水力压裂造缝机理
水力压裂

(2)低渗透油藏开发过程中的伤害问题
② 粘土矿物对低渗透油层的伤害 •粘土矿物的存在形态、类型及对油层的影响
粘土矿物对油层的伤害,主要表现为膨胀和运移两种方式。 其伤害程度和方式与粘土矿物的存在形式和类型密切相关。 •粘土矿物在地层中有两种存在形态: 一种是粘土矿物包覆在岩粒表面或附着在基岩表面呈薄膜状。 另一种是粘土矿物在岩石孔隙中以填充物的形式存在。
14
二、低渗透油气藏的地质特征及开发对策
2. 低渗透油气藏储量、产量构成比例逐年提高 低(特低、超低)渗透油气藏的有效开发和安全
环保利用,将是中国石油需要长期关注的工作重点, 更是采油采气工程的工作重点。
3. 压裂技术实现有效增储上产作用举足轻重
近10年来年压裂酸化作业超过10000井次,年增油量超过 700万吨(平均单井700吨)以上。 大庆油田每年完成压裂2000多层次。
井
20
二、低渗透油气藏的地质特征及开发对策
注 (1)建立有效的注采驱动压力体系 采
水
油
井
低渗透油藏
井
由于渗透率低和启动压力的作用,导
致注采井间无法建立有效的水动力系
统,致使注水压力上升,采油井压力
下降--注不进、采不出!
21
二、低渗透油气藏的地质特征及开发对策 (2)低渗透油藏开发过程中的伤害问题 • 应力敏感性伤害 • 粘土矿物对低渗透油层的伤害 • 低孔隙压力造成低渗透油层的伤害 • 压裂过程中压裂液的伤害
15
4、全国低渗透油层综合分类评价表
类型
名称
标准范围 10-3μm2
中值半径 μm
排驱压力 MPa
驱动压力 MPa
最终采收率 %
对比层
>100
水力压裂的工艺过程

水力压裂:
利用地面高压泵组,将高粘液体以大大超过地层吸收能 力的排量注入井中,在井底憋起高压;当此压力大于井壁附 近的地应力和地层岩石抗张强度时,在井底附近地层产生裂 缝;继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支 撑剂,关井后裂缝闭合在支撑剂上,从而在井底附近地层内 形成具有一定几何尺寸和导流能力的填砂裂缝,使井达到增 产增注目的工艺措施。
一、油井应力状况
(一)地应力
z
y
垂向应力:上覆层的岩石重量。
Z S gdz
0
H
x
Z Z Ps 有效垂向应力:
如果岩石处于弹性状态,可根据广义虎克定律建立岩石的 有效水平应力与有效垂向应力的关系: 在三向应力作用下,x轴方向上的应变分别为:
1 x1 x E
第六章 水力压裂技术
主要内容:
(1) 造缝机理 (2) 压裂液 (3) 支撑剂 (4) 压裂设计
压裂的定义:
用压力将地层压开一条或几条水平的或垂直的裂缝,并 用支撑剂将裂缝支撑起来,减小油、气、水的流动阻力,沟 通油、气、水的流动通道,从而达到增产增注的效果。
压裂的种类:(根据造缝介质不同)
水力压裂 高能气体压裂 利用特定的发射药或推进剂在油气井的目 的层段高速燃烧,产生高温高压气体,压 的液体二氧化碳和石英砂进行压裂, 干法压裂 利用100% 裂地层形成多条自井眼呈放射状的径向裂 无水无任何添加剂,压后压裂液几乎完全排出 缝,清除油气层污染及堵塞物,有效地降 地层,可避免地层伤害。其关键技术是混合砂 低表皮系数,从而达到油气井增产的目的 子进入液体二氧化碳中的二氧化碳混合器。适 的一种工艺技术。 用于对驱替液、冻胶或表面活性剂的伤害敏感 的地层,适合的储层包括渗水层、低压层及有 微粒运移的储层以及水敏性储层。
储层改造技术(交流)

停泵 裂缝闭合
a b
排量不变,提高砂比,压力升高 反映了正常的裂缝延伸
E
a—致密岩石 b—微缝高渗岩石
井筒摩阻
净裂缝延伸压力 C
S 地层压力(静)
压裂施工典型曲线
时间
pF—破裂压力
pE —延伸压力
03:40 pS —地层压力
p井底>= pF时
26
一、地应力分析
1 地应力场
地应力 存在于地壳内部的应力,是由于地 壳内部的垂直运动和水平运动及其它因素综 合作用引起介质内部单位面积上的作用力。
Ps )
1 2 1
h t
3 y
x
(Pi
Ps )
h t
当破裂时,Pi=PF
PF
3 y
x
h t
Ps
03:40
47
(2) 形成水平缝
岩石破坏条件
v t
最大有效周向应力大于垂直方向抗拉强度
03:40
48
3 破裂压力梯度
定义
理论计算
(垂直裂缝形态)
PF
H
F
pF H
2v z
1v H
1 3v 1v
03:40
6
各类储层中增产方法的使用
• 砂岩储层 Sandstone Formation
– 水力压裂、基质酸化
• 碳酸盐岩储层
– 水力压裂、基质酸化、酸压
• 特低渗储层
– MHF
• 特低渗坚硬储层
– 高能气体压裂
03:40
7
第二节 水力压裂概述
• 水力压裂基本原理 • 水力压裂发展概况 • 水力压裂的作用
03:40
30
由于泊松效应,垂向应力产生的侧向压力
第6章 水力压裂技术(20130325)

(2)破裂压力计算方法
裂缝方位: 水力裂缝总是沿着垂直于最小主应力方向延伸。 (1)σz=min(σx ,σy ,σz) 水平缝 垂直缝
(2)σx(σy)=min(σx ,σy ,σz) 方向:取决于最小主应力方向
4.破裂压力梯度
破裂压力梯度用下式表示:
地层破裂压力 油层中部深度
浅层:水平缝
2)粒径及其分布 3)支撑剂类型与铺砂浓度 4)其它因素 如支撑剂的质量、密度以及颗粒园球度等
返回
第四节
压裂设计的任务:
压裂设计
优选出经济可行的增产方案
压裂设计的原则:
最大限度发挥油层潜能和裂缝的作用 使压裂后油气井和注入井达到最佳状态
压裂井的有效期和稳产期长
压裂设计的方法:
根据油层特性和设备能力,以获取最大产量或经济效 益为目标,在优选裂缝几何参数基础上,设计合适的加砂 方案。
FRCD=Wf˙Kf=(KW)f
裂缝参数:Lf,FRCD,是最关键的因素; 最大缝宽: Wmax, Wf
4 Wmax
动态缝宽:施工过程中的裂缝宽度;~10mm 支撑缝宽:裂缝闭合后的宽度 W支;3~5mm。
一、支撑剂的要求 1.粒径均匀;
2.强度大,破碎率小; 3.圆度和球度高;
4.密度小; 5.杂质少。
(2)受地层流体压缩性控制CⅡ :
当压裂液粘度接近油藏流体粘度时,控制压 裂液滤失的是储层岩石和流体的压缩性,这是因 为储层岩石和流体受到压缩,让出一部分空间压 裂液才得以滤失进去。
C
kCf 4.3 10 P r
3
1/ 2
s 式中: μr-地层流体粘度,mPa· ;
1 C
水力压裂介绍

.
23
其它压裂工艺技术
一、滑套式分层压裂工艺技术
滑套式分层压裂管柱由投球器、井口球阀、工作 筒和堵塞器、水力压差式封隔器、滑套喷砂器组 成。其原理是利用不压井、不放喷井口装置、井 下工作筒和堵塞器,可使压裂管柱实现不压井、 不放喷起下作业。利用井下滑套喷砂器多级开关, 自下而上实现多层压裂。当每压完一层时,从井 口投入不同直径的钢球,将滑套憋到已压开层的 喷吵器上将其水眼堵死,同时打开上一层喷砂器 的水眼,开始对上一层进行压裂,从而实现不动 管柱一次连续压多层。
更加紧密,使低渗透油田的高效开发成为可能
.
4
我国在五十年代起已开始进行水力压裂技术的研究,迄 今为止已取得了很好的技术成就与较高的经济效益
大庆油田1973年开始采用水力压裂作为油田增产增注的 一项重要技术措施,至今已有30年的历史。随着油田的 开发进程,针对不同时期不同对象及其对于改造技术的 不同要求,压裂工艺技术不断发展、完善和提高
取短期导流能力值的1/3作为实际应用值,支撑缝内的
导流能力可达到40.1DC.cm。
.
41
最终优化该层加 砂规模为42m3
设计施工排量 3.0m3/min
支撑裂缝长度为 320m
平均铺砂浓度 5.68Kg/m3
.
42
应力剖面
1408
1416
FracproPT 图形
平均支撑裂缝宽度4.8mm, 裂缝高度为27m
.
35
水力压裂的优化设计计算
.
36
早 期 压 裂 优 化 设 计
.
37
主要分为两大步骤:
1、裂缝参数优化
该步骤应用油藏模拟水力压裂平台优化出单层不同裂
缝长度以及不同导流能力参数下的产能,从而确定出合
水力压裂技术

第四章 水力压裂技术水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中, 在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,在井底附近地层 产生裂缝。
继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在 支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和导流能力的填砂裂缝,使井达到 增产增注的目的。
水力压裂增产增注的原理主要是降低了井底附近地层中流体的渗流阻力和改变了流体的渗流状态,使原来的径向流动改变为油层流向裂缝近似性的单向流动和裂缝与井筒间的单向流 动,消除了径向节流损失,大大降低了能量消耗。
因而油气井产量或注水井注入量就会大幅 度提高。
第一节 造缝机理在水力压裂中,了解裂缝形成条件、裂缝的形态和方位等,对有效地发挥压裂在增产、 增注中的作用都是很重要的。
在区块整体压裂改造和单井压裂设计中,了解裂缝的方位对确 定合理的井网方向和裂缝几何参数尤为重要,这是因为有利的裂缝方位和几何参数不仅可以 提高开采速度,而且还可以提高最终采收率。
造缝条件及裂缝的形态、方位等与井底附近地层的地应力及其分布、岩石的力学性质、压 裂液的渗滤性质及注入方式有密切关系。
图4一l 是压裂施工过程中井底压力随时间的变化曲 线。
P F 是地层破裂压力,P E 是裂缝延伸压力,P S 是地层压力。
图4一l 压裂过程井底压力变化曲线a — 致密岩石;b —微缝高渗岩石 在致密地层内,当井底压力达到破裂压力P F 后,地层发生破裂(图4—1中的a 点),然后在较低的延伸压力P E 下,裂缝向前延伸。
对高渗或微裂缝发育地层,压裂过程中无明 显的破裂显示,破裂压力与延伸压力相近(图4—1中的b 点)。
一、油井应力状况一般情况下,地层中的岩石处于压应力状态,作用在地下岩石某单元体上的应力为垂向 主应力σZ 和水平主应力σH (σH 又可分为两个相互垂直的主应力σx ,σY )。
第六章 水力压裂技术

第六章水力压裂技术水力压裂是油气井增产、注水井增注的一项重要技术措施,不仅广泛用于低渗透油气藏,而且在中、高渗油气藏的增产改造中也取得了很好的效果。
它是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中,在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,在井底附近地层产生裂缝。
继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和导流能力的填砂裂缝,使井达到增产增注目的工艺措施。
水力压裂增产增注的原理主要是降低了井底附近地层中流体的渗流阻力和改变流体的渗流状态,使原来的径向流动改变为油层与裂缝近似性的单向流动和裂缝与井筒间的单向流动,消除了径向节流损失,大大降低了能量消耗。
因而油气井产量或注水井注入量就会大幅度提高。
如果水力裂缝能连通油气层深处的产层(如透镜体)和天然裂缝,则增产的效果会更明显。
另外,水力压裂对井底附近受损害的油气层有解除堵塞作用。
6.1 造缝机理在水力压裂中,了解造缝的形成条件、裂缝的形态(垂直或水平)、方位等,对有效地发挥压裂在增产、增注中的作用都是很重要的。
在区块整体压裂改造和单井压裂设计中,了解裂缝的方位对确定合理的井网方向和裂缝几何参数尤为重要,这是因为有利的裂缝方位和几何参数不仅可以提高开采速度,而且还可以提高最终采收率,相反,则可能会出现生产井过早水窜,降低最终采收率。
造缝条件及裂缝的形态、方位等与井底附近地层的地应力及其分布、岩石的力学性质、压裂液的渗滤性质及注入方式有密切关系。
图6-1是压裂施工过程中井底压力随时间的变化曲线。
P是地层破裂压力,E P是裂缝延伸压力,S P是地层压力。
F238239图6-1 压裂过程井底压力变化曲线 a —致密岩石 b —微缝高渗岩石在致密地层内,当井底压力达到破裂压力F P 后,地层发生破裂(图6-1中的a),然后在较低的延伸压力E P 下,裂缝向前延伸。
储层改造技术--水力压裂

x y
1
1
z
x y
1
考虑流体压力后, x y 其中:
z 不成立,应为: 1
z
5
为侧压系数。
第三节
(2) 地质构造对应力的影响
水力压裂造缝机理
如果岩石单元体是各向同 性材料,岩石破裂时的裂 缝方向总是垂直于最小主 应力轴。 ①由于浅地层的垂向应力相对 小些,且近地表地层中构造运 动也较多,水平应力大于垂向 应力的几率也多、且浅地层中 层理发育,所以浅地层多出现 水平裂缝。
1、添加剂 多达数十种
1)稠化剂、
2)交联剂、 3)粘土稳定剂、 4)杀菌剂、 5)表面活性剂、 6)抗高温稳定剂、 7)降滤失添加剂、
不同水基压裂液之间的特点都是通
过其添加剂的调整表现出来的。 具体命名与分类也是要参考其主要
添加剂的。
一般了解水基压裂液应从添加剂入 手。
8)破胶剂、
9)滤饼溶解剂、 10)缓冲剂
9
第三节
水力压裂造缝机理
3) 压裂液径向渗入地层所引起的井壁应力
由于注入井中的高压液体在地层破裂前,渗入井筒周围地层中,形成了 一个附加应力区,它的作用是增大了井壁周围岩石中的应力。增加的周向应 力值为:
3
其中:
1 2 Pi Ps 1
岩石骨架压缩系数
Cr 1 Cb
t h Pi PF
12Байду номын сангаас
第三节
水力压裂造缝机理
I、压裂液无滤失(孔隙压力Ps)
x x Ps y y Ps P s
3 y x Ps Pi
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水力压裂造缝机理 水力压裂裂缝的形成和延伸是一力学行为,水力裂缝的形态与方位对于有效发挥压裂对储层的改造作用密切相关,必须掌握水力压裂的裂缝起裂与延伸过程的力学机制。本节从地应力场分析及获取方法入手介绍水力裂缝的形成机理、造缝条件、裂缝形态与方位、破裂压力预测方法。 在致密地层,首先向井内注入压裂液使地层破裂,然后不断注液使压裂缝向地层远处延伸。显然,地层破裂压力最高,反映出注入流体压力要克服由于应力集中而产生的较高井壁应力以及岩石抗张强度。一旦诱发人工裂缝,井眼附近应力集中很快消失,裂缝在较低的压力下延伸,裂缝延伸所需要的压力随着裂缝延伸引起的流体流动摩阻增加使得井底和井口压力增加。停泵以后井筒摩阻为零,压裂缝逐渐闭合,施工压力逐渐降低。 对于高渗透地层或存在裂缝带,地层破裂时的井底压力并不出现明显的峰值。 一、地应力场分析与测量 地下岩石的应力状态通常是三个相互垂直且互不相等的主应力(principal stress)。地应力场不但影响到水力压裂造缝过程,而且通过井网与人工裂缝方位的配合关系影响到油藏开发效果。 1.地应力场 存在于地壳内的应力称为地应力(in-situ stress),是由于上覆岩层重力、地壳内部的垂直运动和水平运动及其它因素综合作用引起介质内部单位面积上的作用力。包括原地应力场和扰动应力场两部分。前者主要包括重力应力、构造应力、孔隙流体压力和热应力等;后者主要是指由于人工扰动作用引起的应力。 1)重力应力场 是指沉积盆地中的储层受到上覆岩层重力作用而形成的应力分布。 在地层中孔隙流体压力作用下,部分上覆岩层的重力被孔隙流体压力所支撑。但由于颗粒间胶结作用,孔隙压力并未全部支撑上覆地层压力。 Terzaghi认为:地层岩石变形由有效应力引起。假设地层岩石为理想的均质各向同性线弹性体,弹性状态下垂向载荷产生的水平主应力分量由广义胡克(Hook) 定律计算。 E和ν为岩石力学参数,典型值见表6-1。它们与岩石类型和所受到的围压、温度有关。 表6-1 常见岩石的泊松比与杨氏模量 岩石类型 杨氏模量,104MPa 泊松比 岩石类型 杨氏模量,104MPa 泊松比 硬砂岩 4.4 0.15 砾岩 7.4 0.21 中硬砂岩 2.1 0.17 白云岩 4.0~8.4 0.25 软砂岩 0.3 0.20 花岗岩 2.0~6.0 0.25 硬灰岩 7.4 0.25 泥岩 2.0~5.0 0.35 中硬灰岩 — 0.27 页岩 1.0~3.5 0.30 软灰岩 0.8 0.30 煤 1.0~2.0 0.30 因岩体水平方向上应变受到限制,即 ex=0,ey=0。 砂岩的泊松比一般在0.15~0.27之间。泊松比越大,水平主应力越接近垂向应力。考虑孔隙流体压力后的地层水平主应力。 2) 构造应力场 构造应力场是指构造运动引起的地应力场增量。它以矢量形式迭加在地层重力应力场中,使得水平主应力场不均匀。一般而言,在正断层和裂缝发育区是应力释放区,例如,正断层中的水平主应力可能只有垂向应力的1/3,而在逆断层或褶皱地带的水平应力可以大到垂向应力的3倍。通常,构造应力场只有两个水平主应力,属于水平的平面应力状态,而且挤压构造引起挤压构造应力,张性构造引起拉张构造应力。 3) 热应力场 热应力场是指由于地层温度变化在其内部引起的内应力增量,与温度变化量和岩石性质有关。油田开发中的注水、注蒸汽和火烧油层等可以改变油藏的主应力大小,甚至主应力方向。 将油藏边界视为无穷大,考虑其侧向应变受到约束,温度变化引起的水平应力增量Dsx,Dsy 2.地应力场确定 地应力场确定包括地应力大小和方向。主要手段主要有: 1) 水力压裂法 微型压裂(mini-frac)压力曲线计算应力场。 2)实验室分析方法 应用定向取心技术保证取出岩心样品的主应力方位与其在地层中主应力方位一致。岩心从地下三向压应力状态改变到地面自由应力状态,根据岩心各方向的变形确定主应力方位和数值。 (1) 滞弹性应变恢复(ASR) 基于岩心与其承压岩体发生机械分离后所产生的应力松弛,按各个方向测量应变并确定主应变轴。并假定主方向与原位应力主轴相同,按已知的弹性常数和上覆岩层载荷情况间接计算应力值。 (2) 微差应变分析(DSCA) 从井底取出的岩心由于应力释放和应变恢复会发生膨胀,产生或重新张开微裂缝。基于应变松弛作为“应力史”痕迹的思想,应变松弛形成的微裂缝密度和分布与岩心已经出现的应力下降成正比。通过描述微裂隙分布椭球,即可揭示以前的应力状态。根据和这些微裂缝相关的应变推断主应力方向,并从应变发生的最大方向估算出最小主应力值。 3) 测井解释方法 利用测井(主要是密度测井、自然伽玛测井、井径测井和声波时差测井以及中子测井、自然电位测井等)资料,首先基于纵横波速度与岩石弹性参数之间的关系解释岩石力学参数,再结合地应力计算模式获得连续的地应力剖面。 4) 有限元模拟 根据若干个测点地应力资料,借助于有限元数值分析方法,通过反演得到构造应力场。强烈取决于根据研究工区所建立的地质模型、数学力学模型和边界条件。 此外,测定地应力方向的常用方法还有声波测定、井壁崩落法、地面电位法、井下微地震法和水动力学试井等方法。 3.人工裂缝方位 在天然裂缝不发育的地层,压裂裂缝形态取决于其三向应力状态。根据最小主应力原理,水力压裂裂缝总是产生于强度最弱、阻力最小的方向,即岩石破裂面垂直于最小主应力方向。当sz最小时,形成水平裂缝(horizontal fracture);当sy最小时,形成垂直裂缝(vertical fracture)。 对于显裂缝地层很难出现人工裂缝。而微裂缝地层可能出现多种情况,人工裂缝面可以垂直于最小主应力方向;也可能基本上沿微裂缝的方向发展,把微裂缝串成显裂缝。 二、破裂压力 地层岩石破裂前,井壁最终应力场为钻孔应力集中、向井筒注液产生的应力、注入压裂液径向滤失诱发应力的迭加。基于最终应力分布结合岩石破裂准则确定破裂压力计算公式。 1.井壁最终应力分布 1)井筒应力分布 对于裸眼井,记井眼半径为rw。钻井完成后地层中应力分布可视为无限大均质各向同性岩石平板中有一圆形孔眼时的应力状态,。记压应力为正、张应力为负,根据弹性力学理论计算图中任意点 (r ,q) 处的应力分布。 离井壁越远,周向压应力迅速降低,径向压应力逐渐增加;而且大约几个井径之后,周向压应力降为原地应力,径向应力增加到原地应力。 实际上,由于岩石的抗压强度比抗张强度大得多,而且钻井孔眼引起的应力集中使得井壁处应力大于原地应力,因此,水力压裂造缝时主要关心的应是井壁处的周向应力sq。通常记sx>sy,则 当q=0° 或180°,井壁处周向应力最小。 sqmin = 3sy-sx 当q=90°或270°,井壁处周向应力最大。 sqmax = 3sx-sy 对于套管完成井,考虑到水泥环与岩石的力学性质比钢材与岩石的力学性质差别小得多,可按双层厚壁圆筒的弹性力学理论计算井筒周围的应力状态。 2)向井筒注液产生的应力分布 为了在井壁的薄弱处人为诱发裂缝,需要向井筒注入高压液体使井底压力迅速提高。将裸眼井筒周围岩石系统视作具有无限壁厚、且承受内外压力的厚壁圆筒,按弹性力学理论计算其应力分布 注入压裂液在井壁周围各个方向上所产生的应力均为张应力,因此,向井筒注液有利于撕开地层。同时,注液产生的应力沿井轴半径逐渐衰减, 在井壁处产生的张应力近似为注液压力,离井轴越远,应力越小。 3)注入液径向渗入地层引起的应力 注入液径向渗入近井筒地带产生另外一个应力区,增大了井壁周围岩石应力。 4)井壁最终应力分布 地层岩石破裂之前井壁周围应力为上述几种应力迭加,总存在两个方向(如果sx > sy,在q=0°,180°方向)受到的周向应力最小
可见,离开井壁较远处,周向应力仍为压应力,但在井壁附近为张应力,因而,水力压裂能够形成人工裂缝。 2. 水力压裂造缝条件 岩石破坏准则是衡量有效主应力间的极限关系。超过该极限值,就出现不稳定或破坏。岩石破裂准则很多。水力压裂中常用最大张应力准则,认为施加于裂缝壁面的总有效应力一旦达到物体的抗张强度st地层就会破坏。 令孔隙弹性常数为1,分别研究裸眼井水力压裂中垂直裂缝和水平裂缝形态相应的造缝条件。地层破裂极限条件下的注入压力即为地层破裂压力(fracture pressure)。 1) 形成垂直裂缝 如果注入压裂液滤失到地层,井壁上有效周向应力为周向应力与注液压力pi之差,即 由最大张应力准则,当井壁岩石的周向应力 达到井壁岩石水平方向的最小抗张强度 时,岩石将在垂直于张应力方向脆性断裂而形成垂直裂缝。 2)形成水平裂缝 当注入压裂液向地层滤失,将增大垂向应力。其增量与水平方向应力增量相同, 综合前述推导分析可得:无论是形成垂直裂缝或水平裂缝,压裂液向地层滤失时,由于流体传递了该压力而使破裂压力有所降低。但压裂液向地层滤失增加了地层污染可能性。 3. 破裂压力梯度 破裂压力梯度(fracture pressure gradient)定义为地层中某点破裂压力与该点深度的比值, 1) 理论计算。忽略构造应力和岩石抗张强度影响。对于均匀水平应力场,假设孔隙弹性常数为1, 忽略了构造应力和岩石抗张强度影响,因而与实际情况存在一定差异。 2)统计方法。油田使用的地层破裂压力梯度通常是根据大量的压裂实践统计出来的。一般范围在15~25 kPa/m之间,个别地区可达36 kPa/m。根据破裂压力梯度可以大致估算压裂裂缝形态。 当αF < 15~18 kPa/m, 形成垂直裂缝; 当αF > 22~25 kPa/m, 形成水平裂缝。 三、降低破裂压力的途径 当地层破裂压力较高,通过优化施工参数、压裂管柱和压裂液性能,压裂泵车仍无法有效破裂地层时必须设法降低地层破裂压力。主要途径包括: 1. 改善射孔参数 应力场与地应力状态(大小、方向)、射孔孔眼参数(直径、孔深和孔密)、射孔压力、孔眼方向与地应力方向的夹角等有关。因此,优化射孔参数、改进射孔工艺可以降低破裂压力。 2. 酸化预处理