2.1.3 分层抽样

合集下载

2014年人教A版高中数学必修三 2.1.3 《分层抽样》

2014年人教A版高中数学必修三 2.1.3 《分层抽样》

入的家庭280个,低收入的家庭95个,为了了解生活购买力的
某项指标,要从中抽取一个容量为100的样本
(C)从1 000名工人中,抽取100名调查上班途中所用时间
(D)从生产流水线上,抽取样本检查产品质量
2.分层抽样又称为类型抽样,即将相似的个体归入一类(层), 然后每层各抽若干个个体构成样本,所以分层抽样为保证每个
(3)采用系统抽样时,当总体容量N能被样本容量n整除时,
抽样间隔为 k
N 当总体容量不能被样本容量整除时,先用 ; n
简单随机抽样剔除多余个体,抽样间隔为 k N .
n
【典例训练】
1.(2012·浏阳高一检测)①学校为了了解高一学生的情况,
从每班抽2人进行座谈;②一次数学竞赛中,某班有10人的成 绩在110分以上,10人的成绩在100~110分,30人的成绩在 90~100分,12人的成绩低于90分,现在从中抽取12人了解有 关情况;③运动会服务人员为参加400 m决赛的6名同学安排跑 道.就这三件事,合适的抽样方法为( )
2.1.3 分层抽样
1.理解分层抽样的概念.
2.掌握分层抽样的一般步骤. 3.区分简单随机抽样、系统抽样和分层抽样,并选择适当的方 法进行抽样.
1.本节重点是正确理解分层抽样的定义和步骤. 2.本节难点是灵活应用分层抽样抽取样本,并恰当地选择三种 抽样方法解决现实生活中的抽样问题.
分层抽样的有关概念
分层抽样的设计 【技法点拨】 分层抽样的操作步骤
第一步,计算样本容量与总体的个体数之比.
第二步,将总体分成互不交叉的层,按比例确定各层要抽取的
个体数.
第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的 个体. 第四步,将各层抽取的个体合在一起,就得到所取样本.

高中数学 学案 分层抽样

高中数学 学案 分层抽样

2.1.3 分层抽样学 习 目 标核 心 素 养1.记住分层抽样的特点和步骤(重点)2.会用分层抽样从总体中抽取样本.(重点、难点) 3.给定实际抽样问题会选择合适的抽样方法进行抽样.(易错易混点)1.通过分层抽样的学习,培养数学运算素养.2.借助多种抽样方法的选择,提升逻辑推理素养.1.分层抽样一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法是一种分层抽样.当总体是由差异明显的几部分组成时,往往选用分层抽样的方法. 2.分层抽样的实施步骤第一步,按某种特征将总体分成若干部分(层). 第二步,计算抽样比.抽样比=样本容量总体容量.第三步,各层抽取的个体数=各层总的个体数×抽样比. 第四步,依各层抽取的个体数,按简单随机抽样从各层抽取样本. 第五步,综合每层抽样,组成样本. 思考:什么情况下适用分层抽样?[提示] 当总体中个体之间差异较大时可使用分层抽样.1.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样C [依据题意,了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大,故要了解该地区学生的视力情况,应按学段分层抽样.]2.为了保证分层抽样时每个个体被等可能地抽取,必须要求( ) A .每层等可能抽取 B .每层抽取的个体数相等C .按每层所含个体在总体中所占的比例抽样D .只要抽取的样本容量一定,每层抽取的个体数没有限制 C [分层抽样为等比例抽样.]3.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( )A .8,8B .10,6C .9,7D .12,4C [抽样比1654+42=16,则一班被抽取人数为54×16=9人,二班被抽取人数为42×16=7人.]4.在抽样过程中,每次抽取的个体不再放回总体的为不放回抽样,那么分层抽样、系统抽样、简单随机抽样三种抽样中,为不放回抽样的有________个.三 [三种抽样方法均为不放回抽样.]分层抽样的概念【例1】 下列问题中,最适合用分层抽样抽取样本的是( ) A .从10名同学中抽取3人参加座谈会B .某社区有500个家庭,其中高收入的家庭125个,中等收入的家庭280个,低收入的家庭95个,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C .从1 000名工人中,抽取100名调查上班途中所用时间D .从生产流水线上,抽取样本检查产品质量B [A 中总体个体无明显差异且个数较少,适合用简单随机抽样;C 中,D 中总体个体无明显差异且个数较多,适合用系统抽样;B 中总体个体差异明显,适合用分层抽样.]分层抽样的特点(1)适用于总体由差异明显的几部分组成的情况. (2)样本能更充分地反映总体的情况.(3)等可能抽样,每个个体被抽到的可能性都相等.1.某校有在校高中生共1 600人,其中高一学生520人,高二学生500人,高三学生580人.如果想通过抽查其中的80人来调查学生的消费情况,考虑到学生的年级高低消费情况有明显差别,而同一年级内消费情况差异较小,问:应采用怎样的抽样方法?高三学生中应抽查多少人?[解] 因为不同年级的学生消费情况有明显差别,所以应采用分层抽样. 因为520∶500∶580=26∶25∶29. 所以将80分成26∶25∶29的三部分. 设三部分各抽取的个体数分别为26x,25x,29x, 由26x +25x +29x =80得x =1, 所以高三学生中应抽查29人.分层抽样的设计及应用1.怎样确定分层抽样中各层入样的个体数? [提示] 在实际操作时,应先计算出抽样比=样本容量总体容量,获得各层入样数的百分比,再按抽样比确定每层需要抽取的个体数:抽样比×该层个体数目=样本容量总体容量×该层个体数目.2.计算各层所抽个体的个数时,如果算出的个数值不是整数怎么办? [提示] 可四舍五入取整,也可先将该层等可能地剔除多余个体. 3.分层抽样公平吗?[提示] 分层抽样中,每个个体被抽到的可能性是相同的,与层数、分层无关.如果总体的个数为N,样本容量为n,N i 为第i 层的个体数,则第i 层抽取的个体数n i =n·N iN ,每个个体被抽到的可能性是n i N i =1N i ·n ·N i N =nN.【例2】 某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作.思路点拨:观察特征→确定抽样方法→求出比例→确定各层样本数→从各层中抽样→样本 [解] ∵机构改革关系到每个人的不同利益,故采用分层抽样方法较妥. ∵10020=5, ∴105=2,705=14,205=4. ∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.因副处级以上干部与工人数都较少,他们分别按1~10编号和1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人进行00,01,…,69编号,然后用随机数表法抽取14人.这样便得到了一个容量为20的样本.1.(变条件)某大型工厂有管理人员1 200人,销售人员2 000人,车间工人6 000人,若要了解改革意见,从全厂人员中抽取一个容量为46的样本,试确定用何种方法抽取,请具体实施操作.[解] 改革关系到每个人的利益,采用分层抽样较好.抽样比:461 200+2 000+6 000=1200.∵1 200×1200=6(人),2 000×1200=10(人),6 000×1200=30(人).∴从管理人员中抽取6人,从销售人员中抽取10人,从车间工人中抽取30人. 因为各层中个体数目均较多,可以采用系统抽样的方法获得样本. 2.(变结论)在本例中的抽样方法公平合理吗?请说明理由.[解] 从100人中抽取20人,总体中每一个个体的入样可能性都是20100=15,即抽样比,按此比例在各层中抽取个体;副处级以上干部抽取10×15=2人,一般干部抽70×15=14人,工人抽20×15=4人,以保证每一层中每个个体的入样可能性相同,均为15,故这种抽样是公平合理的.分层抽样的步骤抽样方法的选择14人在120分以上,35人在90~119分,7人不及格,现从中抽出8人研讨进一步改进教与学;③某班春节聚会,要产生两位“幸运者”.就这三件事,合适的抽样方法分别为( )A .分层抽样,分层抽样,简单随机抽样B .系统抽样,系统抽样,简单随机抽样C .分层抽样,简单随机抽样,简单随机抽样D .系统抽样,分层抽样,简单随机抽样思路点拨:根据各抽样方法的特征、适用范围判断.D [①每班各抽两人需用系统抽样.②由于学生分成了差异比较大的几层,应用分层抽样.③由于总体与样本容量较小,应用简单随机抽样.故选D.]抽样方法的选取(1)若总体由差异明显的几个层次组成,则选用分层抽样;(2)若总体没有差异明显的层次,则考虑采用简单随机抽样或系统抽样.当总体容量较小时宜用抽签法;当总体容量较大,样本容量较小时宜用随机数表法;当总体容量较大,样本容量也较大时宜用系统抽样;2.为了解某地区的“微信健步走”活动情况,拟从该地区的人群中抽取部分人员进行调查.事先已了解到该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健步走”活动情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按年龄分层抽样D .系统抽样C [因为不同年龄段人员的“微信健步走”活动情况有较大差异.而男女对此活动差异不大,所以按年龄段分层抽样最合理.]1.对于分层抽样中的比值问题,常利用以下关系式[解] (1)样本容量n 总体容量N =各层抽取的样本数该层的容量; (2)总体中各层容量之比=对应层抽取的样本数之比. 2.选择抽样方法的规律(1)当总体容量较小,样本容量也较小时,制签简单,号签容易搅匀,可采用抽签法. (2)当总体容量较大,样本容量较小时,可采用随机数法. (3)当总体容量较大,样本容量也较大时,可采用系统抽样法. (4)当总体是由差异明显的几部分组成时,可采用分层抽样法.1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)当总体由差异明显的几部分组成时,往往采用分层抽样.( )(2)由于分层抽样是在各层中按比例抽取,故每个个体被抽到的可能性不一样.( )(3)分层抽样中不含系统抽样和简单随机抽样.( )[答案](1)√(2)×(3)×2.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生( )A.30人、30人、30人B.30人、45人、15人C.20人、30人、40人D.30人、50人、10人B[根据各校人数比例有3 600∶5 400∶1 800=2∶3∶1,由于样本容量为90,不难求出甲校应抽取30人、乙校应抽取45人、丙校应抽取15人.]3.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有( )①简单随机抽样;②系统抽样;③分层抽样A.②③B.①③C.③D.①②③D[由三种抽样方法的特点知,应先采用分层抽样对农民家庭需用系统抽样得到样本,对工人家庭需用简单随机抽样.]4.一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.[解]因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法.具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层.(2)按照样本容量的比例求得各乡镇应抽取的人数分别为60人、40人、100人、40人、60人.(3)按照各层抽取的人数随机抽取各乡镇应抽取的样本.(4)将300人合到一起,即得到一个样本.W。

2.1.2-3.系统抽样、分层抽样

2.1.2-3.系统抽样、分层抽样
第二课时 系统抽样
分层抽样
目标导学
1、理解系统抽样和分层抽样的概念,掌握 它们的使用条件和操作步骤,会用系统抽 样、分层抽样方法从总体中抽取样本。 2、通过系统抽样和分层抽样的过程,进一 步体会统计的思想,培养应用意识和能力。
主体自学
看书 P60~63
数理统计是研究如何有效地收集,整理,分析 受随机影响的数据,并对所考虑的问题作出推断或 预测,直至为采取决策和行动提供依据和建议的一 门学科。它是一门应用性很强的学科,凡是有大量 数据出现的地方,都要用到数理统计。现在,数理 统计的内容已异常丰富,成为数学中最活跃的学科 之一。教科书选择了数理统计中最基本问题来介绍 这门学科的思想与方法。
分层抽样的抽取步骤: (1)总体与样本容量确定抽取的比例。 (2)由分层情况,确定各层抽取的样本数。 (3)各层的抽取数之和应等于样本容量。 (4)对于不能取整的数,求其近似值。
4.三种抽样方法的比较
5.课堂练习
一个电视台在因特网上就观众对其某一节目的喜爱 程度进行调查,参加调查的总人数为12000人,其中持各 种态度的人数如下所示:
系统抽样与简单随机抽样比较, 有何优、缺点?
1、系统抽样比简单随机抽样更容易实施; 2、系统抽样的效果会受个体编号的影 响,而简单随机抽样的效果不受个体编号的 影响; 3、系统抽样比简单随机抽样的应用范围 广。
3.分层抽样
当已知总体由差异明显的几部分组成ห้องสมุดไป่ตู้,为了使样本 充分地反映总体的情况,常将总体分成几部分,然后按照各 部分所占的比例进行抽样。其中所分成的各部分叫做层。 由于分层抽样的要求不同,各层的抽样的样本容量也不相同, 所以,应当按照实际情况,合理地将样本容量分配到各个层, 以确保抽样的合理性,研究时可以根据不同的要求来分层抽样。 分层抽样适用于总体由差异明显的几部分组成的情况, 每一部分称为层,在每一层中实行简单随机抽样。这种方法较 充分地利用了总体己有信息,是一种实用、操作性强的方法。

统计知识点及常见题型

统计知识点及常见题型

统计知识点及常见题型2.1.1简单随机抽样1.总体和样本:在统计学中, 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。

5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。

2.1.2系统抽样1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。

第一个样本采用简单随机抽样的办法抽取。

K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。

可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。

如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。

因为它对抽样框的要求较低,实施也比较简单。

更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

【优化方案】2012高中数学 第2章2.1.3分层抽样同步课件 新人教B版必修3

【优化方案】2012高中数学 第2章2.1.3分层抽样同步课件 新人教B版必修3

课前自主学案
温故夯基 系统抽样的步骤: 编号 编号; 分段 分段; 确定 系统抽样的步骤:(1)编号;(2)分段;(3)确定 起始个体编号; 按事先制定的规则抽取样 起始个体编号 ; (4)按事先制定的规则抽取样 本.
知新益能 1. 分层抽样的概念 : 将总体中各个个体按某 . 分层抽样的概念: 种特征分成若干个___________的部分 的部分, 种特征分成若干个 互不重叠 的部分,每一 部分叫做_____, 部分叫做 层 ,在各层中按 层在总体中所占比例 _______________________进行简单随机抽 进行简单随机抽 样或系统抽样,这种抽样方法叫做分层抽样. 样或系统抽样,这种抽样方法叫做分层抽样. 思考感悟 系统抽样时,将总体分成均等的几部分, 系统抽样时,将总体分成均等的几部分,每部 分抽取一个,符合分层抽样, 分抽取一个,符合分层抽样,故系统抽样就是 一种特殊的分层抽样对吗? 一种特殊的分层抽样对吗?
【 名师点评】 若已知总体是由差异明显的 名师点评】 几部分组成, 几部分组成 , 为了使样本能充分反映总体情 通常按照样本容量与总体容量的比例, 况 , 通常按照样本容量与总体容量的比例 , 合理地将其分配到各层, 合理地将其分配到各层 , 以确保抽样的科学 当然在解决具体问题的过程中, 性 . 当然在解决具体问题的过程中 , 一定要 结合抽样比,考虑到分配的合理性. 结合抽样比,考虑到分配的合理性. 变式训练2 一个单位有职工 一个单位有职工160人,其中有 变式训练 人 业务人员112人 , 管理人员 人 , 后勤服务 业务人员 人 管理人员16人 人员32人 为了了解职工的某种情况, 人员 人 , 为了了解职工的某种情况 , 要从 中抽取一个容量为20的样本 的样本, 中抽取一个容量为 的样本 , 用分层抽样的 方法抽取样本,并写出过程. 方法抽取样本,并写出过程.

分层抽样

分层抽样

分层抽样本资料为woRD文档,请点击下载地址下载全文下载地址2.1.3教案【教学目标】.通过实例知道的概念,意义及适用的情景.2.通过对现实生活中实际问题会用的方法从总体中抽出样本,并能写出具体问题的的步骤.3.知道过程中总体中的各个个体被抽取的机会相等.4.区分简单随机抽样、系统抽样和,并选择适当正确的方法进行抽样.【教学重难点】教学重点:正确理解的定义,灵活应用抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题.教学难点:应用解决实际问题,并恰当的选择三种抽样方法解决现实生活中的抽样问题.【教学过程】一.复习回顾.系统抽样有什么优缺点?它的一般步骤是什么?网答:优点是比简单随机抽样更易操,缺点是系统抽样有规律性,样本有可能代表性很差;将总体的N个个体编号确定分段间隔k,对编号进行分段,当是整数,取k=;不是整数时,先从总体中随机的剔除几个个体,使得总体中剩余的个体数能被样本容量整除.在第一段用简单随机抽样确定起始个体的编号L按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体编号L+k,再加上k得到第3个个体编号L+2k,这样继续下去,直到获取整个样本.二.创设情境.假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?答:高中生2400×1%=24人,初中生10900×1%=109人,小学生11000×1%=110人,作为样本.这样,如果从学生人数这个角度来看,按照这种抽样方法所获得样本结构与这一地区全体中小学生的结构是基本相同的.三.探究新知.的定义.一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫。【说明】又称类型抽样,应用应遵循以下要求:分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等,即保持样本结构与总体结构一致性。的步骤:分层:按某种特征将总体分成若干部分。按比例确定每层抽取个体的个数。各层分别按简单随机抽样或系统抽样的方法抽取。综合每层抽样,组成样本。【说明】分层需遵循不重复、不遗漏的原则。抽取比例由每层个体占总体的比例确定。各层抽样按简单随机抽样或系统抽样的方法进行。探究交流又称类型抽样,即将相似的个体归入一类,然后每层抽取若干个体构成样本,所以为保证每个个体等可能入样,必须进行A、每层等可能抽样B、每层不等可能抽样c、所有层按同一抽样比等可能抽样如果采用,从个体数为N的总体中抽取一个容量为n样本,那么每个个体被抽到的可能性为A.B.c.D.点拨:保证每个个体等可能入样是简单随机抽样、系统抽样、共同的特征,为了保证这一点,分层时用同一抽样比是必不可少的,故此选c。根据每个个体都等可能入样,所以其可能性本容量与总体容量比,故此题选c。、简单随机抽样、系统抽样、的比较网类别共同点各自特点联系适用范围简单随机抽样抽样过程中每个个体被抽到的可能性相等每次抽出个体后不再将它放回,即不放回抽样从总体中逐个抽取总体个数较少系统抽样将总体均分成几部分,按预先制定的规则在各部分抽取在起始部分样时采用简随机抽样总体个数较多将总体分成几层,分层进行抽取时采用简单随机抽样或系统抽样总体由差异明显的几部分组成【例题精析】例1某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为A.15,5,25B.15,15,15c.10,5,30D15,10,20[分析]因为300:200:400=3:2:4,于是将45分成3:2:4的三部分。

14-15版《创新设计》配套:2


预习导学 课堂讲义 当堂检测
当堂检测
2.1.3 分层抽样
1.对于分层抽样中旳比值问题,常利用下列关系式巧解: (1)总样体本的容个量数nN=各该 层层 抽的取个 的体 个数 体数; (2)总体中某两层旳个体数之比=样本中这两层抽取旳个体 数之比.
预习导学 课堂讲义 当堂检测
当堂检测
2.1.3 分层抽样
预习导学 课堂讲义 当堂检测
课堂讲义
2.1.3 分层抽样
要点一 分层抽样旳概念
例1 下列问题中,最适合用分层抽样抽取样本旳是
()
A.从10名同学中抽取3人参加座谈会
B.某小区有500个家庭,其中高收入旳家庭125户,中档收
入旳家庭280户,低收入旳家庭95户,为了了解生活购置
力旳某项指标,要从中抽取一种容量为100户旳样本
预习导学 课堂讲义 当堂检测
课堂讲义
2.1.3 分层抽样
跟踪演练2 某校共有学生2 000名,各年级男、女生人数如
下表,现用分层抽样旳措施在全校抽取64名学生,则应在三
年级抽取旳学生人数为
()
一年级 二年级 三年级
女生 373
380
y
男生 377
370
z
A.24
B.18
C.16 D.12
答案 C
解析 一、二年级的人数为 750+750=1 500,所以三年级人数 为 2 000-1 500=500.又 64∶2 000=4∶125,因此三年级应抽 取人数为 500×1425=16.
预习导学 课堂讲义 当堂检测
课堂讲义
2.1.3 分层抽样
第三种方式抽样旳环节如下:
第一步:分层,因为若按成绩分,其中优异生共105人,良好

分层抽样 优秀教案

2.1.3 分层抽样一.教学目标★理解分层抽样的概念,掌握其实施步骤;★理解分层抽样与简单随机抽样和系统抽样的区别与联系;★在概念形成和问题的解决过程中,培养学生的数学抽象核心素养。

二.重点难点★教学重点:分层抽样的概念及其步骤.★教学难点:理解分层抽样与简单随机抽样和系统抽样的区别与联系。

三、教学过程(一)情境引入2018年4月18日,中国新闻出版研究院首次发布我国阅读指数。

调查数据显示,2017年我国成年国民人均纸质图书阅读量为4.66本,人均每天读书20.38分钟。

这些数据是历时大半年,选取的有效样本量18666个,进行数据处理得出的。

如果你是调查员,你该如何选取样本,让其接近真实情况呢?【设计意图】创设了情境,让学生充分理解分层抽样的必要性。

对分层抽样概念有初步的认识。

(二)新课探究“全民阅读”已成为了社会关注的热点。

为了了解全校学生的阅读情况,我校值周班以“课外阅读”为主题进行调查。

派出甲乙两个小组调查,两小组都是发放240份问卷进行调查。

但两组调查报告存在较大的差异。

这是其中一项“平均每天课外阅读时间”的统计结果。

班主任找来这两个小组的组长了解情况。

了解到:甲组是在高一年级的14个班上做随机的问卷调查;乙组是在学校广场做随机的问卷调查。

班主任听完后,说:“两组的数据都不合理,重新再调查。

”探究:如果你是调查员,你应当怎样较为合理地做全校“阅读情况”的抽样调查呢?分组讨论,并完成以下两个问题:(1)分析出实施抽样的过程;(2)为什么要这样抽取样本呢?【设计意图】让学生在解决问题的过程,从中发现“等比”抽样的特点。

对分层抽样概念有进一步的认识。

并让学生体会中,要让样本更具有代表性,这就需要调查者对调查对象事先有所了解,并利用所掌握的各种信息开展调查工作。

思考归纳:1.分层抽样的定义一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样.2.分层抽样的步骤分层求比定数抽样组样3.分层抽样有哪些特点?①分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则,即保证样本结构与总体结构一致性.②“等比”抽样【设计意图】经历实例探究过程后,学生抽象,归纳出分层抽样的定义;并概括出分层抽样的一般步骤,体现了从具体到一般思维过程;通过分析,比较,得出分层抽样的特点。

第二章 2.1.2-2.1.3 系统抽样、分层抽样

2.1.2 系统抽样2.1.3 分层抽样学习目标 1.理解并掌握系统抽样、分层抽样;2.会用系统抽样、分层抽样从总体中抽取样本;3.理解三种抽样的区别与联系.知识点一 系统抽样思考1 当总体中的个体数较多时,为什么不宜用简单随机抽样?答案 因为个体较多,采用简单随机抽样如制作号签等工作会耗费大量的人力、物力和时间,而且不容易做到“搅拌均匀”,从而使样本的代表性不强.思考2 用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体编号怎样抽取?答案 用简单随机抽样抽取第1段的个体编号.在抽取第1段的号码之前,自定义规则确定以后各段的个体编号,通常是将第1段抽取的号码依次累加间隔k .梳理 系统抽样(1)定义:要从容量为N 的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先规定的规则,从每一部分抽取一个个体,得到所需要的样本的抽样方法.(2)步骤:①先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;②确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n ;当N n不是整数时,先从总体中随机剔除几个个体,再重新编号, 然后分段;③在第1段用简单随机抽样确定第一个个体编号l (l ≤k );④按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.知识点二分层抽样思考1当所研究的总体由差异明显的几部分组成时,还可用系统抽样吗?答案不可以.思考2分层抽样的总体具有什么特性?答案分层抽样的总体由差异明显的几部分构成,也就是说当已知总体由差异明显的几部分组成时,为了使样本充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样.思考3系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样,故系统抽样就是一种特殊的分层抽样,这种说法对吗?答案不对,因为分层抽样是从各层独立地抽取个体,而系统抽样各段上抽取是按事先确定好的规则进行的,各层编号有联系,不是独立的,故系统抽样不同于分层抽样.梳理分层抽样(1)定义一般地,当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.分层抽样尽量利用了调查者对调查对象(总体)事先所掌握的各种信息,并充分考虑了保持样本结构与总体结构的一致性,这对提高样本的代表性是非常重要的.(2)分层抽样的实施步骤第一步,按某种特征将总体分成若干部分(层).第二步,计算抽样比.抽样比=样本容量总体中的个体数.第三步,各层抽取的个体数=各层总的个体数×抽样比.第四步,依各层抽取的个体数,按简单随机抽样从各层抽取样本.第五步,综合每层抽样,组成样本.知识点三三种抽样方法的比较类型一系统抽样及应用例1为了了解参加某种知识竞赛的1 000名学生的成绩,从中抽取一个容量为50的样本,那么采用什么抽样方法比较恰当?简述抽样过程.解适宜选用系统抽样,抽样过程如下:(1)随机地将这1 000名学生编号为1,2,3, (1000)(2)将总体按编号顺序均分成50个部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码l.(4)以l为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:l,l+20,l +40,…,l+980.引申探究在本例中,如果总体是1 002,其余条件不变,又该怎么抽样?解(1)将每个学生编一个号,由1至1002.(2)利用随机数法剔除2个号.(3)将剩余的1 000名学生重新编号1至1000.(4)按编号顺序均分成50个部分,每部分包括20个个体.(5)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码l .(6)以l 为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:l ,l +20,l +40,…,l +980.反思与感悟 当总体中的个体数不能被样本容量整除时,需要在总体中剔除一些个体.由于剔除方法采用简单随机抽样,所以即使是被剔除的个体,在整个抽样过程中被抽到的机会和其他个体是一样的.跟踪训练1 某工厂有1 003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施. 解 (1)将每个工人编一个号,由0001至1003.(2)利用随机数法找到3个号将这3名工人剔除.(3)将剩余的1 000名工人重新编号0001至1000.(4)分段,取间隔k =1 00010=100,将总体均分为10组,每组100个工人. (5)从第一段即0001号到0100号中随机抽取一个号l .(6)按编号将l,100+l,200+l ,…,900+l ,共10个号选出.这10个号所对应的工人组成样本.类型二 分层抽样及应用命题角度1 分层抽样适用情形判定例2 某地区有高中生2 400人,初中生10 900人,小学生11 000人.当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?解 (1)从总体来看,因为不同年龄阶段的学生的近视情况可能存在明显差异,为了使样本具有较好的代表性,应该分高中、初中、小学三个层次分别抽样.(2)从三类学生的数量来看,人数较多,所以在各层抽样时可以采用系统抽样.(3)采用系统抽样分好组之后,确定第一组人选时,可以采用简单随机抽样.反思与感悟 分层抽样实质是利用已知信息尽量使样本结构与总体结构相似.在实际操作时,并不排斥与其他抽样方法联合使用.跟踪训练2 某单位有员工500人,其中35岁以下的有125人,35岁~49岁的有280人,50岁以上的有95人.为了调查员工的身体状况,要从中抽取一个容量为100的样本,如何进行抽取?解 因为员工按年龄分为三个层,各层的身体状况有明显的差异,所以为了使样本具有代表性,需要采用分层抽样.抽样比为1∶5,即每5人中抽取一人.35岁以下:125×15=25(人),35岁~49岁:280×15=56(人),50岁以上:95×15=19(人). 命题角度2 分层抽样具体实施步骤例3 某学校有在职人员160人,其中行政人员有16人,教师有112人,后勤人员有32人.教育部门为了了解在职人员对学校机构改革的意见,要从中抽取一个容量为20的样本,请利用分层抽样的方法抽取,写出抽样过程.解 抽样过程如下:第一步,确定抽样比,样本容量与总体容量的比为20160=18. 第二步,确定分别从三类人员中抽取的人数,从行政人员中抽取16×18=2(人); 从教师中抽取112×18=14(人); 从后勤人员中抽取32×18=4(人). 第三步,采用简单随机抽样的方法,抽取行政人员2人,教师14人,后勤人员4人. 第四步,把抽取的个体组合在一起构成所需样本.反思与感悟 在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体容量之比.跟踪训练3 某单位最近组织了一次健身活动,活动小组分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取200人进行抽查,试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解 (1)设登山组人数为x ,则游泳组人数为3x ,再设游泳组中,青年人、中年人、老年人各占比例分别为a 、b 、c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc 4x=10%, 解得b =50%,c =10%,故a =1-50%-10%=40%.所以游泳组中,青年人、中年人、老年人各占的比例分别为40%、50%、10%.(2)游泳组中,抽取的青年人人数为200×34×40%=60,抽取的中年人人数为200×34×50%=75,抽取的老年人人数为200×34×10%=15.1.检测员每10分钟从匀速传递的新产品生产流水线上抽取一件新产品进行某项指标检测,这样的抽样方法是( )A .系统抽样法B .抽签法C .随机数法D .其他抽样方法答案 A解析 根据系统抽样的定义和性质进行判断即可.2.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( )A .101B .808C .1 212D .2 012答案 B解析 根据分层抽样,得N ×1212+21+25+43=96,解得N =808,故选B.3.为了调查某省各城市PM2.5的值,按地域把36个城市分成甲、乙、丙三组,对应的城市数分别为6,12,18.若用分层抽样的方法抽取12个城市,则乙组中应抽取的城市数为________. 答案 4解析 乙组城市数占总城市数的比例为126+12+18=13,样本容量为12,故乙组中应抽取的城市数为12×13=4. 4.某班级有50名学生,现要采用系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号为1~50号,并均匀分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生. 答案 37解析 因为12=5×2+2,所以第n 组中抽得号码为5(n -1)+2的学生.所以第八组中抽得号码为5×7+2=37的学生.5.一批产品中有一级品100个,二级品60个,三级品40个,分别用系统抽样法和分层抽样法从这批产品中抽取一个容量为20的样本.解 系统抽样法:将200个产品编号为1~200,然后将编号分成20个部分,在第1部分中用简单随机抽样法抽取1个编号.如抽到5号,那么得到编号为5,15,25,…,195的个体,即可得到所需样本.分层抽样法:因为100+60+40=200,所以20200=110, 所以100×110=10,60×110=6,40×110=4. 因此在一级品、二级品和三级品中分别抽取10个、6个和4个,即可得到所需样本.1.系统抽样有以下特点:(1)适用于总体容量较大的情况;(2)剔除多余个体及第一段抽样都要用简单随机抽样,因而与简单随机抽样有密切联系;(3)是等可能抽样,每个个体被抽到的可能性都是n N ;(4)是不放回抽样.在抽样时,只要第一段抽取的个体确定了,后面各段中要抽取的个体依照事先确定好的规律就自动地被抽出,因此简单易行.2.总体容量小,简单随机抽样;总体容量大,系统抽样;总体差异明显,分层抽样.在实际抽样中,为了使样本具有代表性,通常要同时使用几种抽样方法.40分钟课时作业一、选择题1.为了抽查某城市小轿车年检情况,在该城市采取抽车牌末位数字为6的小轿车进行检查,这种抽样方法是( )A .随机数法B .抽签法C .系统抽样法D .其他抽样方法答案 C解析 由于每个车牌的末位数字为0,1,2,…,9十个数字之一,某辆车车牌末位数字为6是随机的,这相当于将所有汽车分成若干组,每组10个(车牌的末位数字依次为0,1,2,…,9),取每一组中的第6个,故为系统抽样.2.某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法抽取4个班进行调查,若抽到的编号之和为48,则抽到的最小编号为( )A .2B .3C .4D .5答案 B解析 由题意得系统抽样的抽样间隔为244=6.设抽到的最小编号为x ,则x +(6+x )+(12+x )+(18+x )=48,所以x =3,故选B.3.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种及20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A .4B .5C .6D .7答案 C解析 四类食品的种数比为4∶1∶3∶2,则抽取的植物油类的种数为20×110=2,抽取的果蔬类的种数为20×210=4,二者之和为6,故选C. 4.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3答案 D解析 因为采取简单随机抽样、系统抽样和分层抽样抽取样本时,总体中每个个体被抽中的概率相等,故选D.5.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .10答案 A解析 若设高三学生数为x ,则高一学生数为x 2,高二学生数为x 2+300,所以有x +x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取高一学生数为800100=8. 6.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .14答案 B解析 由于84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12. 二、填空题7.某企业共有职工150人,其中高级职称15人,中级职称45人,低级职称90人,现采用分层抽样来抽取30人,则抽取的高级职称的人数为________.答案 3解析由题意得抽样比为30150=15,所以抽取的高级职称的人数为15×15=3.8.某工厂生产A、B、C三种不同型号的产品,产品数量之比为2∶3∶5.现用分层抽样的方法抽出一个容量为n的样本,其中A种型号产品有16件,那么此样本的容量n=________. 答案80解析16÷22+3+5=80.9.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.答案3720解析将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x人,则40200=x100,解得x=20.10.某班共有学生52人,现根据学生的学号用系统抽样的方法抽取一个容量为4的样本,已知学号为6号、32号、45号的同学在样本中,那么样本中剩下的一个同学的学号是________号.答案19解析∵45-32=13,∴抽样间隔为13,故抽取学生的学号依次为6、19、32、45,故填19.三、解答题11.一个公司有职工160人,其中业务人员120人,管理人员16人,后勤服务人员24人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,并写出过程.解 样本容量与职工总人数的比为20∶160=1∶8,所以业务人员、管理人员和后勤服务人员各应抽取的人数分别为1208、168和248,即分别为15、2和3,每一层抽取时采用简单随机抽样或系统抽样,再将各层抽取的个体合在一起,就得到要抽取的样本.12.某停车场停有6辆卡车、12辆小轿车和18辆电动车,现要从这些车辆中抽取一个容量为n 的样本进行某项指标调查.若采用系统抽样的方法或分层抽样的方法抽取,则不用剔除个体;若样本容量增加1,则在采用系统抽样的方法时,需要在总体中先剔除1个个体,求样本容量n .解 由题意知总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n,分层抽样的抽样比是n 36,分层抽样过程中,抽取的卡车数为n 36·6=n 6,轿车数为n 36·12=n 3,电动车数为n 36·18=n 2, 所以n 应是6的倍数,36的约数,且0<n <36,即n =6,12,18.当样本容量为(n +1)时,剔除一个个体后的总体容量是35,系统抽样的间隔为35n +1,所以35n +1必须是整数, 所以n 只能取6,即样本容量n =6.13.为了对某课题进行研究,分别从A 、B 、C 三所高校中用分层抽样法抽取若干名教授组成研究小组,其中高校A 有m 名教授,高校B 有72名教授,高校C 有n 名教授(其中0<m ≤72≤n ).(1)若A 、B 两所高校中共抽取3名教授,B 、C 两所高校中共抽取5名教授,求m 、n ;(2)若高校B 中抽取的教授数是高校A 和C 中抽取的教授数的23,求三所高校的教授的总人数. 解 (1)∵0<m ≤72≤n ,A 、B 两所高校中共抽取3名教授,∴B 高校中抽取2人,∴A 高校中抽取1人,C 高校中抽取3人,∴1m =272=3n,解得m =36,n =108. (2)∵高校B 中抽取的教授数是高校A 和C 中抽取的教授数的23,∴23(m +n )=72,解得m +n =108,∴三所高校的教授的总人数为m+n+72=180.。

2.1.3分层抽样txp(一)


总体中的个 体数较多
将总体分成 几层,分层 进行抽取
总体由差异 明显的几部 分组成
四、例题讲解:
• 1. 实验中学有180名教工,其中有专职教师 144名,管理人员12名,后勤服务人员24人, 今从中抽取一个容量15的样本。该用什么 抽样方法?简述抽样过程。
五.学生练习
• 1.已知甲、乙、丙三个车间一天内生产的产 品分别是150件、130件、120件,为了掌 握各车间产品质量情况,从中取出一个容 量为40的样本,该用什么抽样方法?简述 抽样过程。
• 1.分层抽样定义: • 一般地,在抽样时,将总体分成 , 然后 ,从 抽取一定数 量的个体,将 取出的个体合在一起作 为一个样本,这种抽样方法是一种分层抽 样。 • 2.分层抽样的适用范围:适用于总体由差异 明显的几部分组成的情况。
• • • • •
3.分层抽样的步骤: (1)将总体分成互不交叉的层 (2)确定抽样比例 (3)按照抽样比例确定各层抽取的个体数 (4)在各层中采用简单随机抽样或系统抽 样抽取相应的个体合在一起组成样本
4.三种抽样方法的比较:
类别 共同点 各自特点 相互联系 适用范围
从总体中逐 个抽取
将总体均匀分 成几部分,按 事先确定的规 则在各部分抽 取
简单随机 (1)都 抽样 是不放回 的抽取 系统抽样 (2)每 个个体被 抽中的可 分层抽样 能性相等
总体中的个 体数较少 在起始部分 抽取样本时 采用简单随 机抽样 各层抽样时 采用简单随 机抽样或系 统抽样
2.1.3分层抽样(一)
一、复习提问:
• 系统抽样的步骤:
二、新课探究:
• 假设一个地区有高中生2400人,初中生 10900人,小学生11000人,此地区的教育 部门为了了解本地区中小学生的近视情况 及其形成原因,要从本地区的中小学生中 抽取1%的学生进行调查,应当怎样抽取样 本?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

张喜林制2.1.3 分层抽样教材知识检索考点知识清单1.将总体中各个个体按某种特征分成若干个____的几部分,每一部分叫做 ,在各层中按____进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样. 2.当总体是由 组成时,往往选用分层抽样的方法. 3.分层抽样的优点是 ,要点核心解读1.分层抽样(1)分层抽样的概念.当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,我们经常将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样. (2)分层抽样的步骤.①分层;②按比例确定每层抽取个体的个数;③各层抽样(方法可以不同);④汇合成样本. (3)分层抽样的特点及适用范围.①分层抽样适用于已知总体是由差异明显的几部分组成的情况;②分成的各层互不重叠;③各层抽取的比例都等于样本容量在总体中的比例,即,Nn其中n 为样本容量,N 为总体容量;④分层的各层采用简单随机抽样或系统抽样,简单随机抽样、系统抽样、分层抽样的共同特点是,在抽样过程中每一个个体被抽取的可能性相等,体现了这些抽样方法的客观性和公平性.其中简单随机抽样是最简单和最基本的抽样方法,在进行系统抽样和分层抽样时都要用到简单随机抽样方法,抽样方法经常交叉起来应用,对于个体数量很大的总体,可采用系统抽样,系统中的每一均衡部分,又可采用简单随机抽样.3.三种抽样中的数据关系和抽样的进一步理解 (1)三种抽样中数据之间的关系,①在简单随机抽样、系统抽样、分层抽样中,若总体个数为N ,抽取的样本容量为n ,则每个个体被抽取到的机会为,Nnp对于这三个待定系数,我们可以知二求一. ②若已知总体数,且样本容量已知,采用系统抽样(分层抽样)方法进行抽样,如果要剔除一些个体,那么需要剔除的个体数为总体数除以样本容量所得的余数. (2)对抽样进一步理解,在抽样中,如果每次抽出个体后不再将它放回总体,则称这样的抽样为不放回抽样,简单随机抽样、系统抽样、分层抽样均属于不放回抽样,不放回抽样应用广泛.在抽样中,如果每次抽出个体后再将它放 回总体,则称这样的抽样为放回抽样,放回抽样在理论研究中用得较多.简单随机抽样、系统抽样和分层抽样,关系密切,对抽取样本来说,可谓异曲同工. 无论采取哪一种抽样方法,必须保证在整个抽样过程中每个个体被抽到的机会相等,典例分类剖析考点1分层抽样的概念[例1] (1)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个个体构成样本,所以分层抽样为保证每个个体等可能人样,必须进行( ).A .每层等可能抽样.B .每层不等可能抽样C .所有层按同一抽样比等可能抽样D .所有层抽同样多样本,等可能抽样(2)如果采用分层抽样,从个体数为N 的总体中抽取一个容量为n 的样本,那么每个个体被抽到的可能性为( ).N A 1.n B 1. N n C . nN D . [试解]____.(做后再看答案,发挥母题功能)[解析] (1)保证每个个侉等可能入样是简单随机抽样、系统抽样、分层抽样的共同特征.为了保证这一点,分层时同一抽样比是必不可少的,故选C .(2)根据每个个体都等可能入样,所以其可能性为样本容量与总体容量的比,故选C . [答案] (1)C(2)C1.某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为().25,5,15.A 15,15,15.B 30,5,10.C 20,10,15.D考点2 分层抽样的步骤设计[例2] 某学校有在职人员160人,其中行政人员有16人,教师有112人,后勤人员有32人,教育部门为了了解学校机构的改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,并写出抽样过程.[答案] 因为本题样本总体分成三类:行政人员、教师、后勤人员,符合分层抽样的特点,故选用分层抽样方法.因为,8116020=所以从行政人员中抽取28116=⨯(人),从教师中抽取1481112=⨯(人),从后勤人员中抽取=⨯81324(人).因为行政人员和后勤人员较少,可将他们分别按1~16编号和1~32编号,然后采用抽签法分别抽取2人和4人,对教师从000,001,…,111编号,然后用随机数表法抽取14人.[点拨] (1)当已知总体是由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常采用分层抽样法.(2)分层抽样是将总体分成几层,分层进行抽取,抽取时可采用抽签法或随机数表法.(3)分层抽样中每个个体被抽到的机会均等且均为,Nn弄清这一点才能进行分层抽样. [例3] 某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如下表:电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应当怎样进行抽样?[解析] 因为总体中人数较多,所以不宜采用简单随机抽样,又由于持不同态度的人数差异较大,故也不宜用系统抽样法,而以分层抽样法为妥.[答案] 可用分层抽样方法,其总体容量为12000.“很喜爱”占,2400487120002435=应抽取12240048760≈÷⨯(人);“喜爱”占,120004567应抽取2312000456760=÷⨯(人);“一般”占,120003926应抽取2012000392660=÷⨯(人);“不喜爱”占,120001072应抽取512000107260=÷⨯(人).因此采用分层抽样在“很喜爱”“喜爱”“一般”和“不喜爱”的2435人、4567人、3926人和1072A 中分别抽取12人、23人、20人和5人.[点拨] 本题的总体有明显的差异,应采用分层抽样的方法才能更准确的代表总体,另外,本题在确定每层的抽样人数时,采用了“≈”,其实质与在系统抽样中剔除个体的思想一致.2.某中学有高一学生600人,高二学生500人,高三学生400人,现在按年级分层抽样,从所有学生中抽取一个容量为150的样本,每个年级应分别抽取多少人? 考点3 三种抽样的比较[例4] 为了考查某校的教学水平,将抽取这个学校高三年级的部分学生的本学年考试成绩进行考查,为了全面地反映实际情况,采取以下三种方式进行抽查(已知该校高三年级共有20个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班学生人数都相同).①从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考查他们的学习成绩; ②每个班都抽取1人,共计20人,考查这20个学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从其中抽取100名学生进行考查(已知若按成绩分,该校高三学生中优秀生共150人,良好生共600人,普通生共250人). 根据上面的叙述,试回答下列问题:(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式中各自采用何种抽取样本的方法?(3)试分别写出上面三种抽取方式各自抽取样本的步骤.[解析]本题主要考查数理统计中一些基本的概念和基本方法,做这种题目时,应该注意叙述的完整和条理.[答案] (1)这三种抽取方式中,其总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩,第一种抽取方式中样本为所抽取的20名学生本年度的考试成绩,样本容量为20; 第二种抽取方式中样本为所抽取的20名学生本年度的考试成绩,样本容量为20; 第三种抽取方式中样本为所抽取的100名学生本年度的考试成绩,样本容量为100.(2)上面三种抽取方式中,第一种方式采用的方法是简单随机抽样法;第二种采用的方法是系统抽样法和简单随机抽样法;第三种方式采用的方法是分层抽样法和简单随机抽样法.(3)第一种方式抽样的步骤如下:首先在这20个班中用抽签法任意抽取一个班,然后从这个班中按学号用随机数表法或抽签法抽取20名学生,考查其考试成绩.第二种方式抽样的步骤如下:首先在第一个班中,用简单随机抽样法任意抽取某一学生,记其学号为a ,然后在其余的19个班中,选取学号为a 的学生,共计20人. 第三种方式抽样的步骤如下:首先分层,因为若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次.然后确定各个层次抽取的人数.因为样本容量与总体的个数比为,10:11000:100 所以在每个层次抽取的个体数依次为.25,60,15,10250,10600,10150即 再按层次分别抽取,在优秀生中用简单随机抽样法抽取15人,在良好生中用简单随机抽样法抽取60人,在普通生中用简单随机抽样法抽取25人.[点拨] 仔细阅读题设,分清总体、样本容量,并观察其特点,选择最佳的抽样方法. 3.选择合适的抽样方法抽样,写出抽样过程.(1) 30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个人样.(2)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个人样.(3)有甲厂生产的300个篮球,抽取10个人样.(4)有乙厂生产的300个篮球,抽取30个人样.优化分层测训学业水平测试,1.某镇有四所中学,为了了解该镇中学生视力情况,用什么方法抽取人数(四所中学视力有一定的差距)( ).A .抽签法B .随机数表法C .系统抽样法D .分层抽样法 2.下面属于分层抽样特点的是( ).’ A .从总体中逐个抽取B .将总体分成几层,分层进行抽取C .将总体分成几个部分,按事先确定的规则在各部分抽取D .将总体随意分成几个部分,然后再进行随机选取3.某企业共有职工150人,其中高级职称15人,中级职称45人,一般职员90人,现在进行分层抽样抽取30人,则各职称人数分别为( ).15,10,5.A 18,9,3.B 17,10,3.C 16,9,5.D4.分层抽样适用于 的总体.5.某校有老师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为80人,则n=____.6.某企业共有3200名职工,其中中、青、老年职工的人数比例为5:3:2,从职工中抽取一个容量为400的样本,应采用哪种抽样方法更合理?中、青、老年职工应分别抽取多少人?高考能力测试(测试时间:45分钟测试满分:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2),则完成(1)、(2)这两项调查宜采用的抽样方法依次是( ). A .分层抽样法,系统抽样法 B .分层抽样法,简单随机抽样法 C .系统抽样法,分层抽样法 D .简单随机抽样法,分层抽样法 2.某地区为了了解居民家庭生活状况,先把居民按所在行业分为几类,然后每个行业抽1001的居民家庭进行调查,这种抽样是( ).A .简单随机抽样B .系统抽样C .分层抽样D .分类抽样 3.(2008年重庆高考题)某校高三年级有男生500人,女生400人,为了解该年级学生的健康状况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( ). A .简单随机抽样法 B .抽签法 C .随机数表法 D .分层抽样法 4.(2008年陕西高考题)某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( ).. 30.A 25.B 20.C 15.D 5.(2009年陕西高考题)某单位共有老、中、青年职工共430人,其中青年职工160人,中年职工人数是老年职工人数的2倍为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则 该样本中的老年职工人数为( ). 9.A 18.B 27.C 36.D 6.(2007年陕西高考题)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( ).4.A5.B6.C7.D7.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为l,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:,88,61①,,734,115223,142;,250196169,,,111,107,9,5121②100,265,,;,200180,195,9211965③,11,38,,227,254146,;200173,,111,,13884,④3057,,246,165.,270,219192,关于上述样本的下列结论中,正确的是( ).A.②③都不可能为系统抽样B.②④都不可能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样8.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生.为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90的样本,则应在这三校分别抽取学生( ).A.30人,30人,30人 B.30人,45人,15人C.20人,30人,10人 D.30人,50人,10人二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题后的相应位置)9.(2011年山东高考题)某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为____.10.(2007年浙江高考题)某校有学生2000人,其中高三学生500人,为了了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个容量为200的样本,则应从中抽取高三学生的人数为.11.(2010年上海高考题)将一个总体分为A、B、C三层,其个体数之比为5:3:2,若采用分层抽样抽取一个容量为100的样本,则应从C中抽取个个体.12.(2009年天津高考题)某学院的A、B、C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取名学生,三、解答题(本大题共4小题,每小题10分,共40分,解答须写出文字说明、证明过程和演算步骤)13. -批产品中,有一级品100个,二级品60个,三级品40个,分别用系统抽样和分层抽样的方法,从这批产品中抽取一容量为20的样本.14.某地区共有5个乡镇,其人口比例为3:2:5:2:3,现要从总数为30000的人口中抽取300人进行某种疾病的发病分析.已知这种疾病与不同的地理位置及水土有关,问:应采取什么样的抽样方法?请写出具体过程.15.某社区小学各班级人数如下表所示,学校计划召开学生代表座谈会,请根据上述基本数据设计一个样本容量为总体容量的1的抽样方案.16.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组,在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的,41且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本,试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.。

相关文档
最新文档