2013年中考数学总复习开放探究题训练试卷
中考数学专题复习 开放探究试题-人教版初中九年级全册数学试题

开放探究专题开放探究题是相对于条件完备,结论明确的题型而言的,其特征是满足结论的条件不全,或满足条件的结论不唯一,或推理过程不确定,需要同学们依据题意与要求进行猜想、探索、发现、归纳来补全所需条件,结论或选择相关的求解途径.这类问题知识覆盖面广,题型灵活多变,是当前初中阶段培养学生创新意识与探究能力的数学问题.一、条件开放型条件开放探究题一般是已给出问题的结论,而要求补加满足结论条件的一类题型,其特征是问题的条件不完备,且所要补充的条件不一定是得出结论的所必须的条件,即不一定由结论唯一推出.解条件开放型问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求其合乎要求的一些条件.例1 (2015•某某)如图1,已知AB=BC ,要使△ABD ≌△CBD ,还需要加一个条件,你添加的条件是______,(只需写一个,不添加辅助线).解析:由已知AB=BC 及公共边BD=BD 可知,要使△ABD≌△CBD ,已经具备了两条边相等,根据全等三角形的判定定理,应该有两种方法SAS 或SSS 能使这两个三角形全等.所以可添∠ABD=∠CB D 或AD=CD .评注:根据图形探究三角形全等的条件,除了根据基本判定方法以外,还应善于挖掘图形中隐藏条件(如公共边、公共角、对顶角等),以及线段的和差、角的和差关系等.例2 (2015•某某)已知,△ABC 中,点E 是AB 边的中点,点F 在AC 边上,若以A ,E ,F 为顶点的三角形与△ABC 相似,则需要增加的一个条件是______(写出一个即可).解析:本题由于没有确定相似三角形的对应顶点,所以应分两种情况讨论:①当△AEF∽△ABC 时(如图2-①),由点E 为AB 中点,得AF=AC (或点F 为AC 中点,EF ∥BC ,∠AEF=∠B 等);若使△AFE∽△ABC (如图2-②),则应添加∠AFE=∠ABC 或∠AEF=∠ACB 等.图1E B C A EF A C F B ① ②图2评注:本题考查了相似三角形判定的方法,可添加的条件较多,要注意题目中公共角这一隐藏条件的应用.跟踪训练:1.(2015•黔东南)如图,在四边形ABCD 中,AB//CD ,连接BD.请添加一个适当的条件_______________,使得△ABD≌△CDB .(只需写一个).第1题图 第2题图 2.(2015•某某)如图,四边形ABCD 的对角线相交于点O ,AO=CO ,请添加一个条件_______________(只添一个即可),使四边形ABCD 是平行四边形.二、结论开放型结论开放探究题是根据给出的问题条件探究相应的结论,而符合条件的结论往往呈现多样性,可很好的培养学生的发散思维.在解答结论开放性探究题时,要充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻地分析出给定条件下可能存在的结论,然后经过论证做出取舍;对于需要找出多个结论的结论开放性问题,可以运用分类讨论的思想,从各个不同的侧面入手,进行探索、分析,寻找问题的结论.例3 (2015•某某)对于两个二次函数1y ,2y ,满足8322221++=+x x y y .当m x =时,二次函数1y 的函数值为5,且二次函数2y 有最小值3.请写出两个符合题意的二次函数2y 的解析式_________(要求:写出的解析式的对称轴不能相同).分析:已知当x=m 时,二次函数y 1的函数值为5,且二次函数y 2有最小值3,故抛物线2y 的顶点坐标为(m ,3),设出顶点式求出m 的确值即可.解:因为当m x =时,二次函数1y 的函数值为5,2y 的函数值为3,此时821=+y y ,D CBA所以当m x =时,03222=+x x ,即03222=+m m 得0=m 或3-=m ,又因为此时2y 有最小值,故抛物线2y 的顶点坐标为(m ,3),用顶点式设出解析式为()322+-=m x a y ,随着a 取值的不同,2y 的解析式也不断变化,如当1=a 时,解析式为322+=x y 和()3322++=x y .评注:本题考查了二次函数的图象和性质,解答本题的关键是求出m 的值.例4 (2015•崇左)如图3,线段AB 是⊙O 的直径,点C在圆上,∠AOC =80°,点P 是线段AB 延长线上的一动点,连结PC ,则∠APC 的度数是________度(写出一个即可).分析:根据三角形外角性质可知,∠APC 的度数大于零度,且小于∠APC度数,故只需求出∠ABC 度数,便可确定∠APC 的度数的X 围.解:因为圆周角∠ABC 与圆心角∠AOC 对的是同一条弧,所以∠ABC =12∠AOC =40°.根据三角形的一个外角大于和它不相邻的任何一个内角,知∠APC <∠ABC ,即0°<∠APC <40°,据此写一个度数即可.评注:此题主要考查了圆周角定理,根据题意得出∠ABC 的度数是解题关键.跟踪训练:3.(2015•某某)已知y 是x 的反比例函数,当x >0时,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式.4.(2015•义乌)如果抛物线2y ax bx c =++过定点M (1,1),则称此抛物线为定点抛物线.小敏写出了一条定点抛物线的一个解析式y=2x 2+3x ﹣4.请你写出一个不同于小敏的答案________. C· O A B P 图3第4题图 5.(2015•潜江天门)我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB ,AD=CD .请你写出与筝形ABCD 的角或者对角线有关的一个结论,并证明你的结论.三、综合开放性问题综合开放型问题又称为条件、结论全开放型问题,此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,要求学生通过合理推理,透彻分析总结出结论,从而培养学生的发散思维能力.根据这类问题的特点,在解答时,必须认真观察与思考,将已知的信息集中分析,挖掘问题成立的条件或特定条件下的结论,多方面、多角度、多层次探索条件和结论,并进行证明或判断.例5 如图4,点A 、B 、D 、E 都在圆上,弦AE 的延长线与弦BD的延长线相交于点C .给出以下三个论断:①AB 是圆的直径;②点D是BC 中点;③AB=AC .以三个论断中的两个作为已知条件,第三个作为结论,写出一个你认为正确的命题,并加以证明. 分析:以三个论断中两个为条件,一个为结论,共有三种组合:即由①②推出③;由①③推出②;由②③推出①.然后分别根据图形,结合所学知识,分析三个组合的正确与否即可.解:正确的命题可以是由①②推出③,证明如下:连接AD ,因为AB 是圆的直径,所以AD ⊥BC.又因为点D 为BC 中点,所以AD 垂直平分BC.所以AB=AC .(由①③推出②和由②③推出①也都是真命题,证明过程请自主完成)BA CDD E AB图4评注:本题属于条件和结论全开放的问题,熟练掌握等腰三角形的三线合一性质和90°的圆周角与直径的关系是解答本题的关键.跟踪训练6.如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是()A.0B.C.第6题图7.(2015•某某)先化简:2221()211x xx x x x+÷--+-,再从-2<x<3的X围内选取一个你喜欢的x值代入求值.四、存在性问题存在性问题是指在一定条件下,探索发现某种数学关系是否存在的一类问题,它往往有“是否存在”“是否成立”等词语出现.解答此类问题的方法是首先对问题的结论作出肯定存在的假设,按题目中条件和所学知识进行推理、计算,若推出的结论合理,则说明假设成立,反之,则假设不成立.例5 (2015•某某,有改动)如图5,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.⑴求该抛物线的解析式;⑵在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD 的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.G 图5分析:⑴把A (﹣1,0)、B (3,0)两点代入y=﹣x 2+bx+c 即可求出抛物线的解析式,⑵设D (t ,322++-t t ),过点D 作DH⊥x 轴于点H ,交BC 于点G ,设△BCD 的面积为S ,根据CDG BGD BCD S S S ∆∆∆+=,即可求出S 与t 之间的函数关系式,从而求出D 点坐标及△BCD 面积的最大值.解:⑴把A (﹣1,0)、B (3,0)两点代入y=﹣x 2+bx+c 中得,解得所以抛物线的解析式为y=﹣x 2+2x+3.⑵存在,理由如下:设D (t ,322++-t t ).过点D 作DH⊥x 轴于点H ,交BC 于点G ,由⑴易得点C 的坐标为(0,3),设直线BC 的解析式为b kx y +=,将B (3,0)和C (0,3)代入,得 ⎩⎨⎧=+=0b 3k 3b ,解得⎩⎨⎧==1-3b k , 所以直线BC 的解析式为3+-=x y ,则G 点坐标为(t ,3+-t ).所以DG=G y -D y =322++-t t -(3+-t )=t t 32+-,设△BCD 的面积为S ,且CDG BGD BCD S S S ∆∆∆+=,所以S=()()()t t t t t t 321332122+-+-+-=()t t t 3212+-,配方,得S=82723212+⎪⎭⎫ ⎝⎛--t . 所以当23t =时,面积有最大值为827,此时点D 坐标为(23,415). 评注:在解答坐标系中三角形面积问题时,通常是将所求三角形转化为边在坐标轴上的三角形,或一些边与坐标轴平行的三角形面积之和或面积之差。
2013年中考数学考前热点拨《操作探究题 》

图 39-4
解:答案列举如下:
类型二
平移和旋转型操作题
此类题目常涉及画图、测量、猜想证明、归纳等问题,它 与初中代数、几何均有联系.此类题目对于考查学生注重知识 形成的过程,领会研究问题的方法有一定的作用,也符合新课 改的教育理念.
5.如图 39-5,已知∠ABC=90°,△ABE 是等边三角形,点 P 为射 线 BC 上任意一点(点 P 与点 B 不重合),连接 AP,将线段 AP 绕点 A 逆时针 旋转 60°得到线段 AQ,连接 QE 并延长交射线 BC 于点 F. (1)如图 39-5②,当 BP=BA 时,∠EBF=________°,猜想∠QFC= ________°; (2)如图 39-5①, 当点 P 为射线 BC 上任意一点时, 猜想∠QFC 的度数, 并加以证明; (3)已知线段 AB=2 3,设 BP=x,点 Q 到射线 BC 的距离为 y,求 y 关 于 x 的函数关系式.
3 即 y 关于 x 的函数关系式是 y= x+ 3. 2
类型三
图形分割操作题
分割问题通常是先给出一个图形 (这个图形可能是规则的,
也有可能不规则),然后让你用直线、线段等把该图形分割成面 积相同或形状相同的几部分. 解决这类问题的时候可以借助对称 的性质、面积公式等进行分割.
6.(1)请在图 39-6①的正方形 ABCD 内,画出使∠APB=90° 的一个点 P,并说明理由; (2)请在图 39-6②的正方形 ABCD 内(含边),画出使∠APB= 60°的所有的点 P,并说明理由; (3)如图 39-6③,现在一块矩形钢板 ABCD,AB=4,BC=3, 工人师傅想用它裁出两块全等的、 面积最大的△APB 和△CP′D 钢板, 且∠APB=∠CP′D=60°,请你在图 39-6③中画出符合要求的点 P 和 P′.
2013年浙江中考数学第一轮复习课件 专题突破强化训练专题十规律探索与开放性问题

2 013π 2 2 013π C. 4 A.
2 013π 3 2 013π D. 6 B.
60π× 1 π 60π× 2 2π 60π× 3 = ,l2= = ,l3= 180 3 180 3 180 60π×4 4π 3π nπ 2 013π = ,l4= = ,按照这种规律可以得到:ln= ,∴l 2 013= . 3 180 3 3 3 解析:由图知,每段弧的度数都等于 60° ,l 1=
1 2 3 n
2n 从分数分母可知存在的规律为 2 +3,2 + 3,2 +3,„,2 +3;即第 n 个数是 n . 2 +3
(2012· 铜仁)如图,第①个图形中一共有 1 个平行四边形,第②个图形中一共有 5 个平行四边形,第③个图形中一共有 11 个平行四边形,„„则第⑩个图形中平行四边形的 个数是( )
2 4 8 16 32 (2012· 遵义)猜数字游戏中,小明写出如下一组数: , , , , ,„,小亮 5 7 11 19 35 64 猜想出第六个数字是 ,根据此规律,第 n 个数是________. 67
【思路点拨】 分别探索分子和分母与序号的关系 → 得出第n个数
2n 【解析】 n 2 +3 从分数分子可知存在的规律为 21,22,23,„,2n;因为分母比分子大 3,
答案:B
二、填空题 5.如图,▱ ABCD 中,E、F 分别为 BC、 AD 边上的点,要使 BF=DE,需添加一个条 件:__________.
解析:四边形 ABCD 是平行四边形,可得对边相等,对边平行,对角相等;要使 BF= DE,从两个角度考虑,一是证明四边形 BEDF 是平行四边形,可添加 BE=DF 或 BF∥DE 或∠BFD=∠BED 或∠AFB=∠ADE 等;二是证明△ABF≌△ CDE,可添加 AF=CE 或∠ AFB=∠CED 等.
中考数学专题训练 开放与探究及答案

专题五 综合类问题第一节 开放与探究【例题经典】 条件开放例1 如图,∠ABC=∠CDB=90°,AC=a ,BC=b ,试探究BD 与a 、b 满足什么关系时,△ABC 与△CDB 相似?【解析】根据题目所给条件及要求,可结合直角三角形相似的判定方法来加以解决,要注意分两种情况考虑.【解答】当BD=时,图中△ABC 与△CDB 相似.例2 (2006年泰州市)已知:∠MAN=30°,O 为边AN 上一点,以O 为圆心,2为半径作⊙O ,交AN 于D ,E 两点,设AD=x .(1)如图(1)当x 取何值时,⊙O 与AM 相切;(2)如图(2)当x 为何值时,⊙O 与AM 相交于B ,C 两点,且∠BOC=90°.【解答】(1)在图(1)中,当⊙O 与AM 相切时,设切点为F .连结OF ,则OF ⊥AM , ∵在Rt △AOF 中,∠MAN=30°,∴OF=OA .∴2=(x+2),∴x=2, ∴当x=2时,⊙O 与AM 相切.(2) 在图(2)中,过点O 作OH ⊥BC 于H .当∠BOC=90°时,△BOC 是等腰直角三角形,∴,∵OH ⊥BC ,∴BH=CH,∴OH=. 在Rt △AHO 中,∠A=30°, ∴OH=OA =(x+2),∴-2. 2b BD a a=或1212=121212∴当-2时,⊙O与AM相交于B,C两点,且∠BOC=90°.【点评】解答这类问题往往是把结合反过来当条件用,本例利用了圆的切线性质和垂径定理,构造特殊直角三角形,使问题得以求解.结论开放例3(2006年莆田市)已知矩形ABCD和点P,当点P在边BC上任一位置( 如图①所示)时,易证得结论:PA2+PC2=PB2+PD2,请你探究:当P 点分别在图②、 图③中的位置时,PA2、PB2、PC2和PD2又有怎样的数量关系?请你写出对上述两种情况的探究结论, 并利用图②证明你的结论.答:对图②的探究结论为__________.对图③的探究结论为_________.证明:如图2.结论均是:PA2+PC2=PB2+PD2.证明:如图②过点P作MN⊥AD交AD于点M,交BC于点N.∵AD∥BC,MN⊥AD,∴MN⊥BC在Rt△AMP中,PA2=PM2+MA2在Rt△BNP中,PB2=PN2+BN2在Rt△DMP中,PD2=DM2+PM2在Rt△CNP中,PC2=PN2+NC2∴PA2+PC2=PM2+MA2+PN2+NC2PB2+PD2=PM2+DM2+BN2+PN2∵MN⊥AD,MN⊥NC,DC⊥BC.∴四边形MNCD是矩形.∴MD=NC.同理AM=BN.∴PM2+MA2+PN2+NC2=PM2+DM2+BN2+PN2.即PA2+PC2=PB2+PD2.【评析】本题也是一道结论开放题,通过阅读题目已知条件及要求,不难探究出正确结论,但是说明理由时,有一定的难度.正确作出辅助线,创造使用勾股的条件,是解决问题的关键.【考点精练】1.(2006年山东省)如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.(1)上述三个条件中,哪两个条件....可判定△ABC是等腰三角形(用序号写出所有情形);(2)选择第(1)小题中的一种情形,证明△ABC是等腰三角形.2.(2006年随州市)如图,矩形ABCD中,M是AD的中点.(1)求证:△ABM≌△DCM;(2)请你探索,当矩形ABCD中的一组邻边满足何种数量关系时,有BM⊥CM成立,说明你的理由.3.如图,在△ABC中,D为BC上一个动点(D点与B、C不重合),且DE∥AC交AB 于点E,DF∥AB交AC于点F.(1)试探究,当AD满足什么条件时,四边形AEDF是菱形?并说明理由.(2)在(1)的条件下,△ABC满足什么条件时,四边形AEDF是正方形?请说明理由.4.如图,AB是⊙O的直径,EF是⊙O的切线,切点是C.点D是EF上一个动点,连接AD.试探索点D运动到什么位置时,AC是∠BAD的平分线,请说明理由.5.(2006年成都市)已知:如图,在△ABC中,D是AC的中点,E是线段BC 延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.6.(2006年常德市)如图,P是等边三角形ABC内的一点,连结PA、PB、PC,以BP 为边作∠PBQ=60°,且BQ=BP,连结CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.(2)若PA:PB:PC=3:4:5,连结PQ,试判断△PQC的形状,并说明理由.7.如图,AB是⊙O的直径,AD、BC、DC都是⊙O的切点,A、B、E分别是切点.(1)判定△COD的形状,并说明理由.(2)设AD=a,BC=b,⊙O的半径为r,试探究r与a,b之间满足的关系式,并说明理由.8.(2006年绵阳市)在正方形ABCD中,点P是CD上一动点,连结PA,分别过点B、D作BE⊥PA、DF⊥PA,垂足分别为E、F,如图①.(1)请探索BE、DF、EF这三条线段长度具有怎样的数量关系.若点P在DC 的延长线上(如图②),那么这三条线段的长度之间又具有怎样的数量关系?若点P在CD 的延长线上呢(如图③)?请分别直接写出结论;(2)请在(1)中的三个结论中选择一个加以证明.答案:考点精练1.答案不惟一,符合题意即可. 2.(1)略 (2)当AD=2AB 时,有BM ⊥CM 成立.说明理由(略) 3.(1)当AD 平分∠BAC 时,四边形AEDF 是菱形.理由(略)(2)在(1)的条件下,当∠BAC=90°时,四边形AEDF 是正方形.说明理由(略) 4.当点D 运动到满足条件AD ⊥EF 时,AC 平分∠BAD .证明(略) 5.(1)证明△ADF ≌△CDE 即可 (2)四边形AFCE 是矩形.(证明略) 6.(1)证明△BPA ≌△BQC ,AP=CQ (2)△PQC 是直角三角形,∵PA :PB :PC=3:4:5, 设PA=3k ,PB=4k ,PC=5k ,∵∠PBQ=60°,BP=BQ ,∴△PBQ 是等边三角形, ∴PQ=PB=4k ,在△PQC 中,∵PQ 2+QC 2=(4k )2+(3k )2=25k 2,PC 2=(5k )2=25k 2, ∴PQ 2+QC 2=PC 2,∴△PQC 是Rt △. 7.(1)△COD 是直角三角形,连OE ,由圆的切线的性质可证得: △OAD ≌△OED ,△OEC ≌△OBC , ∴∠AOD=∠EOD ,∠EOC=∠BOC ,可证得∠DOC=90°, 所以△COD 是直角三角形.(2)r 与a 、b 之间满足的关系是r 2=ab .证明△OAD ∽△CBO ,得,OA ·OB=AD ·BC 即r 2=ab . 8.解:(1)①BE=DF+EF ,②BE=DF-EF ,③EF=BE+DF . (2) 证明略.OA ADBC OB。
2013年全国数学中考试卷分类汇编:规律探索题

2013中考全国100份试卷分类汇编规律探索题1、(绵阳市2013年)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( C )A.(45,77)B.(45,39)C.(32,46)D.(32,23)[解析]第1组的第一个数为1,第2组的第一个数为3,第3组的第一个数为9,第4组的第一个数为19,第5组的第一个数为33……将每组的第一个数组成数列:1,3,9,19,33……分别计作a1,a2,a3,a4,a5……a n,a n表示第n组的第一个数,a1 =1a2 = a1+2a3 = a2+2+4×1a4 = a3+2+4×2a5 = a4+2+4×3……a n = a n-1+2+4×(n-2)将上面各等式左右分别相加得:a n =1+2(n-1)+4(n-2+1)(n-2)/2=2n2-4n+3 (上面各等式左右分别相加时,抵消了相同部分a1 + a2 + a3 + a4 + a5 + …… + a n-1),当n=45时,a n = 3873 > 2013 ,2013不在第45组当n=32时,a n = 1923 < 2013 ,(2013-1923)÷2+1=46, A2013=(32,46).如果是非选择题:则2n2-4n+3≤2013,2n2-4n-2010≤0,假如2013是某组的第一个数,则2n2-4n-2010=0,解得n=1+ 1006 ,31<1006 <32,32<n<33, 2013在第32组,但不是第32组的第一个数,a32=1923, (2013-1923)÷2+1=46.(注意区别a n和A n)2、(2013济宁)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2 B.cm2 C.cm2D.cm2考点:矩形的性质;平行四边形的性质.专题:规律型.分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.解答:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===cm2.故选B.点评:本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.3、(2013年武汉)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点答案:C解析:两条直线的最多交点数为:12×1×2=1,三条直线的最多交点数为:12×2×3=3,四条直线的最多交点数为:12×3×4=6,所以,六条直线的最多交点数为:12×5×6=15,4、(2013•资阳)从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征()A.B.C.D.考点:规律型:图形的变化类分析:根据图形的对称性找到规律解答.解答:解:第一个图形是轴对称图形,第二个图形是轴对称也是中心对称图形,第三个图形是轴对称也是中心对称图形,第四个图形是中心对称但不是轴对称,所以第五个图形应该是轴对称但不是中心对称,故选C.点评:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并发现其中的规律.5、(2013•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A.502 B.503 C.504 D.505考点:规律型:图形的变化类.分析:根据正方形的个数变化得出第n次得到2013个正方形,则4n+1=2013,求出即可.解解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;答:第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,解得:n=503.故选:B.点评:此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.6、(2013泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0 B.1 C.3 D.7考点:尾数特征.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.7、(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156 B.157 C.158 D.159考点:规律型:图形的变化类.分析:根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n个图案需n(n+3)+3根火柴,再把11代入即可求出答案.解答:解:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);故选B.点评:此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.9、(2013•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()A.8B.9C.16 D.17考点:规律型:图形的变化类.分析:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,进而得出即可.解答:解:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=5个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12第五个图案有三角形1+3+4+4+4=16故选:C.点评:此题主要考查了图形的变化规律,注意由特殊到一般的分析方法.这类题型在中考中经常出现.10、(2013•恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171.考点:规律型:数字的变化类.分析:根据第6列数字从31开始,依次加14,16,18…得出第8行数字,进而求出即可.解答:解:由图表可得出:第6列数字从31开始,依次加14,16,18…则第8行,左起第6列的数为:31+14+16+18+20+22+24+26=171.故答案为:171.点评:此题主要考查了数字变化规律,根据已知得出没行与每列的变化规律是解题关键.11、(2013•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是51.考点:规律型:图形的变化类.专题:规律型.分析:计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.解解:∵5﹣1=4,答:12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第4个五边形数是22+13=35,第5个五边形数是35+16=51.故答案为:51.点评:本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.12、(2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC上.考点:规律型:图形的变化类.分析:根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上.解答:解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.点评:此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键.13、(2013•常德)小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是10200.考点:规律型:数字的变化类.分析:根据3,8,15,24的变化规律得出第100行左起第一个数为1012﹣1求出即可.解答:解:∵3=22﹣1,8=32﹣1,15=42﹣1,24=52﹣1,…∴第100行左起第一个数是:1012﹣1=10200.故答案为:10200.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.14、(2013年河北)如图12,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x 轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.答案:2解析:C1:y=-x(x-3)(0≤x≤3)C2:y=(x-3)(x-6)(3≤x≤6)C3:y=-(x-6)(x-9)(6≤x≤9)C4:y=(x-9)(x-12)(9≤x≤12)┉C13:y=-(x-36)(x-39)(36≤x≤39),当x=37时,y=2,所以,m=2。
2013年中考数学试卷分类汇编 操作与探究

操作与探究1、(13年北京5分22)阅读下面材料:小明遇到这样一个问题:如图1,在边长为)2(>a a 的正方形ABCD 各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ 的面积。
小明发现:分别延长QE ,MF ,NG ,PH ,交FA ,GB ,HC ,ED 的延长线于点R ,S ,T ,W ,可得△RQF ,△SMG ,△TNH ,△WPE 是四个全等的等腰直角三角形(如图2) 请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为__________;(2)求正方形MNPQ 的面积。
参考小明思考问题的方法,解决问题:如图3,在等边△ABC 各边上分别截取AD=BE=CF ,再分别过点D ,E ,F 作BC ,AC ,AB 的垂线,得到等边△RPQ ,若33=∆RPQ S ,则AD 的长为__________。
解析:考点:操作与探究(旋转、从正方形到等边三角形的变式、全等三角形)2、(2013成都市)如图,A B C ,,,为⊙O 上相邻的三个n 等分点,弧AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时,p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos 75==o o ,cos15sin 75==o o答案:c b ±2;c b 21322-+或c b --226解析:3、(2013山西,21,8分)(本题8分)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点。
2013年全国各地中考数学试卷分类汇编:操作探究
操作探究一.选择题1. 2013•绍兴4分)小敏在作⊙O 的内接正五边形时,先做了如下几个步骤:(1)作⊙O 的两条互相垂直的直径,再作OA 的垂直平分线交OA 于点M ,如图1;(2)以M 为圆心,BM 长为半径作圆弧,交CA 于点D ,连结BD ,如图2.若⊙O 的半径为1,则由以上作图得到的关于正五边形边长BD 的等式是( )A . BD 2=ODB . BD 2=ODC . BD 2=ODD . BD 2=OD【答案】C .【解析】如图2,连接BM ,根据题意得:OB=OA=1,AD ⊥OB ,BM=DM , ∵OA 的垂直平分线交OA 于点M , ∴OM=AM=OA=, ∴BM==,∴DM=,∴OD=DM ﹣OM=﹣=,、(2013深圳,9,3分)如图1,有一张一个角为30o ,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是 A .8或23 B .10或423+C .10或23D .8或423+【答案】D【解析】如图,有三种拼接方式,前一种拼接方式的周长为423+,后两种拼接方式的周长为均8,故选D【方法指导】本题考查了直角三角形的边角关系及特殊四边形的相关性质。
拼接时注意分类,做到不重不漏,细心计算。
2. (2013山东烟台,8,3分)将正方形图1作如下操作:第1次:分别连结各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3.得到9个正方30°图1形……,依此类推,根据以上操作.若要得到2013个正方形,则需要操作的次数是( )A .502B .503C .504D . 505 【答案】B【解析】从简单的、局部的、特殊的情形出发,通过观察、分析、比较、提炼、验证,从而发现规律,推出结论.第一次操作后正方形的个数:4×1+1=5;第二次操作后正方形的个数:4×2+1=9; 第三次操作后正方形的个数:4×3+1=13……第n 次操作后正方形的个数:4×n +1=4n +1(n 为正整数)∴4n +1=2013∴n =503.【方法指导】本题考查了图形的规律探索.探索规律型问题一般包括数字规律问题、等式规律问题、图形排列规律问题、图形变换规律问题、数形结合规律问题和计算类问题等等.解决这类问题往往需要我们借助于一些特殊的情况,通过观察、分析、归纳、验证,然后得出一般性的结论,并对结论进行验证.通常以填空或选择的形式出现.二.填空题1.(2013四川绵阳,16,4分)对正方形ABCD 进行分割,如图1,其中E 、F 分别是BC 、CD 的中点,M 、N 、G 分别是OB 、OD 、EF 的中点,沿分化线可以剪出一副“七巧板”,用这些部件可以拼出很多图案,图2就是用其中6块拼出的“飞机”。
8.3 2020中考数学复习:《开放探索》近8年全国中考题型大全(含答案)
8.3 开放探索一、填空题1. (2013 湖南省常德市) 请写一个图像在第二,四象限的反比例函数解析式:_________.2. (2013 浙江省义乌市) 如图,已知B C∠=∠,添加一个条件使△≌△(不标注新的字母,不添加新的线段).你添加的ABD ACE条件是_______;3. (2017 山东省威海市) 阅读理解:如图1,⊙O与直线a、b都相切,不论⊙O 如何转动,直线a、b之间的距离始终保持不变(等于⊙O的直径),我们把具有这一特性的图形成为“等宽曲线”,图2是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力既可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.拓展应用:如图3所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线c,d之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线c,d之间的距离等于2cm,则莱洛三角形的周长为cm.5. (2019 浙江省杭州市) (4分)某函数满足当自变量x=1时,函数值y=0,1当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式.二、应用题6. (2012 山东省德州市) 如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:APB BPH∠=∠;(2)当点P在边AD上移动时,PDH△的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.AB CDEFGHPAB CD EFGHP(备用图)236. (2012 黑龙江省齐齐哈尔市) 如图1,在正方形ABCD 中,点M N 、分别在AD CD 、上,若45MBN ∠=°,易证MN AM CN =+.(1)如图2,在梯形ABCD 中,BC AD ∥,AB BC CD ==,点M N 、分别在AD CD 、上,若12MBN ABC ∠=∠,试探究线段MN 、AM 、CN 有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD 中,AB BC =,180ABC ADC ∠+∠=°,点M N 、分别在DA 、CD 的延长线上,若12MBN ABC ∠=∠,试探究线段MN 、AM 、CN 又有怎样的数量关系?请直接写出猜想,不需证明.7. (2015 辽宁省铁岭市) 已知:点D 是等腰直角三角形ABC 斜边BC 所在直线上一点(不与点B 重合),连接AD .(1)如图1,当点D 在线段BC 上时,将线段AD 绕点A 逆时针方向旋转90°得到线段AE ,连接CE .求证:BD=CE ,BD ⊥CE .(2)如图2,当点D 在线段BC 延长线上时,探究AD 、BD 、CD 三条线段之间的数量关系,写出结论并说明理由;(3)若BD=CD ,直接写出∠BAD 的度数.8. (2015 四川省资阳市) 如图12,E、F分别是正方形ABCD的边DC、CB上的点,且DE=CF,以AE为边作正方形AEHG,HE与BC交于点Q,连接DF.(1)求证:△ADE≌△DCF;(2)若E是CD的中点,求证:Q为CF的中点;(3)连接AQ,设S△CEQ=S1,S△AED=S2,S△EAQ=S3,在(2)的条件下,判断S1+S2=S3是否成立?并说明理由.9. (2016 福建省漳州市) 现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)4510. (2016 黑龙江省齐齐哈尔市) 如图所示,在平面直角坐标系中,过点A (﹣,0)的两条直线分别交y 轴于B 、C 两点,且B 、C 两点的纵坐标分别是一元二次方程x 2﹣2x ﹣3=0的两个根 (1)求线段BC 的长度;(2)试问:直线AC 与直线AB 是否垂直?请说明理由; (3)若点D 在直线AC 上,且DB=DC ,求点D 的坐标;(4)在⑶的条件下,直线BD 上是否存在点P ,使以A 、B 、P 三点为顶点的三角形是等腰三角形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.11. (2017 广东省佛山) 在四边形ABCD 中,︒=∠+∠180D B ,对角线AC 平分BAD ∠. (1)如图1,若︒=∠120DAB ,且︒=∠90B ,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图2,若将(1)中的条件“︒=∠90B ”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若︒=∠90DAB ,探究边AD 、AB 与对角线AC 数量关系并说明理由.DCBAD CB ADCBA三、解答题12. (2017 山东省滨州市) 2017山东滨州)根据要求,解答下列问题.(1)根据要求,解答下列问题.①方程x2-2x+1=0的解为________________________;②方程x2-3x+2=0的解为________________________;③方程x2-4x+3=0的解为________________________;……(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x+8=0的解为________________________;②关于x的方程________________________的解为x1=1,x2=n.(3)请用配方法解方程x2-9x+8=0,以验证猜想结论的正确性.13. (2019 海南省) (满分15分)如图11,已知抛物线y=a x2+bx+5经过A(-5,0)、B(-4,-3)两点,与x轴的另一个交点为C,顶点为D连接CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合).设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.6714. (2019 江苏省无锡市) (12分)如图1,在矩形ABCD 中,3BC =,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作PAB ∆关于直线PA 的对称PAB ∆',设点P 的运动时间为()t s . (1)若23AB =.①如图2,当点B '落在AC 上时,显然PAB ∆'是直角三角形,求此时t 的值; ②是否存在异于图2的时刻,使得PCB ∆'是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由.(2)当P 点不与C 点重合时,若直线PB '与直线CD 相交于点M ,且当3t <时存在某一时刻有结论45PAM ∠=︒成立,试探究:对于3t >的任意时刻,结论“45PAM ∠=︒”是否总是成立?请说明理由.15. (2019 浙江省绍兴市) (10分)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.8916. (2012 四川省资阳市) 已知a 、b是正实数,那么,2a b +≥(1)(3分)由20≥恒成立,说明2a b +≥(2)(3分)填空:已知a 、b 、c 是正实数,由2a b +≥猜测:3a b c ++ ≥ 也恒成立; (3)(2分)如图,已知AB 是直径,点P 是弧上异于点A 和点B 的一点,PC ⊥AB ,垂足为C ,AC =a ,BC =b,由此图说明2a b +≥1017. (2013 湖北省武汉市) 已知四边形ABCD 中,E 、F 分别是AB 、AD 边上的点,DE 与CF 交于点G .(1)如图①,若四边形ABCD 是矩形,且DE ⊥CF ,求证CDAD CFDE =;(2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得CDAD CFDE =成立?并证明你的结论;(3)如图③,若BA =BC =6,DA =DC =8,∠BAD =90°,DE ⊥CF ,请直接写出CFDE 的值.18. (2014 江苏省南京市) 问题提出学习了三角形全等的判定方法(即“SAS ”“ASA ”“AAS ”“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究。
2013年《南方新中考》中考数学复习习题集+限时训练(含答案)习题集
目录第一部分数与代数第一章数与式第1讲实数83第2讲代数式84第3讲整式与分式85第1课时整式85第2课时因式分解86第3课时分式87第4讲二次根式89第二章方程与不等式第1讲方程与方程组90第1课时一元一次方程与二元一次方程组90第2课时分式方程91第3课时一元二次方程93第2讲不等式与不等式组94第三章函数第1讲函数与平面直角坐标系97第2讲一次函数99第3讲反比例函数101第4讲二次函数103第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线106第2讲三角形108第1课时三角形108第2课时等腰三角形与直角三角形110第3讲四边形与多边形112第1课时多边形与平行四边形112第2课时特殊的平行四边形114第3课时梯形116第五章圆第1讲圆的基本性质118第2讲与圆有关的位置关系120第3讲与圆有关的计算122第六章图形与变换第1讲图形的轴对称、平移与旋转124第2讲视图与投影126第3讲尺规作图127第4讲图形的相似130第5讲解直角三角形132第三部分统计与概率第七章统计与概率第1讲统计135第2讲概率137第四部分中考专题突破专题一归纳与猜想140专题二方案与设计141专题三阅读理解型问题143专题四开放探究题145专题五数形结合思想147基础题强化提高测试中考数学基础题强化提高测试1149中考数学基础题强化提高测试2151中考数学基础题强化提高测试3153中考数学基础题强化提高测试4155中考数学基础题强化提高测试5157中考数学基础题强化提高测试61592013年中考数学模拟试题(一)1612013年中考数学模拟试题(二)165第一部分 数与代数第一章 数与式 第1讲 实数A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .22.(2012年浙江湖州)-2的绝对值等于( )A .2B .-2 C.12D .±23.(2011年贵州安顺)-4的倒数的相反数是( )A .-4B .4C .-14 D.144.(2012年广东深圳)-3的倒数是( )A .3B .-3 C.13 D .-135.无理数-3的相反数是( )A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( ) A .-(-2)-(-3) B .(-2)×(-3)C .(-2)2D .(-3)-3 7.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃. 8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.(2012年山东泰安)已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( )A .21×10-4千克B .2.1×10-6千克C .2.1×10-5千克D .2.1×10-4千克10.(2012年河北)计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.B 级 中等题11.(2012年贵州毕节)实数a ,b 在数轴上的位置如图X1-1-1所示,下列式子错误的是( )图X1-1-1A .a <bB .|a |>|b |C .-a <-bD .b -a >012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.(2011年江苏盐城)将1,2,3,6按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-3 3|-2cos30°-2-2+(3-π)0. 15.(2012年浙江绍兴)计算:-22+-113⎛⎫ ⎪⎝⎭-2cos60°+|-3|.C 级 拔尖题16.如图X1-1-2,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为__________.图X1-1-217.(2012年广东)观察下列等式:第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭;第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭;第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭;…请解答下列问题:(1)按以上规律列出第5个等式:a 5=______________=______________; (2)用含有n 的代数式表示第n 个等式:a n =______________=______________(n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a 100的值.选做题18.(2012年浙江台州)请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立:1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a ⊕b =________(用a ,b 的一个代数式表示).第2讲 代数式A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( ) A .(15+a )万人 B .(15-a )万人C .15a 万人 D.15a万人2.若x =m -n ,y =m +n ,则xy 的值是( ) A .2 m B .2 n C .m +n D .m -n3.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.124.(2011年江苏盐城)已知a -b =1,则代数式2a -2b -3的值是( ) A .-1 B .1 C .-5 D .55.(2012年浙江宁波)已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( ) A .3 B .-3 C .1 D .-16.(2011年河北)若|x -3|+|y +2|=0,则x +y 的值为__________. 7.(2010年湖北黄冈)通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是____________元.8.已知代数式2a 3b n +1与-3a m +2b 2是同类项,2m +3n =________.9.如图X1-2-1,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是________(用含m ,n 的式子表示).图X1-2-110.(2011年浙江丽水)已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值.B 级 中等题11.(2012年云南)若a 2-b 2=14,a -b =12,则a +b 的值为( )A .-12 B.12C .1D .212.(2012年浙江杭州)化简m 2-163m -12得____________;当m =-1时,原式的值为________.13.(2011年浙江宁波)把四张形状大小完全相同的小长方形卡片[如图X1-2-1(1)]不重叠的放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部[如图X1-2-1(2)],盒子底面未被卡片覆盖的部分用阴影表示,则图X1-2-1(2)中两块阴影部分的周长和是( )图X1-2-1A .4m cmB .4n cmC .2(m +n ) cmD .4(m -n ) cm14.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a +b +c 就是完全对称式.下列三个代数式:①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a . 其中是完全对称式的是( )A .①②B .①③C .②③D .①②③15.(2012年浙江丽水)已知A =2x +y ,B =2x -y ,计算A 2-B 2.C 级 拔尖题16.(2012年山东东营)若3x =4,9y=7,则3x -2y 的值为( ) A.47 B.74 C .-3 D.2717.一组按一定规律排列的式子(a ≠0):-a 2,a 52,-a 83,a 114,…,则第n 个式子是________(n 为正整数).选做题18.(2010年广东深圳)已知,x =2 009,y =2 010,求代数式x -y x ÷22xy y x x ⎛⎫-- ⎪⎝⎭的值.19.(2012年贵州遵义)如图X1-2-3,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )图X1-2-3A .2 cm 2B .2a cm 2C .4a cm 2D .(a 2-1)cm 2第3讲 整式与分式 第1课时 整式A 级 基础题1.(2012年江苏南通)计算(-x )2·x 3的结果是( ) A .x 5 B .-x 5 C .x 6 D .-x 62.(2012年四川广安)下列运算正确的是( ) A .3a -a =3 B .a 2·a 3=a 5 C .a 15÷a 3=a 5(a ≠0) D .(a 3)3=a 63.(2012年广东汕头)下列运算正确的是( ) A .a +a =a 2 B .(-a 3)2=a 5 C .3a ·a 2=a 3 D .(2a )2=2a 24.(2012年上海)在下列代数式中,系数为3的单项式是( ) A .xy 2 B .x 3+y 3 C .x 3y D .3xy5.(2012年江苏杭州)下列计算正确的是( ) A .(-p 2q )3=-p 5q 3 B .(12a 2b 3c )÷(6ab 2)=2ab C .3m 2÷(3m -1)=m -3m 2D .(x 2-4x )x -1=x -46.(2011年山东日照)下列等式一定成立的是( ) A .a 2+a 3=a 5 B .(a +b )2=a 2+b 2 C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab7.(2012年陕西)计算(-5a 3)2的结果是( ) A .-10a 5 B .10a 6 C .-25a 5 D .25a 68.(2011年湖北荆州)将代数式x 2+4x -1化成(x +p )2+q 的形式为( ) A .(x -2)2+3 B .(x +2)2-4 C .(x +2)2-5 D .(x +2)2+4 9.计算:(1)(3+1)(3-1)=____________; (2)(2012年山东德州)化简:6a 6÷3a 3=________.(3)(-2a )·3114a ⎛⎫- ⎪⎝⎭=________.10.化简:(a +b )2+a (a -2b ).B级中等题11.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1 B.5x+1C.13x-1 D.13x+112.(2011年安徽芜湖)如图X1-3-1,从边长为(a+4) cm的正方形纸片中剪去一个边长为(a+1) cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为().图X1-3-1A.(2a2+5a) cm2B.(3a+15) cm2C.(6a+9) cm2D.(6a+15) cm213.(2012年湖南株洲)先化简,再求值:(2a-b)2-b2,其中a=-2,b=3.14.(2012年吉林)先化简,再求值:(a+b)(a-b)+2a2,其中a=1,b= 2.15.(2012年山西)先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=- 3.C级拔尖题16.(2012年四川宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x-3)2+11 B.(x+3)2-7C.(x+3)2-11 D.(x+2)2+417.若2x-y+|y+2|=0,求代数式[(x-y)2+(x+y)(x-y)]÷2x的值.选做题18.观察下列算式:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1;④__________________________.……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.19.(2012年江苏苏州)若3×9m×27m=311,则m的值为____________.第2课时因式分解A级基础题1.(2012年四川凉山州)下列多项式能分解因式的是()A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y22.(2012年山东济宁)下列式子变形是因式分解的是()A.x2-5x+6=x(x-5)+6B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6D.x2-5x+6=(x+2)(x+3)3.(2012年内蒙古呼和浩特)下列各因式分解正确的是()A.-x2+(-2)2=(x-2)(x+2)B.x2+2x-1=(x-1)C.4x2-4x+1=(2x-1)2D.x2-4x=x(x+2)(x-2)4.(2011年湖南邵阳)因式分解:a2-b2=______.5.(2012年辽宁沈阳)分解因式:m2-6m+9=______.6.(2012年广西桂林)分解因式:4x2-2x=________.7.(2012年浙江丽水)分解因式:2x2-8=________.8.(2012年贵州六盘水)分解因式:2x2+4x+2=________.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)[如图X1-3-2(1)],把余下的部分拼成一个矩形[如图X1-3-2(2)],根据两个图形中阴影部分的面积相等,可以验证()图X1-3-2A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b210.若m2-n2=6且m-n=3,则m+n=________.B级中等题11.对于任意自然数n,(n+11)2-n2是否能被11整除,为什么?12.(2012年山东临沂)分解因式:a -6ab +9ab 2=____________. 13.(2012年四川内江)分解因式:ab 3-4ab =______________. 14.(2012年山东潍坊)分解因式:x 3-4x 2-12x =______________. 15.(2012年江苏无锡)分解因式(x -1)2-2(x -1)+1的结果是( ) A .(x -1)(x -2) B .x 2 C .(x +1)2 D .(x -2)216.(2012年山东德州)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y 2的值.C 级 拔尖题17.(2012年江苏苏州)若a =2,a +b =3,则a 2+ab =________.18.(2012年湖北随州)设a 2+2a -1=0,b 4-2b 2-1=0,且1-ab 2≠0,则52231ab b a a ⎛⎫+-+ ⎪⎝⎭=________.选做题 19.分解因式:x 2-y 2-3x -3y =______________.20.已知a ,b ,c 为▣ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,试判断▣ABC 的形状.21.(2012年贵州黔东南州)分解因式x 3-4x =______________________.第3课时 分式A 级 基础题1.(2012年浙江湖州)要使分式1x有意义,x 的取值范围满足( )A .x =0B .x ≠0C .x >0D .x <02.(2012年四川德阳)使代数式x2x -1有意义的x 的取值范围是( )A .x ≥0B .x ≠12C .x ≥0且x ≠12D .一切实数3.在括号内填入适当的代数式,是下列等式成立: (1)2ab =( )2xa 2b2 (2)a 3-ab 2(a -b )2=a ( )a -b4.约分:56x 3yz 448x 5y 2z=____________;x 2-9x 2-2x -3=____________.5.已知a -b a +b =15,则ab =__________.6.当x =______时,分式x 2-2x -3x -3的值为零.7.(2012年福建漳州)化简:x 2-1x +1÷x 2-2x +1x 2-x.8.(2012年浙江衢州)先化简x 2x -1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:x -2x 2-4-xx +2,其中x =2.10.(2012年山东泰安)化简:222mm m m ⎛⎫- ⎪+-⎝⎭÷m m 2-4=____________________.B 级 中等题11.若分式x -1(x -1)(x -2)有意义,则x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1且x ≠2D .以上结果都不对12.先化简,再求值:234211x x x +⎛⎫- ⎪--⎝⎭÷x +2x 2-2x +1.13.(2011年湖南常德)先化简,再求值. 2212111x x x x ⎛⎫-++ ⎪+-⎝⎭÷x -1x +1,其中x =2.14.(2012年四川资阳)先化简,再求值:a -2a 2-1÷2111a a a -⎛⎫-- ⎪+⎝⎭,其中a 是方程x 2-x =6的根.C 级 拔尖题15.先化简再求值:ab +a b 2-1+b -1b 2-2b +1,其中b -2+36a 2+b 2-12ab =0.选做题16.已知x 2-3x -1=0,求x 2+1x2的值.17.(2012年四川内江)已知三个数x ,y ,z 满足xy x +y =-2,yz z +y =34,zx z +x=-34,则xyzxy +yz +zx 的值为____________.第4讲 二次根式A 级 基础题1.下列二次根式是最简二次根式的是( )A.12B. 4C. 3D.82.下列计算正确的是( ) A.20=2 10 B.2·3= 6 C.4-2= 2 D.(-3)2=-33.若a <1,化简(a -1)2-1=( ) A .a -2 B .2-a C .a D .-a4.(2012年广西玉林)计算:3 2-2=( ) A .3 B. 2 C .2 2 D .4 25.如图X1-3-3,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )图X1-3-3A .-2- 3B .-1- 3C .-2+ 3D .1+ 36.(2011年湖南衡阳)计算:12+3=__________.7.(2011年辽宁营口)计算18-2 12=________.8.已知一个正数的平方根是3x -2和5x +6,则这个数是__________.9.若将三个数-3,7,11表示在数轴上,其中能被如图X1-3-4所示的墨迹覆盖的数是__________.图X1-3-410.(2011年四川内江)计算:3tan30°-(π-2 011)0+8-|1-2|.B 级 中等题11.(2011年安徽)设a =19-1,a 在两个相邻整数之间,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和512.(2011年山东烟台)如果(2a -1)2=1-2a ,则( )A .a <12B .a ≤12C .a >12D .a ≥1213.(2011年浙江)已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( )A .9B .±3C .3D .514.(2012年福建福州)若20n 是整数,则正整数n 的最小值为________.15.(2011年贵州贵阳)如图X1-3-5,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )图X1-3-5A .2.5B .2 2 C. 3 D. 516.(2011年四川凉山州)计算:(sin30°)-2+0352⎛⎫ ⎪-⎝⎭-|3-18|+83×(-0.125)3.C 级 拔尖题17.(2012年湖北荆州)若x -2y +9与|x -y -3|互为相反数,则x +y 的值为( ) A .3 B .9 C .12 D .2718.(2011年山东日照)已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2 011-y 2 011=______.选做题19.(2011年四川凉山州)已知y =2x -5+5-2x -3,则2xy 的值为( )A .-15B .15C .-152 D.152第二章 方程与不等式 第1讲 方程与方程组第1课时 一元一次方程与二元一次方程组A 级 基础题1.(2012年山东枣庄)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2 080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2 080B .x ×30%×80%=2 080C .2 080×30%×80%=xD .x ×30%=2 080×80%2.(2012年广西桂林)二元一次方程组 3.24x y x +=⎧⎨=⎩的解是( )A. 3,0x y =⎧⎨=⎩B.1,2x y =⎧⎨=⎩C. 5,2x y =⎧⎨=-⎩D.2,1x y =⎧⎨=⎩3.(2012年湖南衡阳)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A. 50,6()320x y x y +=⎧⎨+=⎩B.50,610320x y x y +=⎧⎨+=⎩C.50,6320x y x y +=⎧⎨+=⎩D.50,106320x y x y +=⎧⎨+=⎩4.(2012年贵州铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(x +21-1)=6(x -1)B .5(x +21)=6(x -1)C .5(x +21-1)=6xD .5(x +21)=6x5.已知关于x 的方程3x -2m =4的解是x =m ,则m 的值是________.6.方程组2,21x y x y -=⎧⎨+=⎩的解是__________.7.(2012年湖南湘潭)湖南省2011年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20 000元.设每人向旅行社缴纳x 元费用后,共剩5 000元用于购物和品尝台湾美食.根据题意,列出方程为__________________.8.(2012年江苏苏州)我国是一个淡水资源严重缺乏的国家.有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13800 m 3.问中、美两国人均淡水资源占有量各为多少(单位:m 3)?B 级 中等题9.(2012年贵州黔西南)已知-2x m -1y 3与12x n y m +n 是同类项,那么(n -m )2 012=______.10.(2012年山东菏泽)已知2,1x y =⎧⎨=⎩是二元一次方程组的解8,1,mx ny nx my +=⎧⎨-=⎩则2m -n 的算术平方根为( )A .± 2 B.2 C .2 D .411.(2012年湖北咸宁)某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需____________元.12.(2011年内蒙古呼和浩特)解方程组: 4(1)3(1)2,2.23x y y x y--=--⎧⎪⎨+=⎪⎩C 级 拔尖题13.如图X2-1-1,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ). (1)求b 的值.(2)不解关于x ,y 的方程组1,,y x y mx n =+⎧⎨=+⎩请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.图X2-1-114.(2012年江西南昌)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”; 爸爸说:“报纸上说了萝卜的单价上涨50%,排骨的单价上涨20%”;小明说:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?” 请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).选做题15.(2011年上海)解方程组:222,230.x y x xy y -=⎧⎨--=⎩16.若关于x ,y 的二元一次方程组5,9x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B.34 C.43 D .-43第2课时 分式方程A 级 基础题1.(2012年广西北海)分式方程7x -8=1的解是( )A .-1B .1C .8D .152.(2012年浙江丽水)把分式方程2x +4=1x化为一元一次方程时,方程两边需同乘以( )A .xB .2xC .x +4D .x (x +4)3.(2012年湖北随州)分式方程10020+v =6020-v的解是( )A .v =-20B .v =5C .v =-5D .v =204.(2012年四川成都)分式方程32x =1x -1的解为( )A .x =1B .x =2C .x =3D .x =4 5.(2012年四川内江)甲车行驶30千米与乙车行驶40千米所用的时间相同.已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/时,依题意列方程正确的是( )A.30x =40x -15B.30x -15=40xC.30x =40x +15D.30x +15=40x6.方程 x 2-1x +1=0的解是________.7.(2012年江苏连云港)今年6月1日起,国家实施了《中央财政补贴条例》,支持高效节能电器的推广使用.某款定速空调在条列实施后,每购买一台,客户可获财政补贴200元,若同样用1万元所购买的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为 __________元.8.(2012年山东德州)解方程:2x 2-1+1x +1=1.9.(2012年江苏泰州)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?10.(2012年北京)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1 000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同.求一片国槐树叶一年的平均滞尘量.B 级 中等题11.(2012年山东莱芜)对于非零实数a ,b ,规定a ⊕b =1b -1a.若2⊕(2x -1)=1,则x 的 值为( )A.56B.54C.32 D .-1612.(2012年四川巴中)若关于x 的方程2x -2+x +m 2-x=2有增根,则m 的值是________.13.(2012年山东菏泽改编)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12 000元购进的科普书与用8 000元购进的文学书的本数相等.C级拔尖题15.(2012年江苏无锡)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购.投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%;方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么(注:投资收益率=投资收益实际投资额×100%)?(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?选做题14.(2012年山东日照)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?15.(2012年湖北黄冈)某服装厂设计了一款新式夏装,想尽快制作8 800 件投入市场,服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2 倍,A,B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20 天完成,求A,B两车间每天分别能加工多少件.第3课时 一元二次方程A 级 基础题1.(2011年江苏泰州)一元二次方程x 2=2x 的根是( ) A .x =2 B .x =0C .x 1=0,x 2=2D .x 1=0,x 2=-2 2.方程x 2-4=0的根是( ) A .x =2 B .x =-2C .x 1=2,x 2=-2D .x =43.(2011年安徽)一元二次方程x (x -2)=2-x 的根是( ) A .-1 B .2C .1和2D .-1和24.(2012年贵州安顺)已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( )A .1B .-1C .0D .无法确定 5.(2012年湖北武汉)若x 1,x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2的值是( ) A .-2 B .2 C .3 D .1 6.(2012年湖南常德)若一元二次方程x 2+2x +m =0有实数解,则m 的取值范围是( ) A .m ≤-1 B .m ≤1C .m ≤4D .m ≤127.(2012年江西南昌)已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是( )A .1B .-1 C.14 D .-148.(2012年上海)如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实根,那么c 的取值范围是__________.9.(2011年山东滨州)某商品原售价为289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x, 可列方程为________________________________________________________________________.10.解方程: (x -3)2+4x (x -3)=0.B 级 中等题11.(2012年内蒙古呼和浩特)已知:x 1,x 2是一元二次方程x 2+2ax +b =0的两个根,且x 1+x 2=3,x 1x 2=1,则a ,b 的值分别是( )A .a =-3,b =1B .a =3,b =1C .a =-32,b =-1D .a =-32,b =112.(2011年山东潍坊)关于x 的方程x 2+2kx +k -1=0的根的情况描述正确的是( ) A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种13.(2011年山东德州)若x 1,x 2是方程x 2+x -1=0的两个实数根,则x 21+x 22=__________. 14.(2011年江苏苏州)已知a ,b 是一元二次方程x 2-2x -1=0的两个实数根,则代数式(a -b )(a +b -2)+ab 的值等于________.15.(2012年山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种核桃要想平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?16.(2012年湖南湘潭)如图X2-1-2,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25 m),现在已备足可以砌50 m 长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m 2.X2-1-2C 级 拔尖题17.(2012年湖北襄阳)如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠0选做题18.(2012年江苏南通)设α,β是一元二次方程x 2+3x -7=0的两个根,则α2+4α+β=________.19.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是________.第2讲 不等式与不等式组A 级 基础题1.不等式3x -6≥0的解集为( ) A .x >2 B .x ≥2 C .x <2 D .x ≤22.(2012年湖南长沙)一个不等式组的解集在数轴上表示出来如图X2-2-1,则下列符合条件的不等式组为( )图X2-2-1A.2,1x x >⎧⎨≤-⎩B.2,1x x <⎧⎨>-⎩C.2,1x x <⎧⎨≥-⎩D.2,1x x <⎧⎨≤-⎩3.函数y =kx +b 的图象如图X2-2-2,则当y <0时,x 的取值范围是( ) A .x <-2 B .x >-2 C .x <-1 D .x >-1图X2-2-2图X2-3-34.直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图X2-2-3,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )A .x >1B .x <1C .x >-2D .x <-25.(2012年湖南湘潭)不等式组11,3x x ->⎧⎨<⎩的解集为__________.6.若关于x 的不等式组2,x x m⎧⎨⎩>>的解集是x >2,则m 的取值范围是________.7.(2012年江苏扬州)在平面直角坐标系中,点P (m ,m -2)在第一象限内,则m 的取值范围是________.8.不等式组14,2124x x +⎧≤⎪⎨⎪-<⎩的整数解是____________.9.(2012年江苏苏州)解不等式组:322,813(1).x x x x -<+⎧⎨-≥--⎩10.某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人.如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得1盒.(1)设敬老院有x 名老人,则这批牛奶共有多少盒(用含x 的代数式表示)? (2)该敬老院至少有多少名老人?最多有多少名老人?B 级 中等题11.(2012年湖北荆门)已知点M (1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是()12.(2012年湖北恩施)某大型超市从生产基地购进一批水果,运输过程中损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A .40%B .33.4%C .33.3%D .30%13.(2012年湖北黄石)若关于x 的不等式组233,35x x x a >-⎧⎨->⎩有实数解,则实数a 的取值范围是____________.14.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4∶3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?C级拔尖题15.试确定实数a的取值范围,使不等式组123544(1)33x xax x a+⎧+>⎪⎪⎨+⎪+>++⎪⎩恰有两个整数解.16.(2012年四川德阳)今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48 000 m2和B种板材24 000 m2的任务.(1)如果该厂安排210人生产这两种板材,每人每天能生产A种板材60 m2或B种板材40 m2.请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:板房A种板材/m2B种板材/m2安置人数/人甲型1086112乙型1565110问这400间板房最多能安置多少灾民?选做题17.若关于x,y的二元一次方程组31,33x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则实数a的取值范围为______.18.(2011年福建泉州)某电器商城“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:类别冰箱彩电进价(元/台) 2 320 1 900售价(元/台)2 420 1 980 (1)按国家政策,农民购买“家电下乡”产品享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的56.若使商场获利最大,请你帮助商场计算应该购进冰箱、彩电各多少台?最大获利是多少?第三章函数第1讲函数与平面直角坐标系A级基础题1.(2012年山东荷泽)点(-2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2012年四川成都)在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为()A.(-3,-5) B.(3,5)C.(3,-5) D.(5,-3)3.已知y轴上的点P到x轴的距离为3,则点P的坐标为()A.(3,0) B.(0,3)C.(0,3)或(0,-3) D.(3,0)或(-3,0)4.(2012年浙江绍兴)在如图X3-1-1所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是()图X3-1-1A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位5.(2011年山东枣庄)在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.(2012年湖北孝感)如图X3-1-2,▣ABC在平面直角坐标系中第二象限内,顶点A 的坐标是(-2,3),先把▣ABC向右平移4个单位得到▣A1B1C1,再作▣A1B1C1关于x轴的对称图形▣A2B2C2,则顶点A2的坐标是()图X3-1-2A.(-3,2) B.(2,-3)C.(1,-2) D.(3,-1)7.(2012年贵州毕节)如图X3-1-3,在平面直角坐标系中,以原点O为中心,将▣ABO 扩大到原来的2倍,得到▣A′B′O.若点A的坐标是(1,2),则点A′的坐标是()图X3-1-3A.(2,4) B.(-1,-2)C.(-2,-4) D.(-2,-1)8.(2011年浙江衢州)小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图X3-1-4).若小亮上坡、平路、下坡的速度分别为v1、v2、v3,且v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()图X3-1-49.(2012年山东潍坊)甲、乙两位同学用围棋子做游戏,如图X3-1-5,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是()[说明:棋子的位置用数对表示,如A点在(6,3)]图X3-1-5A.黑(3,7);白(5,3) B.黑(4,7);白(6,2)C.黑(2,7);白(5,3) D.黑(3,7);白(2,6)10.(2011年山东德州)点P(1,2)关于原点的对称点P′的坐标为__________.B级中等题11.(2012年四川泸州)将点P(-1,3)向右平移2个单位长度得到点P′,则点P′的坐标为________.12.(2012年四川内江)已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为____________.13.(2012年四川达州)将边长分别为1,2,3,4,…,19,20的正方形置于直角坐标系第一象限,如图X3-1-6中的方式叠放,则按图示规律排列的所有阴影部分的面积之和为__________.图X3-1-6图X3-1-714.(2012年江苏南京)在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移两个单位称为一次变换.如图X3-1-7,已知等边三角形ABC 的顶点B 、C 的坐标分别是(-1,-1),(-3,-1),把▣ABC 经过连续九次这样的变换得到▣A ′B ′C ′,则点A 的对应点A ′的坐标是__________.15.(2012年吉林)在平面直角坐标系中,点A 关于y 轴的对称点为点B ,点A 关于原点O 的对称点为点C .(1)若点A 的坐标为(1,2),请你在给出的图X3-1-8,坐标系中画出▣ABC .设AB 与y轴的交点为D ,则S ▣ADOS ▣ABC=__________;(2)若点A 的坐标为(a ,b )(ab ≠0),则▣ABC 的形状为____________.图X3-1-8C 级 拔尖题16.(2011年贵州贵阳)【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫⎪⎝⎭. 【运用】(1)如图X3-1-9,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),求点M 的坐标;(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.图X3-1-9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年中考数学总复习开放探究题训练试卷
1.在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,那么还不能
判定四边形ABCD为平行四边形,给出以下6个说法:
①如果再加上条件“AD∥BC”,那么四边形ABCD一定是平行四边形;
②如果再加上条件“AB=CD”,那么四边形ABCD一定是平行四边形;
③如果再加上条件“∠DAB=∠DCB”,那么四边形ABCD一定是平行四边形;
④如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;
⑤如果再加上条件“AO=CO”,那么四边形ABCD一定是平行四边形;
⑥如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.
其中正确的说法有()
A.3个B.4个C.5个D.6个
2.已知,在四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形
是正方形,那么这个条件可以是____________.
3.如图Z7-3,D,E分别是△ABC的边AB,AC上的点,则使△AED∽△ABC的条件是
__________.
4.(2012年吉林)如图Z7-4,AB是⊙O的直径,BC为⊙O的切线,∠ACB=40°,点P
在边BC上,则∠PAB的度数可能为______________(写出一个符合条件的度数即可).
图Z7-4
5.(2012年广东湛江)请写出一个二元一次方程组__________________,使它的解是x=2,
y=-1.
6.如图Z7-5,P是四边形ABCD的边DC上的一个动点,当四边形ABCD满足条件
__________________时,△PBA的面积始终保持不变(注:只需填上你认为正确的一种条件
即可,不必考虑所有可能的情形).
7.已知x2-ax-24在整数范围内可以分解因式,则整数a的值是____________(只需填一
个).
8.如图Z7-6,已知在等腰三角形ABC中,∠A=12∠C,底边BC为⊙O的直径,两腰
AB,AC分别与⊙O交于点D,E,有下列序号的四个结论:①AD=AE;②DE∥BC;③∠
A=∠CBE;④BE⊥AC.其中结论正确的序号是__________(填序号).
图Z7-6
9.某初一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两
地相距40km,摩托车的速度为45km/h,运货汽车的速度为35km/h,(涂黑部分表示被墨
水覆盖的若干文字)?”请将这道作业题补充完整,并列方程解答.
10.如图Z7-7,已知△ABC内接于⊙O,
(1)当点O与AB有怎样的位置关系时,∠ACB是直角?
(2)在满足(1)的条件下,过点C作直线交AB于D点,当CD与AB有什么样的关系时,△
ABC∽△CBD∽△ACD?
(3)画出符合(1)、(2)题意的两种图形,使图形的CD=2cm.
11.(2012年山东临沂)如图Z7-8,点A在x轴上,OA=4,将线段OA绕点O顺时针旋
转120°至OB位置,
(1)求点B的坐标;
(2)求经过点A,O,B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P,O,B为顶点的三角形是等腰三角
形?若存在,求点P的坐标;若不存在,说明理由.
图Z7-8