PAL制及其编解码过程
1、PAL制式信号、场频、行频、行同步信号等

场频场频又称为“垂直扫描频率”或“刷新率”。
指单位时间(以秒计)之内电子枪对整个屏幕进行扫描的次数,通常以赫兹(Hz)表示。
以85H z刷新率为例,它表示显示器的内容每秒钟刷新85次。
CRT显示器上显示的图像是由很多荧光点组成的,每个荧光点都由于受到电子束的击打而发光,不过荧光点发光的时间很短,所以要不断地有电子束击打荧光粉使之持续发光。
电子束不能同时轰击屏幕上的两个点,因此显示器在工作时,以极快的速度从视频卡读取数据,同时由电子枪的偏转电路部分控制偏转线圈对电子束射出的方向进行改变,使电子束从屏幕左上角开始,从左至右,从上至下,依次对每个点进行轰击,虽然时间上有先后顺序,但由于电子束把屏幕整个扫描一次只需10~20ms 的时间,加上荧光体的辉光残留和人眼的视觉暂留现象,所以只要刷新够快,刷新率够高,人眼就能看到持续、稳定的画面,不会感觉到明显的闪烁和抖动。
垂直扫描频率越高,闪烁情况越不明显,眼睛也就越不容易疲劳。
从理论上来讲,只要刷新率达到85Hz,也就是每秒刷新85次,人眼就感觉不到屏幕的闪烁了,但实际使用中往往有人能看出85Hz刷新率和100Hz刷新率之间的区别,所以从保护眼睛的角度出发,刷新率仍然是越高越好。
行频行频又称为“水平扫描频率”,指电子枪每秒在荧光屏上扫过的水平线的数量,其值等于“场频 ×垂直分辨率×1.04”,单位为KHz(千赫兹)。
行频是一个综合分辨率和场频的参数,该值越大,显示器可以提供的分辨率越高,稳定性越好。
以800*600的分辨率、85Hz的场频为例,显示器的行频至少应为“600*85=51KHz”。
CR T显示器比较主流的行频系列是:70KHz,85(86)KHz,96KHz等。
和扫描频率密切相关的参数是显示器的带宽。
场频和行频越高,带宽就越大,扫描频率和带宽是显示器的一个综合指标,一定程度上反映了显示器的定位。
电视信号制式是PAL和NTSC、SECAM。
电视技术基础知识试题

第一篇电视技术基础知识题型示例一、填空题1.天空中传输的电波遇到导体会在导体上感应出。
该导体被称为。
天线的和直接影响电波的灵敏度。
2.常用的声音信号调制方法有两种,和。
3.电视信号主要由和两大部分组成。
图像信号的频率为,伴音信号的频率一般为.4.我国射频电视信号的波段分为和两波段.其中前者频率范围为,后者频率为。
5.在PAL制编码中,两色差信号的带宽为.6.在PAL制编码中,两色差信号的色副载波相位差为。
7.PAL开关的控制信号为行频。
即7。
8kHz的,它由经分频整形后得到.8.在PAL制编码中,色度信号和亮度信号在进入加法器前,亮度信号还要进行大约的延迟。
再加入及形成PAL .9.我国电视信号彩色编码采用的是制,它是将NTSC制中色度信号的一个逐行倒相,抵消了在传输过程中产生的.把相位误差的容限由NTSC制的提高到.10.PAL制信号的主要特点是和。
11.在正交平衡调幅中,合成矢量的相位角代表,合成矢量的振幅代表。
12.PAL是的缩写,是在正交平衡调幅的基础上加一个措施,所以称为.把倒相行称为,把不倒相行称为.13.解码电路主要由和两部分组成。
14.色度信号处理电路的作用是将已编码的还原成3个,在末级视放中与亮度信号相加还原成。
15.色同步处理电路的作用是恢复、和的副载波,使准确地还原.16.色度信号处理电路中,带通滤波器的带宽为,阻止,取出。
17.梳状滤波器是由、、组成的。
它又称.18.视频信号中各种信号分离的方法是:色度信号和亮度信号采用分离法,色度信号和色同步信号采用分离法,U、V两信号的分离采用分离法。
19.电视图像是由摄像机将变成进行传输的。
一幅图像是由和排列的构成的.20.在电视技术中,一幅静止的图像叫,每秒传输的帧数称为,用表示,帧周期为,行频用字母表示,行周期为,用或表示;场频用字母表示,场周期为。
13121.图像信号的最高频率为,我国规定,图像信号的最高频率为。
22.为解决每秒传送25帧图像产生的像,采用的办法。
PAL与NTSC制式

PAL与NTSC制式常见的电视信号制式是PAL和NTSC,另外还有SECAM等。
NTSC即正交平衡调幅制。
PAL为逐行倒像正交平衡调幅制。
PAL电视标准PAL电视标准,每秒25帧,电视扫描线为625线,奇场在前,偶场在后,标准的数字化PAL 电视标准分辨率为720*576, 24比特的色彩位深,画面的宽高比为4:3, PAL电视标准用于中国、欧洲等国家和地区。
NTSC电视标准NTSC电视标准,每秒29.97帧(简化为30帧),电视扫描线为525线,偶场在前,奇场在后,标准的数字化NTSC电视标准分辨率为720*486, 24比特的色彩位深,画面的宽高比为4:3。
NTSC电视标准用于美、日等国家和地区。
PAL制式和NTSC制式PAL制式和NTSC制式(PAL制式和NTSC制式的区别与转等换【PAL制式】很多人都知道有NTSC和PAL两大制式,那到底什么是NTSC制式?什么是PAL制式呢?简单的说,NTSC和PAL属于全球两大主要的电视广播制式,但是由于系统投射颜色影像的频率而有所不同。
NTSC是National Television System Committee的缩写,其标准主要应用于日本、美国,加拿大、墨西哥等等,PAL是 Phase Alternating Line (逐行倒相)的缩写。
它是西德在1962年指定的彩色电视广播标准,它采用逐行倒相正交平衡调幅的技术方法,克服了NTSC制相位敏感造成色彩失真的缺点。
西德、英国等一些西欧国家,新加坡、中国大陆及香港,澳大利亚、新西兰等国家采用这种制式。
PAL由德国人Walter Bruch在1967年提出,当时他是为德律风根(Telefunken)工作。
“PAL”有时亦被用来指625 线,每秒25格,隔行扫描,PAL色彩编码的电视制式。
PAL制式中根据不同的参数细节,又可以进一步划分为G、I、D等制式,其中PAL-D制是我国大陆采用的制式。
这两种制式是不能互相兼容的,如果在PAL制式的电视上播放NTSC的影响,画面将变成黑白,NTSC制式的也是一样。
PAL和NTSC

彩电的制式,就是指传送电视所采用的技术标准。
目前世界上用于彩色广播电视的彩色电视机制式主要有三大类。
一、正交平衡调幅制,简称NTSC制。
采用这种制式的主要国家有美国、加拿大和日本等。
起于美国,特点是成本低,兼容性能好,缺点是彩色不稳定。
PAL电视标准,每秒25帧,电视扫描线为625线,奇场在前,偶场在后,标准的数字化PAL电视标准分辨率为720*576, 24比特的色彩位深,画面的宽高比为4:3, PAL电视标准用于中国、欧洲等国家和地区。
二、正交平衡调幅逐行倒相制,简称PAL制。
德国、英国和其它一些西北欧国家采用这种制式。
是性能最佳,收看效果最好的制式,但成本最高。
NTSC电视标准,每秒29.97帧(简化为30帧),电视扫描线为525线,偶场在前,奇场在后,标准的数字化NTSC电视标准分辨率为720*486, 24比特的色彩位深,画面的宽高比为4:3。
NTSC电视标准用于美、日等国家和地区。
PAL和NTSC制式区别在于节目的彩色编码、解码方式和场扫描频率不同。
与NTSC制相比较,PAL制有下列优点:1.对相位失真(包括微分相位失真)不敏感。
PALD容许整个系统色度信号最大相位失真比NTSC制大得多,达到±40°,也不产生色调失真。
因此,对传输设备和接收机的技术指标要求,PAL制比NTSC制低。
2.比NTSC制抗多径接收性能好。
3.PAL制相对NTSC制而言,色度信号的正交失真不敏感,并且对色度信号部分抑制边带而引起的失真也不敏感。
4.PAL接收机中采用梳状滤波器,可使亮度串色的幅度下降3dB,并且可以提高彩色信噪比3dB。
PAL制有下列缺点:1.由于PAL制色信号逐行倒相,传输及解码中产生的误差(例如微分相位等),将在图象上产生爬行及半帧频闪烁现象。
2.PAL信号不利于信号处理(包括数字信号处理,亮度信号的彻底分离等),这是因为它的色度信号逐行倒相,色副载波相位8场一循环引起的。
电视制式

NTSC
M
PAL
B,G,H
PAL
I
PAL
M
PAL
N
SECAM
D,K,K1
SECAM
L
SECAM
B,G,H
彩色副载波
3.579545
4.43361875
4.43361875
3.57561149
3.58206250
80R 4.406250
80B 4.250000
扫描线数
525
625
625
525
625
625
625
625
扫描线频率
15734.264
15625
15625
15734.264
15625
15625
15625
15625
声音中频
4.5
5.5
5.9996
4.5
4.5
6.5
6.5
5.5
图场频率
59.94
50
50
59.94
50
50
50
50
视频调变极性
负
负
负
负
负
负
正
负
声音信号
FM
正交平衡调幅就是把两个色差信号R—Y、B—Y分别调制到相位相差90°的同一个副载频(色度信号调制的载频)上。
图1.1正交平衡调幅方框图
图中有两个乘法器:一个是R-Y的、一个是B-Y的。若设副载波振幅为1的sinwsct信号,经90°移相后加到R-Y调制器上就为coswsct,则两个调幅器输出为
FV=(R-Y) coswsct
F=(B-Y)sinwSCt±(R-Y)coswSCt=FU±FV
PAL制式和NTSC制式的定义及区别

NTSC制式视频监控系统与PAL制式视频监控系统的区别对于NTSC制式与PAL制式,简单的说,NTSC和PAL属于全球两大主要的电视广播制式,但是由于系统投射颜色影像的频率而有所不同。
NTSC是NationalTelevisionSystemCommittee 的缩写,其标准主要应用于日本、美国,加拿大、墨西哥等等,PAL则是PhaseAlternatingLine 的缩写,主要应用于中国,香港、中东地区和欧洲一带。
这两种制式是不能互相兼容的,如果在PAL制式的电视上播放NTSC的影响,画面将变成黑白,NTSC制式的也是一样。
而做为视频拍摄工具的数码摄像机,也同样有制式的问题,比如我国使用PAL制式,在我国销售的数码摄像机都是PAL制式的,如果是NTSC制式的摄像机拍摄出来的图象不能在PAL制式的电视机上正常播放。
因此,可以肯定的说,在我国销售的数码摄像机行货一定是PAL制式的,如果是NTSC制式的数码摄像机,则一定是水货。
PAL制式和NTSC的分辨率也有所不同,PAL制式使用的是720*576,而NTSC制式使用的是760*480,在分辨率上PAL稍稍占有优势。
而PAL制式的画面解析度720*576,约40万象素,也决定了PAL制式的数码摄像机的CCD大小应该为40万的倍数或者半倍数,比如2倍或者1.5倍,所以PAL制式数码摄像机都是80万,或者107万(接近100万,40万的2.5倍)、155万(接近160万,40万的4倍)。
而NTSC制式的画面解析度为720*480,约34万象素,所以NTSC制式的数码摄像机一般为68万象素等等。
目前的视频采集软件都支持PAL和NTSC制式,但是在编辑过程中是不能同时使用NTSC 制式的素材和PAL制式的素材,必须用过转换才能在同一时间轴上使用两个素材。
在PC领域,由于使用的制式不同,存在不兼容的情况。
就拿分辨率来说,有的制式每帧有625线(50Hz),有的则每帧只有525线(60Hz)。
NTSC和PAL
NTSCNTSC是National Television Standards Committee的缩写,意思是“(美国)国家电视标准委员会”。
NTSC负责开发一套美国标准电视广播传输和接收协议。
此外还有两套标准:逐行倒相(PAL)和顺序与存色彩电视系统(SECAM),用于世界上其他的国家。
NTSC标准从他们产生以来除了增加了色彩信号的新参数之外没有太大的变化。
NTSC信号是不能直接兼容于计算机系统的。
NTSC电视全屏图像的每一帧有525条水平线。
这些线是从左到右从上到下排列的。
每隔一条线是跳跃的。
所以每一个完整的帧需要扫描两次屏幕:第一次扫描是奇数线,另一次扫描是偶数线。
每次大半帧屏幕扫描需要约1/60秒;整帧扫描需要1/30秒。
这种隔行扫描系统也叫interlacing(也是隔行扫描的意思)。
适配器可以把NTSC信号转换成为计算机能够识别的数字信号。
相反地还有种设备能把计算机视频转成NTSC信号,能把电视接收器当成计算机显示器那样使用。
但是由于通用电视接收器的分辨率要比一台普通显示器低,所以即使电视屏幕再大也不能适应所有的计算机程序。
NTSC电视标准每秒29.97帧(简化为30帧),电视扫描线为525线,偶场在前,奇场在后,标准的数字化NTSC电视标准分辨率为720*480像素, 24比特的色彩位深,画面的宽高比为4:3或16:9。
NTSC电视标准用于美、日等国家和地区。
而NTSC因为每秒有30帧,不能直接一帧对一帧制作,所以要通过3-2 PULLDOWN等办法把24个电影帧转成30个视频帧,这30个视频帧里所包含的内容和24个电影帧是相等的,所以NTSC的播放速度和电影一样。
所以,对于同一部片子来说,PAL制的DVD会比NTSC制的同一部片子快1/24。
换算时间的时候,NTSC时间 X 23/24= PAL时间。
PAL制式和NTSC的分辨率有所不同,PAL制式使用的是720*576,而NTSC制式使用的是720*480,在分辨率上PAL稍稍占有优势。
关于 NTSC制、PAL制和SECAM制
关于 NTSC制、PAL制和SECAM制1 NTSC制NTSC制又称为恩制。
它属于同时制,是美国在1953年12月首先研制成功的,并以美国国家电视系统委员会(National Television System Committee)的缩写命名。
这种制式的色度信号调制特点为平衡正交调幅制,即包括了平衡调制和正交调制两种,虽然解决了彩色电视和黑白电视广播相互兼容的问题,但是存在相位容易失真、色彩不太稳定的缺点。
NTSC制电视的供电频率为60Hz,场频为每秒60场,帧频为每秒30帧,扫描线为525行,图像信号带宽为6.2MHz。
采用NTSC制的国家美国、日本等国家。
2 PAL制PAL制又称为帐尔制。
它是为了克服NTSC制对相位失真的敏感性,在1962年,由前联邦德国在综合NTSC制的技术成就基础上研制出来的一种改进方案。
PAL是英文Phase Alteration Line的缩写,意思是逐行倒相,也属于同时制。
它对同时传送的两个色差信号中的一个色差信号采用逐行倒相,另一个色差信号进行正交调制方式。
这样,如果在信号传输过程中发生相位失真,则会由于相邻两行信号的相位相反起到互相补尝作用,从而有效地克服了因相位失真而起的色彩变化。
因此,PAL制对相位失真不敏感,图像彩色误差较小,与黑白电视的兼容也好,但PAL制的编码器和解码器都比NTSC制的复杂,信号处理也较麻烦,接收机的造价也高。
由于世界各国在开办彩色电视广播时,都要考虑到与黑白电视兼容的问题,因此,采用PAL制的国家较多,如我国、德国、新加坡、澳大利来等。
不过,仍须注意一个问题,由于各国采用的黑白电视标准并不相同,即使同样提PAL制,但在某些技术特性上还会有差别。
PAL制电视的供电频率为50Hz、场频为每秒50场、帧频为每秒25帧、扫描线为625行、图像信号带宽分别为4.2,5.5,5.6MHz等。
3 SECAM制SECAM制即塞康制。
它是法文Sequentiel Couleur A Memoire的缩写,意思为"按顺序传送彩色与存储",是由法国在1966年研制成功的,它属于同时顺序制。
pal视频制式标准
pal视频制式标准PAL视频制式标准。
PAL(Phase Alternating Line)是一种广泛应用于欧洲、澳大利亚和一些亚非国家的模拟彩色电视制式。
它是一种以50赫兹为基准的制式,其特点是色度子载波频率为4.43兆赫,帧频为25赫兹,而每帧中有625条水平扫描线。
PAL制式的优势在于色彩还原准确、画面稳定,因此在欧洲等地区得到了广泛应用。
PAL制式的基本原理是通过改变色度信号的相位来实现彩色电视的传输。
在PAL制式中,色度信号的相位每行改变180度,这样可以有效地抵消传输过程中的相位误差,从而减小色彩失真。
这种相位变化的方式也使得PAL制式在黑白电视上仍然能够显示出良好的画面,这是PAL制式相对于其他制式的一大优势。
在PAL制式中,色度信号的相位变化是通过色度振荡器和相位延迟线来实现的。
色度振荡器产生一个特定频率的信号,而相位延迟线则根据不同的行数对色度信号进行不同程度的延迟,从而实现相位的改变。
在接收端,同样的原理被用来恢复原始的色度信号,以便正确地显示彩色画面。
除了色度信号的处理,PAL制式还采用了一些其他技术来提高图像质量。
例如,在PAL制式中,音频信号被调制到4.5兆赫的载波上,这样可以避免与色度信号的干扰,从而提高了音频的质量。
此外,PAL制式还采用了带有同步脉冲的复合视频信号,这样可以确保接收端能够准确地识别出每一帧的开始和结束,从而实现稳定的图像显示。
总的来说,PAL制式通过改变色度信号的相位、优化音频处理和采用复合视频信号等技术,实现了稳定、准确的彩色电视传输。
在欧洲等地区,PAL制式已经成为了主流的电视制式,为观众带来了高质量的视听体验。
PAL制式的成功应用,也为其他国家和地区的电视制式标准提供了有益的借鉴和参考,推动了全球电视技术的发展和进步。
PAL制式与NTSC制式介绍与区分
PAL 才用逐行倒相PAL和NTSC制式区别在于节目的彩色编、解码方式和场扫描频率不同。
【PAL制式】很多人都知道有NTSC和PAL两大制式,那到底什么是NTSC制式?什么是PAL制式呢?简单的说,NTSC和PAL属于全球两大主要的电视广播制式,但是由于系统投射颜色影像的频率而有所不同。
NTSC是National Television System Committee的缩写,其标准主要应用于日本、美国,加拿大、墨西哥等等,PAL是Phase Alternating Line (逐行倒相)的缩写。
它是西德在1962年指定的彩色电视广播标准,它采用逐行倒相正交平衡调幅的技术方法,克服了NTSC制相位敏感造成色彩失真的缺点。
西德、英国等一些西欧国家,新加坡、中国大陆及香港,澳大利亚、新西兰等国家采用这种制式。
PAL由德国人Walter Bruch在1967年提出,当时他是为德律风根(Telefunken)工作。
“PAL”有时亦被用来指625 线,每秒25格,隔行扫描,PAL色彩编码的电视制式。
PAL制式中根据不同的参数细节,又可以进一步划分为G、I、D等制式,其中PAL-D制是我国大陆采用的制式。
这两种制式是不能互相兼容的,如果在PAL制式的电视上播放NTSC的影像,画面将变成黑白,NTSC制式的也是一样。
PAL制又称为帕尔制。
它是为了克服NTSC制对相位失真的敏感性,在1962年,由前联邦德国在综合NTSC制的技术成就基础上研制出来的一种改进方案。
PAL是英文Phase Alteration Line的缩写,意思是逐行倒相,也属于同时制。
它对同时传送的两个色差信号中的一个色差信号采用逐行倒相,另一个色差信号进行正交调制方式。
这样,如果在信号传输过程中发生相位失真,则会由于相邻两行信号的相位相反起到互相补尝作用,从而有效地克服了因相位失真而起的色彩变化。
因此,PAL制对相位失真不敏感,图像彩色误差较小,与黑白电视的兼容也好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百度文库 - 让每个人平等地提升自我 1 PAL制及其编、解码过程 PAL是Phase Alternation Line(逐行倒相)的缩写。PAL制是在对色度信号采用正交平衡调幅的基础上,将其中一 个色度分量(FV分量) 进行逐行倒相,在发端周期性地(行频)改变FV分量的相序,在收端采用平均措施,以减轻传输相位误差带来的影响。
2.5.1 相位失真的慨念及影响 彩色电视机的图像失真有亮度失真、饱和度失真和色调失真 (几何失真不讨论) 。其中,亮度失真主要影响景物的层次,色饱和度失真则改变颜色的深浅程度,而色调失真会造成景物的颜色改变。这三种失真中,人眼对色调的失真最为敏感,NTSC制中,色度信号的相位失真会带来明显的色调失真。 彩电调谐不准确,多径效应及传输系统的非线性等都可能引起相位失真,实践证明,要使
人眼感觉不到色调畸变,相位失真应小于 ±5°。PAL制彩色电视系统,就是为解决相位敏感性而发展起来的。
2.5.2 PAL色度信号 PAL制获得色度信号的方法,也是先将三基色信号R、G、B变换为一个亮度信号和两个色差信号,然后再用正交平衡调制的方法把色度信号安插到亮度信号频谱的间隙之间,这些与NTSC制大体相同。不同的是,将色度信号中的FV分量进行逐行倒相,色轴不旋转。
第n行色度: F n= U sinωSCt + V cosωSCt, 第n+1行色度: F n+1= U sinωSCt - V cosωSCt, PAL色度信号的数学表达式为:
对于隔行扫描来说,奇数帧(第1,3,5,…帧)的奇数行取正号,偶数行取负号;偶数帧(第2,4,6、…帧)的奇数行取负号,偶数行取正号。取正号的行叫NTSC行(简称N行),取负号的行叫PAL行(简称P行) ,如 百度文库 - 让每个人平等地提升自我
2 所示应该指出,逐行倒相并非将整个色度信号倒相,也不是扫描方向的改变,而是将色度V分量(FV分量)的副载波相位逐行改变180°. 对于任意色调的色度信号,若N行用Fn表示,P行用Fn+1表示,则P行的矢量Fn+1
应该与N行矢量Fn以U轴为对称, 百度文库 - 让每个人平等地提升自我
3 。因为这两行色度信号的FU分量相同,而FV分量的绝对值相等、符号相反。
是三基色和三补色彩条矢量图逐行倒相的情况。此图中,实线表示NTSC行,虚线表示PAL行。 1、逐行倒相的实现 实现逐行倒相的两种方法方法: (1)逐行改变色差信号V的相位 (2)逐行改变副载波的相位 改变后者较为简单。它与正交平衡调幅的区别在于增加了一个PAL开关、一个90°移相器和一个倒相路。PAL开关是一个由半行频对称方被控制的电子开天电路,它能逐行改变开关的接通点,其原理如
所示。 2、PAL制色度信号的频谱 百度文库 - 让每个人平等地提升自我 4 色度信号FV分量逐行倒相后,色度信号的频谱结构发生了变化。其中,FU分量与倒相无关,它的主谱线位置未变,仍以行频fH为间距,对称的分布在副载波fSC的两旁,如
所示。FU分量的主谱线位置为fSC±nfH(n=1,2,3,…)。而色度信号±FV分量的主谱线由于逐行倒相,位置发生了变化,如
中实线的所示。谱线间隔仍为行频fH,且仍对称的分布在副载波fSC的两旁,但是,最低边频距离副载频为fH/2。所以,FV与FU的谱线刚好错开fH/2。
百度文库 - 让每个人平等地提升自我 5 是逐行倒相正交平衡调幅后的色度信号F频谱图。图中U、V分别表示FU、FV的主谱线。可以看出FV与FU的谱线刚好错开fH/2。
因为逐行倒相的过程实质上是半行频方波控制平衡调幅的过程,因此可以将逐行倒相的副载波看成是半行频方波jK(t)对cosωSCt 进行平衡调幅。根据傅里叶级数分析,由于jK(t)是对原点对称的开关函数,可分解为一系列正弦函数之和,即
式中:m = 0,1,2,3,…;Ω1=2πfH / 2 =ωH / 2为开关函数基波的角频率(ωH为行扫描角频率)。由此可求得逐行倒相副载波的各频率分量为:
由上式可见,m = 0所对应的谱线(最低边频),距离副载频为fH/2。 逐行到相副载波jK(t)cosωSCt 实际上是包含一系列频率分量的副载波群。于是当具有从零频率开始,以fH为间隔的频谱结构的V信号对其平衡调幅,所得已调信号的振幅频谱主谱线,同样具有图2-22(b)的形百度文库 - 让每个人平等地提升自我 6 式。 2.5.3 PAL制采用逐行倒相克服相位失真的原理 PAL制采用逐行倒相克服相位失真的原理,可用彩色予以说明。
图中Fn表示第n行的色度矢量,Fn+1表示n+1行的色度矢量。由于行相关,可以认为它们的颜色相同。则矢量Fn和Fn+1的U分量相等,V分量绝对值相等、相位相反,即以U轴对称。 如果传输过程中无相位失真,在接收端解调时,第n+1行用-coswSCt加入V同步解调器,
等效于使Fn+1行的相位由-a变为a,回到Fn位置,可正确地恢复出色差信号,即不产生色调失真如 百度文库 - 让每个人平等地提升自我 7 所示。 如若Fn发生相位失真,使Fn向逆时针方向转动一个Dj相位,移到F¢n处,由于相两
行相位失真可认为基本一样,所以Fn+1也逆时针方向转动一个Dj相位,移到F¢n+1处,见
接收机本应收到Fn和Fn+1,因失真实际收到的是F¢n和F¢n+1,接收机解调电路将倒相行的F¢n+1返回到第一象限,相当于F¢¢n+1的位置,而F¢n在解调中其矢量位置不变。由 百度文库 - 让每个人平等地提升自我 8 可见,F¢n与F¢¢n+1合成的色度信号矢量F¢的相位与不失真的F矢量相位一致,只是矢量长度较原来有所变化(变短)。这说明由于相位失真仅引起饱和度下降,但色调不变。
在接收端采用延迟解调方法合成。这就是用延迟线把前一行色度信号延迟大约一行的时间(约64μs),然后在合成电路中与本行色度信号合成,从而得到合成的色度信号。这种解码用到延迟线,故称延迟解码,以PALD表示。后面讲到PAL解码在仔细分析。
2.5.4 PAL制副载波频率的选择
(1)使亮度信号与色度信号频谱的主谱线彼此错开; (2)减小副载波的谐波干扰;(fSC尽量高) (3)不能使已调色差信号的上边带超出规定的6MHz范围。(fSC不能太高)
PAL制中已调色差信号FU与±FV频谱的主谱线不是占有相同的位置,而是彼此错开(间距)半个行频fH/2,如 百度文库 - 让每个人平等地提升自我
9 所示 。如果与NTSC制一样,将副载波频率fSC选为半行频的奇数倍,必然导致±FV的主谱线与亮度信号的主谱线重合,如 百度文库 - 让每个人平等地提升自我
10 所示。如果选择fSC既不等于行频的整数倍,也不等于半行频的奇数倍,而是作如 那样的选择,即令n fH位于fSC和(fSC+ fH /2)之间(即将副载波频率fSC选为行频的整数倍加上或减去 fH /4),这样就可使亮度信号Y与两个色度信号分量的频谱相互错开,那么 n fH应满足 下述关系:
从而求出:
式中, N为正整数。由于fSC与整数倍的行频fH有fH /4的频差,故称1/4行频间置。 对于行频为15625Hz,场频为50Hz,标称视频带宽为6MHz的系统,根据选择fSC尽量高原则,可取n=284。实际的PAL制色副载波为:
俗称4.43MHz。增加25Hz的目的在于减轻副载波光点干扰的可见度。 百度文库 - 让每个人平等地提升自我 11 2.5.5 PAL制色同步信号 1.色同步信号 PAL制彩色电视接收机在解调色度信号时,需要在PAL行使用-cosωSCt、NTSC行使用+cosωSCt副载波。要做到这一点,需要有一个识别PAL行与NTSC行的识别信号,即需要在发送端提供一个附加信息。这个附加信息并没有直接加在色度信号中,而是寄存在每一行的色同步信号中。表现为相邻两行的色同步信号相位不同。PAL行的色同步信号相位是-135°;NTSC行的色同步信号相位为+135°,平均相位180°。因此,PAL制的色同步信号除了为接收机提供恢复副载波所需的频率、相位信息外,还能提供一个PAL行与NTSC行的识别信息,即倒相识别信息,从而保证了收、发双方逐行倒相的同步进行。 PAL制色同步信号所含副载波周期数、幅度、出现位置等都与NTSC制相同。按我国广播
电视标准规定,色同步信号由8~12个周期的副载波组成,位于行消隐后肩上,起始点距行同步脉冲前沿5.6±0.1μs,峰 — 峰值等于行同步脉冲幅度,相对于消隐电平上、下对称,如
所示。 2.PAL制色同步信号的产生方法:
发送端先产生一个色同步选通脉冲K,重复频率为行频、宽度为2.25±0.23μs(约等于 10个副载波周期),位置在行消隐的后肩上,起始点距行同步脉冲前沿5.6±0.1μs 。将K脉冲以两种不同的极性分别加到两个色差信号中,与色差信号一起送入平衡调幅器, V色差信号中加入正极性K脉冲(以+K表示),就可产生色同步信号的V分量(N行为90°,P行为-90°),U色差信号中加入负极性K脉冲(以-K表示),则可产生色同步信号的U分量(180°),两个分量进行矢量合成便形成逐行改变相位的N行为+135°、P行为-135°的色同步信号。图2-27给出了K脉冲通过两个平衡调制器形成色同步信号的方框图。