-2)=0,解得x=4.检验:把x=4代入(x+2)(x-2)=12≠0.∴原方程的解为:x=4.再两边同乘以3x-1,得3(3x-1)-1=2,3x-1=1,x=2/3.检验:把x=2/3代入(3x-1):(3x-1)≠0,∴x=2/3是原方程的根.∴原方程的解为x=2/3.(6)解:方程两边同乘以2(3x-1),得:-2+3x-1=3,解得:x=2,检验:x=2时,2(3x-1)≠0.所以x=2是原方程的解.【教学说明】通过学生的反馈练习,考察学生对分式方程概念的理解;以及解分式方程.使教师能全面了解学生对解分式方程是否清楚,以便教师能及时地进行查缺补漏.四.师生互动,课堂小结1.什么样的方程是分式方程?2.解分式方程的一般步骤:(1)去分母(即在方程的两边都乘以最简公分母),把原分式方程化为_____;(2)解这个整式方程;(3)检验:把整式方程的根代入最简公分母,使最简公分母的值不等于零的根是原分式方程的_____,使最简公分母的值等于零的根是原方程的_____.五.作业布置作业:教材“习题5.8”中第1、2、3、4题;作业本本节习题。
北师大版八年级数学下册教案 5-4 第1课时 分式方程及其解法

5.4分式方程第1课时分式方程及其解法教学目标【知识与技能】1.理解并能够说出分式方程的意义;2.理解并掌握分式方程的解法步骤,掌握验根的方法.【过程与方法】经历探索分式方程的解法的过程,经历解分式方程产生增根和将分式方程转化为整式方程的过程,体会数学中的化归思想.【情感、态度与价值观】在建立分式方程的数学模型的过程中培养克服困难的勇气,并从中获得成就感,提高解决问题的能力.教学重难点【教学重点】理解并掌握分式方程的解法.【教学难点】解分式方程产生增根的原因.教学过程一、情境导入在这一章的第一节《分式》中,我们曾研究过一个“固沙造林,绿化家园”的问题.当时,我们设原计划每月固沙造林x公顷,那么原计划完成一期工程需要2400x 个月,实际完成一期工程用了2400x+30个月.根据题意,可得方程2400 x −2400x+30=4.像2400x,2400x+30这种分母中含有字母的代数式是分式.而像2400x−2400x+30=4这样的方程我们是第一次遇到,它和我们学过的一元一次方程一样能刻画现实世界中的数量关系,是一种反映现实世界的数学模型.二、合作探究探究点1分式方程的意义典例1下列方程是分式方程的是()A.12−x3=0 B.4x=-2C.x2-1=3D.2x+1=3x[解析]观察知B项符合题意.[答案]B【技巧点拨】分母中含有未知数的方程叫做分式方程,可见,判断一个方程是否为分式方程,关键看分母里是否有未知数.下列方程:①x−35=1;②3x+1=2;③1+x5+x =12;④x 2+2x 2+1=5;⑤x π+x 2π=4.其中是分式方程的有 ( )A.①②B.②③C.③④D.②③④[答案] D探究点2 分式方程的解法典例2 解下列分式方程:(1)xx−1−2x−1x 2−1=1; (2)2+x 2−x +16x 2−4=-1.[解析] (1)去分母,得x (x +1)-(2x -1)=x 2-1,解得x =2.检验:当x =2时,x 2-1≠0,故分式方程的解为x =2.(2)去分母,得-(x +2)2+16=4-x 2,解得x =2.检验:当x =2时,2-x =0,故分式方程无解.探究点3 分式方程的增根典例3若分式方程3x−a x 2−2x +1x−2=2x 有增根,则实数a 的取值是 ( )A.0或2B.4C.8D.4或8[解析] 去分母,得3x -a +x =2(x -2),由题意得,分式方程的增根为0或2.当x =0时,-a =-4,解得a =4;当x =2时,8-a =0,解得a =8,故a 的值为4或8.[答案] D在将分式方程化为整式方程的过程中,若整式方程的根使分式方程的分母为零,那么这个根叫做分式方程的增根.产生增根的原因是在方程两边同乘了一个使分母为0的整式,因为解分式方程可能产生增根,所以解分式方程必须检验.检验的方法是检验所得的根是否使分式方程中分母的值等于0.若关于x 的分式方程m x 2−4−1x+2=0无解,则m = .[答案] 0或-4三、板书设计分式方程及其解法分式方程及其解法{ 分式方程的意义分式方程的解法步骤{ 转化解整检验结论增根及其产生的原因教学反思本节课中,让学生自己通过观察、类比的方法找到分式方程的解法,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验.。
八年级数学北师大版下册名师说课稿:第五章课题 分式方程

八年级数学北师大版下册名师说课稿:第五章课题分式方程一. 教材分析《北师大版八年级数学下册》第五章《分式方程》是学生在学习了初中数学基础知识后,进一步深入研究数学的重要章节。
本章主要引导学生学习分式方程的概念、解法以及应用。
通过本章的学习,使学生能理解分式方程的实际意义,掌握解决分式方程的基本方法,提高学生解决实际问题的能力。
二. 学情分析八年级的学生已经掌握了分式的基本知识,对解一元一次方程、一元二次方程等有了深入的理解。
但在解决实际问题时,学生往往对将实际问题转化为分式方程这一步骤感到困难,同时对分式方程的解法也有一定的疑惑。
因此,在教学过程中,我将以解决实际问题为载体,引导学生理解分式方程的实际意义,突破解题的难点。
三. 说教学目标1.知识与技能目标:学生能够理解分式方程的概念,掌握解决分式方程的基本方法,能够运用分式方程解决实际问题。
2.过程与方法目标:通过解决实际问题,培养学生将实际问题转化为数学模型的能力,提高学生解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,使学生感受到数学在生活中的重要性,培养学生的团队合作意识。
四. 说教学重难点1.教学重点:分式方程的概念,解决分式方程的基本方法。
2.教学难点:将实际问题转化为分式方程,分式方程的解法。
五. 说教学方法与手段在教学过程中,我将采用问题驱动法、案例教学法和小组合作学习法。
利用多媒体教学手段,展示实际问题,引导学生主动探究,分组讨论,提高学生解决实际问题的能力。
六. 说教学过程1.导入新课:以生活实际问题为载体,引导学生理解分式方程的实际意义。
2.知识讲解:讲解分式方程的概念,引导学生掌握解决分式方程的基本方法。
3.案例分析:分析实际问题,引导学生将实际问题转化为分式方程,并解决问题。
4.小组讨论:学生分组讨论,总结分式方程的解法,分享解题心得。
5.课堂练习:布置练习题,巩固学生对分式方程的理解。
6.总结拓展:总结本节课的主要内容,引导学生思考分式方程在实际生活中的应用。
北师大版八年级数学下册第五章 分式与分式方程4 第1课时 分式方程的概念及列分式方程

x x 20
1400 1400 9 1400 2.8 1400
x 2.8x
y
y9
4800 5000 x x 20
思考 由上面的问题,我们得到了三个方程,它们有 什么共同特点?
分母中都含有未知数.
知识要点
分式方程的概念 分母中含有未知数的方程叫做分式方程.
分式方程的特征 (1)是等式; (2)方程中含有分式; (3)分母中含有未知数.
归纳总结
列分式方程的步骤: (1)审清题意,适当设出未知数; (2)根据题意找等量关系,列出分式方程.
概念
分母中含有未知数的方程叫做分式 方程
分式 方程
列方程 步骤
1. 审清题意,适当设出未知数; 2. 根据题意找等量关系,列出分式 方程
1. 下列属于分式方程的是( A )
A. 1 3 x2 x
___x ___x__3__.
3. 某市为处理污水,需要铺设一条长为 5000 m 的管 道,为了尽量减少施工对交通所造成的影响,实际
施工时每天比原计划多铺设 20 m,结果提前 15 天 完成任务.设原计划每天铺设管道 x m,则可得方 程 5000 5000 15
____x____x___2_0______.
y9
1400 1400
关系式 高铁列车平均速度 = 2.8×特快列车平均速度
做一做 为了帮助遭受自然灾害的地区重建家园,某校 团总支号召同学们自愿捐款.已知第一次捐款总额为 4800元,第二次捐款总额为 5000 元,第二次捐款人数 比第一次多 20 人,而且两次人均捐款额恰好相等. 如果 设第一次捐款人数为 x 人, 那么 x 应满足怎样的方程?
典例精析
例1 下列式子中,哪些是分式方程?哪些整式方程?
2024年春八年级数学下册第5章分式与分式方程1认识分式教案新版北师大版

1 相识分式第1课时 分式的有关概念教学目标 一、基本目标1.了解分式的概念,明确分式与整式的区分.2.经验用字母表示现实情境中数量关系的过程,体会分式的模型思想,进一步发展符号感.3.通过教材土地沙化问题的情境,体会爱护人类生存环境的重要性. 二、重难点目标 【教学重点】 分式的概念. 【教学难点】分式有(无)意义的条件,分式值为0的条件. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P 108~P109的内容,完成下面练习. 【3 min 反馈】1.一般地,用A 、B 表示两个整式,A ÷B 可以表示成AB的形式.假如B 中含有字母,那么称A B为分式,其中A 称为分式的分子,B 称为分式的分母.对于随意一个分式,分母都不能为零.2.分式有意义的条件是分母不为0.分式的值为0的条件是分子等于0,且分母不等于0.3.下列各式中,哪些是分式?①2b -s ;②3000300-a ;③27;④v s ;⑤s 32;⑥2x 2+15;⑦45b +c ;⑧-5;⑨3x 2-1;⑩x 2-xy +y 22x -1;⑪5x -7.解:分式有①②④⑦⑩.4.当x 取何值时,下列分式无意义?当x 取何值时,下列分式的值等于0? (1)3-x x +2;(2)x +53-2x. 解:(1)当x +2=0时,即x =-2时,分式3-x x +2无意义.当x =3时,分式3-x x +2的值等于0.(2)当3-2x =0时,即x =32时,分式x +53-2x 无意义.当x =-5时,分式x +53-2x 的值等于0.环节2 合作探究,解决问题 活动1 小组探讨(师生互学)【例1】当x 取何值时,下列分式有意义?当x 取何值时,下列分式无意义?当x 取何值时,下列分式值为零?(1)x +1x -1 ; (2)x -2x 2-1; (3)x 2-1x 2-x. 【互动探究】(引发学生思索)依据分式有、无意义所满意的条件进行推断.分式的值为0,则分母不为0,且分子等于0.【解答】(1)有意义:x -1≠0,即x ≠1. 无意义:x -1=0,即x =1.值为0:x +1=0且x -1≠0,∴x =-1. (2)有意义:x 2-1≠0,即x ≠±1. 无意义:x 2-1=0,即x =±1. 值为0:x -2=0且x 2-1≠0,∴x =2. (3)有意义:x 2-x ≠0,即x ≠0且x ≠1. 无意义:x 2-x =0,即x =0或x =1. 值为0:x 2-1=0且x 2-x ≠0,即x =-1.【互动总结】(学生总结,老师点评)分式有意义的条件:分式的分母不能为0.分式无意义的条件:分式的分母等于0.分式值为0的条件:分式的分子等于0,但分母不能等于0.分式的值为0肯定是在有意义的条件下成立的.活动2 巩固练习(学生独学) 1.若代数式1x -1+x 有意义,则实数x 的取值范围是( D ) A .x ≠1 B .x≥0 C .x ≠0D .x≥0且x≠12.若分式2x -13x +5有意义,则x 的取值范围是x≠-53.3.若分式x 2-1x +1的值为0,则x 的值是1.4.对于分式x -m -nm -2n +3x ,已知当x =-3时,分式的值为0;当x =2时,分式无意义.试求m 、n 的值.解:∵当x =-3时,分式的值为0,∴⎩⎪⎨⎪⎧-3-m -n =0,m -2n -9≠0,即⎩⎪⎨⎪⎧m +n =-3,m -2n≠9.又∵当x =2时,分式无意义, ∴m -2n +3×2=0,即m -2n =-6.解方程组⎩⎪⎨⎪⎧m +n =-3,m -2n =-6,得⎩⎪⎨⎪⎧m =-4,n =1.活动3 拓展延长(学生对学)【例2】视察下面一列分式:x 3y ,-x 5y 2,x 7y 3,-x9y 4,….(其中x≠0)(1)依据上述分式的规律写出第6个分式;(2)依据你发觉的规律,试写出第n(n 为正整数)个分式,并简洁说明理由.【互动探究】(1)依据已知分式的分子与分母的次数与系数关系得出答案;(2)利用(1)中数据的变更规律得出答案.【解答】(1)视察各分式的规律可得,第6个分式为-x13y 6.(2)由已知可得:第n(n 为正整数)个分式为(-1)n +1×x 2n +1yn.理由:∵分母的底数为y ,次数是连续的正整数,分子底数是x ,次数是连续的奇数,且第偶数个分式为负,∴第n(n 为正整数)个分式为(-1)n +1×x 2n +1yn.【互动总结】(学生总结,老师点评)此题主要考查了分式的定义以及数字变更规律,得出分子与分母的变更规律是解题关键.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.分式的概念:一般地,假如A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.2.分式AB 有无意义的条件:当B≠0时,分式有意义;当B =0时,分式无意义.3.分式AB 值为0的条件:当A =0,B≠0时,分式的值为0.练习设计请完成本课时对应练习!第2课时 分式的基本性质教学目标 一、基本目标1.能正确理解和运用分式的基本性质.2.通过与分数的基本性质相比较,归纳得出分式的基本性质,体验类比的思想方法. 二、重难点目标 【教学重点】理解分式的基本性质,会进行分式的化简. 【教学难点】敏捷应用分式的基本性质将分式变形. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P 110~P112的内容,完成下面练习. 【3 min 反馈】1.分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:b a =b ·m a ·m ,b a =b ÷ma ÷m(m ≠0).2.把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.分子和分母已没有公因式,这样的分式称为最简分式.化简分式时,通常要使结果成为最简分式或整式.3.分式的分子、分母及分式本身的三个符号中,随意变更其中两个的符号,分式的值不变;若只变更其中一个或三个全变号,则分式的值变成原分式值的相反数.4.下列等式的右边是怎样从左边得到的?(1)a 2b =ac 2bc (c ≠0); (2)x 3xy =x 2y . 解:(1)由c ≠0,知a 2b =a ·c 2b ·c =ac 2bc .(2)由x ≠0,知x 3xy =x 3÷x xy ÷x =x 2y.5.约分:(1)a 2bc ab ; (2)-32a 3b 2c 24a 2b 3d. 解:(1)公因式为ab ,所以a 2bc ab=ac .(2)公因式为8a 2b 2,所以-32a 3b 2c 24a 2b 3d =-4ac3bd.环节2 合作探究,解决问题活动1 小组探讨(师生互学)【例1】不变更分式0.2x +12+0.5x 的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A ..2x +12+5xB ..x +54+xC .2x +1020+5xD .2x +12+x【互动探究】(引发学生思索)利用分式的基本性质,把0.2x +12+0.5x 的分子、分母都乘10,得2x +1020+5x . 【答案】C【互动总结】(学生总结,老师点评)视察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需依据分式的基本性质让分子和分母同乘某一个数即可.【例2】约分:(1)-5a 5bc 325a 3bc 4; (2)x 2-2xyx 3-4x 2y +4xy2.【互动探究】(引发学生思索)要约分须要先找分子、分母的公因式,如何确定公因式呢? 【解答】(1)-5a 5bc 325a 3bc 4=5a 3bc 3-a 25a 3bc 3·5c =-a25c . (2)x 2-2xy x 3-4x 2y +4xy 2=x x -2yx x -2y2=1x -2y. 【互动总结】(学生总结,老师点评)约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.活动2 巩固练习(学生独学)1.把分式2x2x -3y 中的x 和y 都扩大为原来的5倍,那么分式的值( B )A .扩大为原来的5倍B .不变C .缩小为原来的15D .扩大为原来的52倍2.将分式x2-y x 5+y 3的分子与分母中各项系数化为整数,结果是15x -30y6x +10y .3.约分:(1)-15a +b 2-25a +b ; (2)m 2-3m9-m2.解:(1)3a +b5.(2)-mm +3.4.先约分,再求值:(1)3m +n9m 2-n2,其中m =1,n =2; (2)x 2-4y 2x 2-4xy +4y 2,其中x =2,y =4. 解:(1)3m +n 9m 2-n 2=13m -n =13×1-2=1.(2)x 2-4y 2x 2-4xy +4y 2=x +2y x -2y x -2y 2=x +2y x -2y =2+2×42-2×4=-53. 活动3 拓展延长(学生对学)【例3】若x 2=y 3=z 4≠0,求x -y -z 3x +2y -z的值.【互动探究】因为条件是以比相等的形式出现,所以考虑设比值为k ,把待求式转化为关于k 的式子求值.【解答】设x 2=y 3=z 4=k (k ≠0),x =2k ,y =3k ,z =4k ,∴x -y -z 3x +2y -z =2k -3k -4k 6k +6k -4k =-5k8k=-58.【互动总结】(学生总结,老师点评)当数学问题中出现或隐含比值相等的条件时,设比值为一个新字母,把问题转化为新字母的问题求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.分式的基本性质:分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,随意变更其中两个符号,分式的值不变;若只变更其中一个符号或三个全变号,则分式的值变成原分式值的相反数.练习设计请完成本课时对应练习!。
新北师大版八年级数学下册《五章 分式与分式方程 1. 认识分式 分式的基本性质》教案_22
第五章 分式与分式方程《认识分式》教学设计一、教学目标(一)教学知识点1. 了解分式分式的概念,了解分式与整式概念的区别与联系.2.掌握分式有意义的条件,认识事物间的联系与制约关系.(二) 教学重点 了解分式的形式BA (A 、B 是整式), 理解分式概念中的一个特点: 分母中含有字母;一个要求:字母的取值限制于使分母的值不得为零.(三)教学难点分式的一个特点: 分母含有字母;一个要求: 字母的取值限制于使分母的值不能为零.二、教学方法讲练相结合三、学习导航创设问题情境,引入新课1. 小明家距离学校有 S 千米 ,小明步行的速度为 a 千米/时, 则小明从家到学校需______小时.2. s 盒方便面v 元钱, 则每盒方便面 元 .3. 式子 和 ,以及 和 与分数相比有什么相同点和不同点?相同点 不同点样子相同 分数的分子A 、分母B 都是整数;而这些式子的分子A 、分母B 都是整式,并且分母B 中都含有字母 都是 (即A ÷B )的形式象 这些式子就是我们这节课要学习的分式 分式定义:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么称 为分式.其中A 叫做分式的分子,B 叫做分式的分母.a S s v x +20100x -2060a S s v x +20100x -2060B A B A注意:1)分式是不同于整式的另一类式子,且分母中含有字母是分式的一大特点。
2)分式比分数更具有一般性。
判断:下面的式子哪些是分式?思考:分式的分母有什么条件限制?分式的分母不能为0, 即分母≠0分析:分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0 ; 分式中的分母如果是0,则分式没有意义 .当分母B = 0 时,分式 无意义. 当分母 B ≠0 时,分式 有意义.例题讲解例1 当x 取什么值时,下列分式有意义?(1) (2) 例2 (1)当a=1、2、-1时,分别求分式 的值。
北师大版八年级下册数学教案:5.4.2分式方程
在今天的教学中,我引导学生们学习了分式方程这一章节。回顾整个教学过程,我觉得有几个方面值得反思。
首先,关于导入新课的部分,我尝试通过提问的方式引发学生对分式方程的兴趣。从学生的反应来看,他们对于这个与日常生活相关的问题表现出了一定的好奇心,但可能我提的问题还不够具体,有些学生似乎没能立刻与分式方程建立联系。在以后的教学中,我需要更细心地设计问题,让更多的学生能够迅速进入学习状态。
本节课的核心素养目标旨在培养学生具备扎实的数学基础和解决实际问题的能力,同时注重学生的思维品质和人际交往能力的提升,符合新教材的要求。
三、教学难点与重点
1.教学重点
-分式方程的定义:使学生掌握分式方程的一般形式,理母、移项、合并同类项等基本解法,并通过典型例题进行讲解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是指含有未知数的分式等于一个数或另一个含有未知数的分式。它是代数方程的一种,对于解决实际问题具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。假设有5个苹果要平均分给3个人,我们可以通过分式方程来表示这个问题,并求解每个人能得到多少苹果。
(3)在检验环节,针对解得的解,如$x=2$,代入原方程$\frac{1}{x-1}=2$,让学生学会检验解是否满足原方程。
本节课的教学难点与重点在于让学生掌握分式方程的基本概念、解法及其应用,并注重培养学生的数学运算、逻辑推理和问题解决能力。在教学过程中,教师应针对重点和难点内容进行详细讲解和强调,确保学生理解透彻。
-分式方程的检验:学生容易忽视检验解的过程,或者不知道如何进行检验。
举例解释:
(1)在去分母时,对于方程$\frac{2}{x}+\frac{3}{y}=4$,学生需要掌握将方程两边同时乘以$xy$的技巧,避免在乘法运算时出错。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章分式与分式方程
分式方程(一)
教学目标
知识与技能:
(1)通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义。
(2)通过观察,归纳分式方程的概念。
(3)体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义。
过程与方法:
采用的是尝试——归纳相结合的方法,根据开始提出的多个实际问题。
教师鼓励学生进行尝试,利用具体情境中的等量关系列出分式方程,归纳出分式方程的定义。
情感与态度:
在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力。
教学重点:
探索分式方程的概念
教学难点:
列方程解应用题
教学方法:
尝试归纳相结合
教学过程
本节课设计了5个教学环节:引入新课——探索新知——感悟升华——巩固学习——自我小结
第一环节引入新课
活动内容:
在这一章的第一节《分式》中,我们曾研究过一个“固沙造林,绿化家园”
的问题。
面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成计划任务。
原计划每月固沙造林多少公顷?
分析:这一问题中有哪些已知量和未知量?
已知量:造林总面积2400公顷实际每月造林面积比原计划多30公顷提前4个月完成原任务
未知量:原计划每月固沙造林多少公顷
这一问题中有哪些等量关系?
实际每月固沙造林的面积=计划每月固沙造林的面积+30公顷
原计划完成的时间—完成实际的时间=4个月
我们设原计划每月固沙造林x公顷,那么原计划完成一期工程需要___个月,实际完成一期工程用了____个月,根据题意,可得方程__________。
活动目的:为了让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型在解决实际生活问题中作用,利用第一节《分式》中一个熟悉的问题,引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。
注意事项:要给学生一定的思考时间,让学生积极投身于问题情景中,根据学生的情况教师可以给予适当的提示和引导.
第二环节探究新知
活动内容:
甲、乙两地相距 1400 km,乘高铁列车从甲地到乙地比乘特快列车少用 9 h,已知高铁列车的平均行驶速度是特快列车的 2.8 倍.
(1)你能找出这一问题中的所有等量关系吗?
(2)如果设特快列车的平均行驶速度为x km/h,那么x满足怎样的方程?(3)如果设小明乘高铁列车从甲地到乙地需y h,那么y满足怎样的方程?活动目的:再次让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型作用,设置了这么一个例题,关键是引导学生努力寻找
问题中的所有等量关系,发展学生分析问题、解决问题的能力。
注意事项:要给学生一定的思考时间,让学生积极投身于问题情景中,通过同学之间相互讨论,解决问题,同时要注意引导学生理解每一步的实际意义 活动内容:
为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知七年级同学捐款总额为4800 元,八年级同学捐款总额为5000元,八年级捐款人数比七年级多 20人,而且两个年级人均捐款额恰好相等.如果设七年级捐款人数为 x 人,那么 x 满足怎样的方程?
活动目的:再次让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型作用。
注意事项:要给学生一定的思考时间,让学生积极投身于问题情景中,此时,每位同学都有了一定的找等量关系的感觉,先让他们自己完成,再小组讨论 第三环节 感悟升华
活动内容:
回顾刚才我们得出的 4个方程:
(1)24002400430x x -=+ (2)1400140092.8x x
-= (3)140014002.89y y =⨯+ (4)4800500020
x x =+ 上面所得到的方程有什么共同特点?
它们都含有分母并且分母中含未知数,不是一元一次方程。
这就是我们今天要认识的一种新的方程——分式方程:分母中含有未知数得方程。
分式方程重要特征:
(1) 含分母
(2) 分母中含未知数
分式方程与整式方程的区别:分式方程中分母含有未知数,而整式方程中的分母不含有未知数。
活动目的: 通过让学生通过观察、归纳、总结出整式方程与分式方程的异同,从而得出分式方程的概念
注意事项:注意引导学生理解分式方程重要特征,分清分式方程与整式方程的区别,
第四环节巩固学习
活动内容:
1.找找看,下列方程哪些是分式方程:
(1)1
(3)
2
x x
-=(2)
1
1
2x
=(3)
1
3
12
x
x x
-=
--
(4)1
23
x x
-=
2. “退耕还林还草”是在我国西部地区实施的一项重要生态工程.某地规划退耕面积共 69000 2
hm,退耕还林与退耕还草的面积比为5∶3.设退耕还林的面积为x2
hm,那么x满足怎样的分式方程?
3.中国2009年吸收外国的投资总额达950亿美元,比上一年增加了12%,设2008年我国吸收外国的投资为x亿美元,你能写出几个x满足的方程式?其中哪一个是分式方程?
4.某商场有管理人员40人,销售人员80人,为了提高服务水平和销售量,商场决定从管理人员中抽调一部分人充实销售部分,使管理人员与销售人员的人数比为1:4,那么应抽调的管理人员数x,满足怎样的方程?
活动目的:通过学生的反馈练习,考察学生对分式方程概念的理解.
注意事项:引导学生分析题目中的已知量、未知量、等量关系来解决问题,。
活动内容
5. 王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元。
后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元,原定的人数是多少?如果设原定是x人,那么x满足怎样的分式方程?
活动目的:由浅入深,出了一道比上题难度大一点的问题。
还是为了训练学生找出问题中的所有等量关系,发展学生分析问题、解决问题的能力。
注意事项:要给学生一定的思考时间,让学生积极投身于问题情景中,努力寻找问题中的所有等量关系。
第五环节自我小结
活动内容:本节你有哪些收获,有什么感想?
1、分母中含有未知数的方程叫做分式方程
2、对于一个现实问题⇒找到它的等量关系⇒建立分式方程
活动目的:通过学生的回顾与反思,让学生感受到在实际问题中,一定要找到它的等量关系,根据等量关系来列方程。
注意事项:小节最好由同学们讨论,教师只是顺势把学生的话进行一个归纳总结。
关注学生从现实生活中发现并提出数学问题的能力,关注学生能否尝试用不同方法寻求问题中数量关系,并用分式方程表示,能否表达自己解决问题的过程
布置作业:
《精练》:分式方程第一课时:当堂检测
教学反思
1、问题的提出必须以现实生活为背景。
不要出一些与实际生活不符的纯理论问题。
2、课堂上要把激发学生学习的积极性放在首位,多让学生说,帮助学生培养发展有条理的思考及其语言表达能力。
同时要多注意困难学生的疑问。
不要让一些思维活跃的学生的回答代替了其他同学的思考。
使小组学习更有实效性。
3、列分式方程解决应用问题教学时,要引导学生抓住寻找等量关系,恰当选设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量等关键环节,细心分析问题中的数量关系。