eva胶膜工艺
EVA_热熔胶膜层压复合织物的热压工艺及其结构

第31卷㊀第4期2023年7月现代纺织技术AdvancedTextileTechnologyVol.31ꎬNo.4Jul.2023DOI:10.19398∕j.att.202212004EVA热熔胶膜层压复合织物的热压工艺及其结构胡满钰1ꎬ2ꎬ金肖克1ꎬ2ꎬ田㊀伟1ꎬ2ꎬ黄坤镇1ꎬ邵灵达1ꎬ祝成炎1ꎬ2(1.浙江理工大学纺织科学与工程学院(国际丝绸学院)ꎬ杭州㊀310018ꎻ2.浙江理工大学湖州研究院有限公司ꎬ浙江湖州㊀313000)㊀㊀摘㊀要:为研究热压工艺对EVA热熔胶膜层压复合织物黏接结构和性能的影响ꎬ对热压工艺参数进行优化ꎬ采用L25(53)正交试验ꎬ以热压工艺的温度㊁压强和时间为试验的主要影响因素进行分析ꎬ对复合织物的厚度㊁截面结构㊁透气性和剥离强度进行表征分析ꎮ结果表明:对于EVA热熔胶膜复合织物ꎬ压强对其厚度和透气性影响最大ꎬ温度对其剥离强度影响最大ꎻ同时ꎬ压强对其厚度有显著影响ꎬ对其透气性有高度显著影响ꎬ温度对其剥离强度有显著影响ꎻ随着热压温度㊁压强和时间的增加ꎬ其厚度呈现下降趋势ꎬ随着温度和时间的增加ꎬ其透气性和剥离强度呈现先上升后下降的趋势ꎬ随着压强的增加ꎬ其透气性和剥离强度呈现下降趋势ꎻ最佳热压工艺参数为100ħ㊁0.5MPa㊁90sꎬ该条件下热熔胶与两层织物的纱线和纤维结合紧密ꎬ胶层会形成间隙和微孔ꎬ复合织物厚度为0.65mmꎬ透气性可达到156.72mm∕sꎬ剥离强度可达到32.55Nꎮ关键词:EVA热熔胶膜ꎻ复合织物ꎻ热压工艺ꎻ剥离强度ꎻ正交试验中图分类号:TS106㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1009 ̄265X(2023)04 ̄0173 ̄10收稿日期:20221215㊀网络出版日期:20230322基金项目:国家茧丝绸发展基金资助项目(浙经信消费[2021]133号)作者简介:胡满钰(1997 )ꎬ女ꎬ湖北随州人ꎬ硕士研究生ꎬ主要从事功能性纺织品方面的研究ꎮ通信作者:祝成炎ꎬE ̄mail:cyzhu@zstu.edu.cn㊀㊀墙布作为家居装饰织物ꎬ起到装饰墙面㊁保护墙体的作用[1]ꎬ按照面料层数可分为单层墙布和复合墙布ꎮ通常复合墙布的表层织物为机织布ꎬ里层织物为非织造布[2]ꎬ使用黏合剂采用热压工艺黏接而成ꎬ属于层压复合织物(简称复合织物)ꎬ不仅能保持各层织物原有的功能特性ꎬ且可设计增加其他功能ꎬ整体表现出功能的叠加性[3]ꎬ经加工处理后ꎬ复合墙布能够满足目前对墙布多功能的要求ꎬ已逐步替代单层墙布ꎬ被广泛使用[4]ꎮ黏合剂作为复合织物的主要组成部分ꎬ决定了复合织物的耐久性和整体质量[5]ꎬ其中ꎬ热熔胶是一类不含溶剂的可熔㊁可塑性环保型化学产品[6]ꎬ经过专业设备加工可得到厚度均匀㊁便于储存运输的热熔胶膜ꎬ使用时裁剪至所需大小ꎬ放置在被黏接材料之间进行热压复合ꎬ操作简便[7]ꎮ纺织常用热熔胶按基材主要分为:聚酰胺(PA)类热熔胶㊁聚酯(PES)类热熔胶㊁乙烯 ̄醋酸乙烯共聚物(EVA)类热熔胶㊁聚氨酯(PU)类热熔胶等[8]ꎮ在这些热熔胶中ꎬ乙烯 ̄醋酸乙烯共聚物(EthylenevinylacetateꎬEVA)热熔胶熔点低ꎬ适用范围广ꎬ黏接能力强ꎬ且具有成本低ꎬ耐酸和耐老化等优势[9]ꎬ可用于墙布用复合织物的黏接ꎮ热压工艺条件直接影响了EVA热熔胶在两层织物间的渗透程度ꎬ进而影响复合织物的黏接结构和织物性能[10]ꎬ但目前针对EVA热熔胶膜制备复合织物的工艺研究较少ꎬ热压工艺条件对复合织物的内部黏接结构和性能的影响尚未明晰ꎬ因此对EVA热熔胶膜制备复合织物进行热压工艺研究是有必要的ꎮ本文以EVA热熔胶膜为黏合剂ꎬ机织布为表层织物ꎬ非织造布为里层织物ꎬ将热压温度㊁压强和时间作为主要影响因素ꎬ设计L25(53)正交试验ꎬ研究热压工艺条件对复合织物黏接结构和复合织物性能的影响ꎬ并对复合织物的热压工艺参数进行优化ꎬ以期为EVA热熔胶膜制备复合织物提供工艺参考ꎮ1㊀实㊀验1.1㊀实验原料与仪器1.1.1㊀实验原料实验原料及来源见表1ꎮ1.1.2㊀实验仪器实验中主要仪器设备及来源见表2ꎮ1.2㊀实验方法1.2.1㊀正交试验设计热压工艺中ꎬ当温度达到热熔胶软化点时ꎬ热熔胶膜开始软化㊁熔融ꎬ转变为黏流态ꎬ获得流动性ꎬ在加压条件下ꎬ向两层织物间隙浸润扩散ꎬ待热压工艺结束后ꎬ在室温条件下降温固化ꎬ热熔胶与两层织物的部分纱线和纤维发生固结ꎬ形成物理互锁结构ꎬ得到层压复合织物ꎮ复合织物中热熔胶膜的熔融浸润效果如图1所示ꎮ热压温度㊁压强和时间3个参数会影响热熔胶的软化㊁熔融程度和流动性ꎬ导致复合织物中热熔胶的渗透程度不同ꎬ以此造成复合织物的黏接结构不同ꎬ进而影响织物性能ꎮ因此选择热压温度㊁压强和时间作为主要因素ꎬ设计L25(53)正交试验ꎬ热压工艺的因素水平见表3ꎮ表1㊀实验原料及来源Tab.1㊀Experimentalrawmaterialsandsources实验原料规格来源8枚缎纹机织布经纱:真丝(2∕22.2∕24.4dtex)纬纱:蜂窝微孔涤纶∕竹纤维(70∕30)(164dtex)海宁中纺面料科技有限公司涤纶水刺非织造布70g∕m2御秀实业控股股份有限公司EVA热熔胶膜30g∕m2御秀实业控股股份有限公司表2㊀实验设备及来源Tab.2㊀Experimentalequipmentandsources实验仪器型号来源精密电子天平AL204 ̄IC梅特勒 ̄托利多有限公司半自动平板硫化仪QLB ̄25T江苏省无锡市中凯橡胶机械有限公司差示扫描量热仪Q2000美国TA公司数字式织物厚度仪YG141D温州方圆仪器有限公司扫描电子显微镜JSM ̄5610LV日本电子株式会社电子织物强力机YG026T ̄Ⅱ宁波纺织仪器厂透气性测试仪YG461E温州方圆仪器有限公司图1㊀复合织物中热熔胶膜的熔融浸润效果Fig.1㊀Meltinfiltratingofthehot ̄meltadhesivefilminthecompositefabric471 现代纺织技术第31卷表3㊀热压工艺的因素水平Tab.3㊀Factorlevelsofthehot ̄pressingprocess水平因素A(温度∕ħ)B(压强∕MPa)C(时间∕s)1800.5302901.06031001.59041102.012051202.5150根据热熔胶DSC热性能分析ꎬEVA热熔胶膜软化点为65ħꎬ所以热压温度需高于65ħ才能使热熔胶膜软化㊁熔融ꎬ热压温度需低于130ħ防止真丝在高温下发生脆化ꎬ因此选取热压温度范围为80~120ħꎮ根据前期试验探索ꎬ软化熔融后的热熔胶在无压强条件下流动扩散程度小ꎬ仅固结与其接触的纱线和纤维ꎬ加压能提高热熔胶在两层织物间隙的渗透程度ꎬ但当热压压强大于2.5MPa时ꎬ复合织物手感硬ꎬ织物间黏接牢度差ꎬ故选取热压压强范围为0.5~2.5MPaꎮEVA热熔胶在温度达到软化点后能在几秒内软化熔融ꎬ随后在压强作用下流动扩散ꎬ热压时间主要为热熔胶熔融后的流动浸润时间ꎬ选取热压时间范围为30~150sꎮ1.2.2㊀复合织物制备工艺本文采用热压工艺制备EVA热熔胶膜复合织物ꎬ工艺流程如图2所示ꎮ将非织造布㊁EVA热熔胶膜和缎纹机织布依次叠放入已完成预热的两层高温发泡硅胶板之间ꎬ按正交试验设计的压力与时间进行热压复合ꎬ待热压工艺结束后ꎬ取出织物在室温条件下冷却固化ꎬ得到复合织物ꎮ图2㊀复合织物热压工艺流程Fig.2㊀Hot ̄pressingprocessofthecompositefabric1.2.3㊀性能测试表征采用差示扫描量热仪测试EVA热熔胶膜的热学性能ꎬ根据GB∕T3820 1997«纺织品和纺织制品厚度的测定»测试复合织物厚度ꎬ采用扫描电子显微镜观察复合织物截面微观形貌ꎬ根据GB∕T5453 1997«纺织品织物透气性的测定»测试复合织物透气性能ꎬ根据FZ∕T60011 2016«复合织物剥离强力试验方法»测试复合织物的剥离强度ꎮ2㊀结果与分析2.1㊀EVA热熔胶膜复合织物性能的极差㊁方差和交互作用分析2.1.1㊀EVA热熔胶膜复合织物性能的极差㊁方差分析㊀㊀极㊁方差分析是分析正交试验结果最常见的两种方法ꎮ极差分析是根据复合织物性能测试结果的极差R值ꎬ分析判断热压工艺制备复合织物时各因素对各性能影响的主次顺序ꎬ结合各因素水平均值 K后ꎬ分别确定各性能最佳的热压工艺参数组合ꎻ方差分析可以确定各因素所引起的复合织物性能差异的大小ꎬ得出制备条件对复合织物性能具有显著影响的因素ꎮEVA热熔胶膜复合织物性能的极差分析结果见表4ꎬ方差分析结果见表5ꎮ通过比较表4中的各性能的极差R值可知ꎬ在热压工艺中ꎬ3个主要因素对复合织物厚度的影响主次顺序为:热压压强㊁热压温度㊁热压时间ꎻ对透气性的影响主次顺序为:热压压强㊁热压时间㊁热压温度ꎻ对剥离强度的影响主次顺序为:热压温度㊁热压压强㊁热压时间ꎮ根据复合织物透气性 K值ꎬ复合织物透气性最好的热压工艺组合为A3B1C3ꎻ根据复合织物剥离强度 K值ꎬ复合织物剥离强度最好571 第4期胡满钰等:EVA热熔胶膜层压复合织物的热压工艺及其结构的热压工艺组合为A2B1C3ꎮ极差分析得到了单个性能最好的热压工艺组合ꎬ但要进一步优化EVA热熔胶膜制备复合织物的热压工艺参数ꎬ还需综合分析复合织物的内部黏接结构和复合织物整体性能ꎮ表4㊀EVA热熔胶膜复合织物性能的极差分析Tab.4㊀RangeanalysisonthepropertiesofcompositefabricswithEVAhot ̄meltadhesivefilms指标因素A因素B因素C厚度∕mmK10.650.680.64 K20.610.590.62 K30.570.570.57 K40.560.550.56 K50.540.540.54R0.110.140.10透气率∕(mm s-1)K128.6497.8418.95 K233.1740.1741.04 K356.3736.2955.72 K453.0521.5851.69 K543.0618.4146.89R27.7379.4336.77剥离强度∕NK120.7125.1419.54 K225.6622.3821.89 K324.2821.5023.41 K420.4120.4522.07 K517.4119.0021.56R8.256.143.87通过比较表5中各因素的F值可知ꎬ各因素对复合织物各性能影响的主次顺序与极差分析得到结果一致ꎮ同时ꎬ根据P值可以得出ꎬ对复合织物的厚度㊁透气率和剥离强度有显著性影响的因素分别为压强㊁压强㊁温度ꎬ其中ꎬ复合织物透气性和热压压强之间的显著性为高度显著ꎮ表5㊀EVA热熔胶膜复合织物性能的方差分析Tab.5㊀VarianceanalysisofthepropertiesofcompositefabricswithEVAhot ̄meltadhesivefilms性能因素SSF值P显著性厚度A0.0391.8220.164B0.0593.4620.026∗B>A>CC0.0311.3960.271透气率A2913.6390.4270.787B20620.1026.2790.002∗∗㊀B>C>AC4173.2660.6350.644剥离强度A216.6494.0920.014∗B105.8451.4090.267A>B>CC38.9860.4400.778㊀㊀注:∗∗代表Pɤ0.01ꎬ高度显著影响ꎻ∗代表0.01<Pɤ0.05ꎬ显著影响ꎻ空白代表P>0.05ꎬ无显著影响ꎮ2.1.2㊀EVA热熔胶膜复合织物性能的交互作用分析交互作用图能反应多因素共同作用的实验中各因素间的相互作用程度ꎬ通过SPSS软件对实验数据进行处理ꎬ得到影响EVA热熔胶膜复合织物透气性和剥离强度的各因素之间的交互作用分别如图3㊁图4所示ꎮ在交互作用图中ꎬ各个因素的曲线平行则未发生交互作用ꎬ各个因素的曲线不平行则发生交互作用ꎬ相交趋势越明显ꎬ交互作用强度越大ꎮ由图3可知ꎬ温度与压强㊁温度与时间㊁时间与压强对复合织物透气率之间存在交互作用ꎬ温度与时间之间的交互作用显著ꎻ由图4可知ꎬ温度与压强㊁温度与时间㊁时间与压强对复合织物透气率之间存在交互作用ꎬ当热压温度在100~110ħ时ꎬ温度与压强之间的交互作用不明显ꎮ㊀㊀㊀㊀图3㊀复合织物透气性交互作用Fig.3㊀Permeabilityinteractionofcompositefabrics671 现代纺织技术第31卷㊀㊀图4㊀复合织物剥离强度交互作用Fig.4㊀Peelstrengthinteractionofcompositefabrics2.2㊀热压工艺对复合织物黏接结构的影响为进一步研究各因素对复合织物黏接结构和性能的影响规律ꎬ以正交试验各因素水平值为横坐标ꎬ相应水平测试结果均值为纵坐标ꎬ作因素水平趋势图ꎬ直观反应各因素对复合织物各性能的影响趋势和大小ꎮ根据织物厚度和截面电镜图分析复合ꎬ研究热压工艺与复合织物黏接结构间的关系ꎮ复合织物所用缎纹机织布厚度为0.37mmꎬ水刺非织造布厚度为0.62mmꎬEVA热熔胶膜的厚度为0.05mmꎮ对正交试验得到的复合织物平均厚度进行分析ꎬ复合织物厚度因素水平趋势如图5所示ꎮ由图5可知ꎬ随着热压温度㊁压强和时间的增加ꎬ复合织物的厚度均逐渐减小ꎬ其中ꎬ压强由0.5MPa增加到1.0MPa时ꎬ厚度下降最明显ꎮ㊀㊀图5㊀复合织物厚度因素水平趋势Fig.5㊀Leveltrendofthethicknessfactorsofcompositefabrics㊀㊀复合织物整体厚度的变化是由热熔胶渗透程度和两层织物厚度变化共同导致的ꎮ随着温度㊁压强和时间的增加ꎬ热熔胶膜由高弹态转变为流动性不同的粘流态ꎬ在压强的作用下ꎬ以不同的速度向两层织物间流动浸润ꎬ热压温度越高㊁压强越大ꎬ时间越长ꎬ热熔胶流动浸润速度越快ꎬ时间越久ꎬ在两层织物间的渗透程度越大ꎮ同时ꎬ在加压过程中ꎬ两层织物内部纱线和纤维间的间隙也会在压强的挤压作用下被压缩ꎬ待热压工艺结束后ꎬ压缩部分无法完全恢复ꎬ且热压工艺不同恢复程度不同ꎬ两层织物厚度有一定程度的减小ꎮ根据复合织物的厚度ꎬ在正交试验中选取3块复合织物ꎬ通过电镜观察复合织物的截面形貌特征ꎬ所选取复合织物的热压工艺参数和厚度见表6ꎮ771第4期胡满钰等:EVA热熔胶膜层压复合织物的热压工艺及其结构表6㊀扫描电镜试样的热压工艺参数和厚度Tab.6㊀HotpressingprocessparametersandthicknessofSEMspecimens试样热压温度∕ħ热压压强∕MPa热压时间∕s厚度∕mm试样1800.5300.76试样111000.51200.65试样251202.51500.48其中ꎬ试样1与试样25的热压工艺各因素水平差别最大ꎬ3块复合织物截面电镜图如图6所示ꎮ从图6中可以清晰看到复合织物的截面结构:非织造布㊁EVA热熔胶和机织布依次层叠ꎬ复合织物截面热熔胶的渗透程度不同ꎬ与纱线和纤维的结合效果不同ꎬ截面结构有较大区别ꎮ由图6(a)和图6(b)可知ꎬ试样1中热熔胶膜状形态结构无明显改变ꎬ仅固结了与热熔胶接触的少量纱线和纤维ꎬ与织物中纱线和纤维的结合效果差ꎬ热熔胶仍保持膜状结构ꎻ由图6(c)和图6(d)可知ꎬ试样11中热熔胶膜在两层织物间发生流动浸润ꎬ渗透分布范围增大ꎬ并与部分纱线和纤维发生固结ꎬ热熔胶膜状形态结构发生改变ꎬ胶层出现间隙ꎻ由图6(c)和图6(d)可知ꎬ试样25厚度明显减小ꎬ截面中热熔胶渗透分布范围扩大ꎬ热熔胶膜状形态结构完全改变ꎬ渗透程度增加ꎬ两层织物中被固结的纱线和纤维增加ꎬ织物的间隙和微孔被热熔胶黏接ꎮ织物的黏接结构包括:热熔胶膜的形态变化㊁渗透程度㊁与纱线和纤维的结合等ꎬ不同的热压工艺会直接影响复合织物黏接结构ꎬ进而影响复合织物的性能ꎮ㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀图6㊀复合织物截面电镜照片Fig.6㊀Cross ̄sectionalelectronmicroscopyofcompositefabrics871 现代纺织技术第31卷2.3㊀热压工艺对复合织物透气性和剥离强度的影响㊀㊀复合织物所用机织布透气率为656.47mm∕sꎬ非织造布透气率为1762.90mm∕sꎬEVA热熔胶膜不透气ꎮ对正交试验得到的复合织物平均透气性和平均剥离强度进行分析ꎬ复合织物透气性和剥离强度因素水平趋势如图7所示ꎮ图7㊀复合织物透气性和剥离强度因素水平趋势Fig.7㊀Leveltrendoftheairpermeabilityandpeelstrengthfactorsofcompositefabrics由图7(a)可知ꎬ复合织物的透气性和剥离强度随着热压温度的升高呈现先上升后下降的趋势ꎬ在100ħ时其透气性最高ꎬ在90ħ时其剥离强度最高ꎻ由图7(b)可知ꎬ复合织物的透气性和剥离强度随着热压压强的增加均呈现下降趋势ꎬ压强由0.5MPa增加到1.0MPa时ꎬ透气性下降较快ꎻ由图7(c)可知ꎬ复合织物的透气性和剥离强度随着热压时间的增加均呈现先上升后下降的趋势ꎬ在90s时ꎬ其透气性和剥离强度均最好ꎮ复合织物透气性和剥离强度变化是由于复合织物内部结构不同而导致的ꎮ热压温度较低㊁时间较短时ꎬ热熔胶膜软化后处于高弹态与粘流态之间ꎬ胶体流动性和黏性差ꎬ在两层织物间的渗透程度小ꎬ仅与织物表面纱线和纤维发生固结ꎬ结合效果差ꎬ热熔胶固化后仍形成无间隙膜状ꎬ所以透气性和剥离强度不佳ꎻ随着温度升高ꎬ热压时间增加ꎬ热熔胶完全熔融ꎬ转变为粘流态ꎬ流动性和黏性均增加ꎬ在压力条件下ꎬ热熔胶向两层织物中的间隙扩散浸润ꎬ待冷却固化后ꎬ两层织物被固结的纱线和纤维增加ꎬ热熔胶分布扩散ꎬ与织物中的纱线和纤维结合效果好ꎬ且胶层形成间隙和微孔ꎬ故复合织物剥离强度和透气性提高ꎻ但当热压温度㊁压强和时间继续增加时ꎬ热熔胶转变为流动性很好的粘流态ꎬ在压强作用下向织物的纱线和纤维间流动浸润ꎬ待降温固化后ꎬ黏接了两层织物中纱线和纤维间的间隙ꎬ可供气体通过的间隙和微孔减少ꎬ导致复合织物透气性降低ꎬ热熔胶分布范围扩大ꎬ在两层织物的间隙中完全浸润ꎬ胶体分散ꎬ热熔胶自身结合面积减小ꎬ结合牢度下降ꎬ导致复合织物剥离强度下降ꎮ2.4㊀复合织物热压工艺的优化和验证根据复合织物的黏接结构㊁透气性和剥离强度的分析ꎬ比较热压温度为90ħ与100ħ时复合织物的透气性和剥离强度ꎬ可以得出热压温度为100ħ时ꎬ复合织物的整体性能较好ꎻ且热压压强为0.5MPaꎬ时间为90s时ꎬ热熔胶浸润渗透均匀ꎬ胶层能形成间隙和微孔ꎬ与织物中纱线和纤维结合效果好ꎬ复合织物的透气性和剥离强度均最佳ꎮ因此ꎬ对EVA热熔胶膜制备复合织物的热压工艺进行优化ꎬ其最佳热压工艺参数为:热压温度100ħꎬ热压压强0.5MPaꎬ热压时间90sꎮ根据优化后的热压工艺参数制备EVA热熔胶膜复合织物ꎬ该复合织物截面电镜图如图8所示ꎮ971 第4期胡满钰等:EVA热熔胶膜层压复合织物的热压工艺及其结构㊀㊀㊀㊀㊀图8㊀最佳热压工艺复合织物截面电镜照片Fig.8㊀Cross ̄sectionalelectronmicroscopyofcompositefabricswiththeoptimumhotpressingprocess㊀㊀在该工艺条件下制得的复合织物厚度为0 65mmꎬ通过截面电镜图ꎬ可以发现热熔胶渗透效果与图6(d)相似ꎬ热熔胶层形成间隙和微孔ꎬ固结了织物中的部分纱线和纤维ꎬ结合效果好ꎬ优化工艺参数制备的复合织物透气率可达到156.72mm∕sꎬ剥离强度可达到32.55Nꎬ均接近正交试验中复合织物透气性和剥离强度的最优结果ꎮ部分学者使用不同黏合剂进行层压复合织物的制备工艺研究[8ꎬ11 ̄12]ꎬ对其研究过程中剥离强度测试结果进行整理ꎬ得到不同黏合剂复合织物的最佳剥离强度ꎬ如表7所示ꎮ表7㊀不同黏合剂复合织物的最佳剥离强度Tab.7㊀Highestpeelstrengthforcompositefabricswithdifferentadhesives黏合剂表层织物∕里层织物剥离强度∕N传统市售糯米胶真丝织物∕涤纶非织造布2.27涤纶织物∕涤纶非织造布2.06聚氨酯(TPU)热熔胶亚麻织物∕涤纶经编间隔织物23.20聚酰胺(COPA)热熔胶棉织物∕锦纶经编织物15.68棉织物∕涤纶经编织物13.00瓜尔胶改性黏合剂真丝织物∕涤纶非织造布17.15涤纶织物∕涤纶非织造布14.10本研究在热压工艺优化后ꎬ复合织物剥离强度可达到32.55Nꎬ与表7中其他各黏合剂制备复合织物的最佳剥离强度相比ꎬEVA热熔胶在复合织物黏接方面具有更优的性能ꎬ其剥离强力具有明显优势ꎮ3㊀结㊀论本文根据设计的3因素5水平正交试验ꎬ以EVA热熔胶膜为黏合剂ꎬ缎纹机织布为表层织物ꎬ水刺非织造布为里层织物ꎬ制备了不同热压工艺参数的25块复合织物ꎬ分析热压工艺条件与复合织物内部黏接结构的关系ꎬ研究热压工艺条件对复合织物透气性和剥离强度的影响ꎬ并对EVA热熔胶膜制备复合织物的热压工艺参数进行了优化ꎬ得出如下结论:a)在热压温度㊁压强㊁时间3个因素中ꎬ压强对复合织物厚度的影响最大ꎬ温度次之ꎬ压强对复合织物透气性影响最大ꎬ时间次之ꎬ温度对复合织物剥离强度影响最大ꎬ压强次之ꎻ同时ꎬ对复合织物的厚度㊁透气率和剥离强度有显著性影响的因素分别为压强㊁压强㊁温度ꎬ其中ꎬ热压压强对复合织物透气性具有高度显著性影响ꎮb)在80~120ħ范围内ꎬ随着温度的升高ꎬ复合织物的透气性和剥离强度均呈现先上升后下降趋势ꎬ90ħ时其剥离强度最高ꎬ100ħ时其透气性最好ꎻ在0.5~2.5MPa范围内ꎬ随着压强的增大ꎬ复合织物的透气性和剥离强度均呈现下降趋势ꎬ0.5MPa时其透气性和剥离强度均最高ꎻ在30~150s范围内ꎬ随着时间的增加ꎬ复合织物的透气性和剥离强度均呈现先上升后下降趋势ꎬ90s时其透气性和剥离强度均最高ꎮc)对EVA热熔胶膜制备复合织物的热压工艺进行了优化ꎬ其最佳热压工艺参数为:100ħꎬ0.5MPaꎬ90sꎮ该条件下制备的复合织物ꎬ热熔胶与两层织物的纱线和纤维结合紧密ꎬ且胶层会形成081 现代纺织技术第31卷间隙和微孔ꎬ复合织物厚度为0.65mmꎬ透气率可达到156.72mm∕sꎬ剥离强度可达到32.55Nꎮ参考文献:[1]杨瑞瑞ꎬ郭嫣ꎬ张文文ꎬ等.阻燃防水透湿多功能墙布的设计与开发[J].合成纤维ꎬ2022ꎬ51(11):18 ̄21.YANGRuiruiꎬGUOYanꎬZHANGWenwenꎬetal.Designanddevelopmentofflame ̄retardantꎬwaterproofandmoisture ̄permeablemultifunctionalwallfabric[J].SyntheticFiberinChinaꎬ2022ꎬ51(11):18 ̄21. [2]李栋ꎬ徐田文ꎬ施亚伦ꎬ等.非对称润湿性复合墙布面料的制备及其性能[J].现代纺织技术ꎬ2022ꎬ30(2):184 ̄190.LIDongꎬXUTianwenꎬSHIYalunꎬetal.Studyonthepreparationandpropertiesofcompositewallcoveringswithasymmetricwettability[J].AdvancedTextileTechnologyꎬ2022ꎬ51(11):18 ̄21.[3]谭冬宜ꎬ肖龙辉ꎬ何斌ꎬ等.复合织物的研究现状[J].纺织导报ꎬ2017(8):75 ̄77.TANDongyiꎬXIAOLonghuiꎬHEBinꎬetal.Researchstatusofcompositefabrics[J].ChinaTextileLeaderꎬ2017(8):75 ̄77.[4]夏帅飞ꎬ祝成炎ꎬ范硕ꎬ等.净化室内空气新中式窗帘墙布织物的设计开发[J].纺织导报ꎬ2021(11):39 ̄43.XIAShuaifeiꎬZHUChengyanꎬFANShuoꎬetal.DesignanddevelopmentofnewChinese ̄stylecurtainsandwallcoveringswithindoorairpurificationfunction[J].ChinaTextileLeaderꎬ2021(11):39 ̄43.[5]TIANYLꎬHUANGXꎬCHENGYꎬetal.Applicationsofadhesivesintextiles:Areview[J].EuropeanPolymerJournalꎬ2022ꎬ167:111089.[6]SKVꎬGADHAVER.Sustainablerawmaterialsinhotmeltadhesives:Areview[J].OpenJournalofPolymerChemistryꎬ2020ꎬ10(3):49 ̄65.[7]PENGXSꎬLIUSꎬHUANGYDꎬetal.Investigationofjoiningofcontinuousglassfibrereinforcedpolypropylenelaminatesviafusionbondingandhotmeltadhesivefilm[J].InternationalJournalofAdhesionandAdhesivesꎬ2020ꎬ100:102615.[8]黄益ꎬ马军翔ꎬ金曦ꎬ等.环保型聚氨酯仿皮涂层材料研究进展[J].现代纺织技术ꎬ2021ꎬ29(5):116 ̄128.HUANGYiꎬMAJunxiangꎬJINXiꎬetal.Researchprogressoneco ̄friendlypolyurethaneartificialleathercoatingmaterials[J].AdvancedTextileTechnologyꎬ2021ꎬ29(5):116 ̄128.[9]KOSTYUKAVꎬSMIRNOVANMꎬANTONOVSVꎬetal.Rheologicalandadhesionpropertiesofhot ̄meltadhesivesbasedonhydrocarbonresinsandpoly(ethylene ̄vinylacetate)[J].PolymerScienceꎬSeriesAꎬ2021ꎬ63(3):283 ̄295.[10]武海良ꎬ杨倩ꎬ张希文ꎬ等.EVA基纺织品用热熔胶的形成:组分含量和参数调控[J].材料导报ꎬ2019ꎬ33(6):1070 ̄1073.WUHailingꎬYANGQianꎬZHANGXiwenꎬetal.Fabri ̄cationofEVAbasedhotmeltadhesivefortextilesviaadjustingcomponentamountandexperimentalparameters[J].MaterialsReportsꎬ2019ꎬ33(6):1070 ̄1073. [11]崔威威ꎬ郭嫣ꎬ宋敏芳.汽车用层压面料的阻燃处理工艺研究[J].现代纺织技术ꎬ2017ꎬ25(5):57 ̄61.CUIWeiweiꎬGUOYanꎬSONGMinfang.Researchoffireretardanttreatmentprocessoflaminatedfabricsforautomobile[J].AdvancedTextileTechnologyꎬ2017ꎬ25(5):57 ̄61.[12]吴晓飞ꎬ关晋平ꎬ陈国强.瓜尔胶改性黏合剂在墙布复合中的应用[J].印染ꎬ2017ꎬ43(22):24 ̄27.WUXiaofeiꎬGUANJinpingꎬCHENGuoqiang.Applicationofmodifiedguargumadhesivetothecompositionofwallcoverings[J].ChinaDyeing&Finishingꎬ2017ꎬ43(22):24 ̄27ꎬ32.181第4期胡满钰等:EVA热熔胶膜层压复合织物的热压工艺及其结构281 现代纺织技术第31卷Hot ̄pressingprocessandstructureoflaminatedcompositefabricswithEVAhot ̄meltadhesivefilmsHUManyu1ꎬ2ꎬJINXiaoke1ꎬ2ꎬTIANWei1ꎬ2ꎬHUANGKunzhen1ꎬSHAOLingda1ꎬZHUChengyan1ꎬ2(1.CollegeofTextileScienceandEngineering(InternationalInstituteofSilk)ꎬZhejiangSci ̄TechUniversityꎬHangzhou310018ꎬChinaꎻ2.ZhejiangSci ̄TechUniversityHuzhouResearchInstituteCo.ꎬLtd.ꎬHuzhou313000ꎬChina)Abstract:Asanenvironmentallyfriendlydecorativematerial wallclothiswellinlinewithhuman'saestheticandenvironmentalprotectionrequirementsforitsadvantagesofseamlessness heatpreservationandsoundabsorption.However atpresent theresearchanddevelopmentscopeoftheforeignwallclothindustryiswide whiletheresearchanddevelopmentofwallclothinChinastartedlate withmostrelatedstudiesstayingatthedecorativelevel andfewonthefunctions.Moreover thedomesticresearchanddevelopmentofwallclothfocusonsingle ̄layerwallcloth whichcann'tfullymeettherequirementsofmulti ̄functionalwallcloth.Compositewallcloth usuallymadeofwovenfabricandnon ̄wovenfabricbyhotpressingwithbinder isalaminatedcompositefabric.Itcannotonlymaintaintheoriginalfunctionalcharacteristicsofeachlayerofthefabric butalsocanbedesignedtoincreaseotherfunctions showingthesuperpositionoffunctionsasawhole.Thedevelopmentofmulti ̄functionaltextilefibersandtheresearchanddevelopmentofwallclothpreparationtechnologyhavepromotedthegrowthofthecompositewallclothmarket.Toaddressthelackoffunctionalwallclothandundiversifiedtypesinthedomesticmarket wemainlyfocusonthehot ̄pressingprocessofpreparingcompositefabricsforwallclothinthispaper.WeselectedtheethylenevinylacetateEVA hot ̄meltadhesivefilmwithalowmeltingpoint widebondingrangeandagingresistanceastheadhesive.Firstly wecarriedoutthethermalanalysis.Onthisbasis withthetemperature pressureandtimeofthehot ̄pressingprocessasthemaininfluencingfactorsofthetest wedesignedtheL2553orthogonaltesttostudytheeffectofthehot ̄pressingprocessonthebondingstructureandpropertiesofcompositefabricswithEVAhot ̄meltadhesivefilms.Inthispaper weanalyzedthecross ̄sectionbondingstructureofthecompositefabricbythicknessandcross ̄sectionelectronmicroscopy includingthemorphologicalchangesofthehot ̄meltadhesivefilm thedegreeofpenetration thebindingeffectwithyarnsandfibers etc.Wealsoanalyzedthereasonsfortheinfluenceofthehot ̄pressingprocessonthepropertiesofcompositefabricsfromthemicrostructure.ItisfoundthatforcompositefabricswithEVAhot ̄meltadhesivefilms pressurehasthegreatestinfluenceonthethicknessandairpermeability andtemperaturehasthegreatestinfluenceonthepeelstrength.Atthesametime pressurehasasignificanteffectonthethickness ahighlysignificanteffectontheairpermeability andtemperaturehasasignificanteffectonthepeelstrength.Withtheincreaseofhot ̄pressingtemperature pressureandtime thethicknessshowsadownwardtrend.Withtheincreaseoftemperatureandtime thepermeabilityandpeelingstrengthincreasefirstandthendecrease.Withtheincreaseofpressure thepermeabilityandpeelingstrengthshowadownwardtrend.Theoptimumparametersforthehot ̄pressingprocessare100ħ0.5MPaand90s.Thehot ̄meltadhesiveofthecompositefabricpreparedunderthisconditioniscloselycombinedwiththeyarnandfiberofthetwolayersofthefabric.Theadhesivelayerwillformgapsandmicro ̄pores.Thethicknessis0.65mm theairpermeabilitycanreach156.72mm∕s andthepeelstrengthcanreach32.55N.Therelationshipbetweenthehot ̄pressingprocessconditionsandthebondingstructureandpropertiesofcompositefabricswithEVAhot ̄meltadhesivefilmscanlayaresearchfoundationforthepreparationofcompositefabrics.Throughtheselectionanddesignofrawmaterials newfunctionalwallclothproductswithsuchfunctionsasanti ̄foulingproperty moisturepermeabilityandflameresistancearepreparedtomeethuman'shigh ̄qualityrequirementsforindoorenvironmentalconditions.TheresearchresultscanprovideprocessreferenceforthepreparationofcompositefabricsbyEVAhot ̄meltadhesivefilms andprovideabasisforthepreparationoffunctionalcompositewallfabrics.Keywords:EVA ̄basedhot ̄meltadhesivefilm compositefabrics hot ̄pressingprocess peelstrength orthogonalexperimental。
双玻组件用EVA胶膜的制备及封装工艺研究

双玻组件用 EVA胶膜的制备及封装工艺研究摘要:由于BIPV双玻组件生产成本高、制作流程复杂,所以光伏企业选用EVA胶膜来制备双玻组件,不仅能够将制作流程予以简单化,还能够降低损耗,提升生产效率,同时还可以防止双玻组间产生气泡、缺胶、移位等问题。
EVA中含有33%的VA成分,利用熔融共混挤出的方式掺入抗氧剂、紫外光稳定剂、紫外光吸收剂、交联剂与增粘剂,并将其进行热压,就能够获得EVA胶膜。
本文主要针对双玻组件使用EVA胶膜的制备、封装工艺进行深入研究,以供参考。
关键词:双玻组件;EVA胶膜;制备;封装工艺引言随着现代经济的快速发展,各行各业都获得了巨大的进步,同时自然生态环境也受到了极大的污染与危害,各种资源、能源也越来越匮乏。
在该背景下,光伏产业营运而生,其能够为能源的充足供应提供良好保障,还有助于低碳环保、绿色节能社会的建设,由此世界各国都加大了对光伏产业的投资力度,这对光伏产业的未来可持续发展有重大现实意义。
1.光伏建筑一体化(BIPV)技术光伏建筑主要是依靠太阳能来发电的,在建筑物的围护结构外表面安装太阳能电池,或者直接用太阳能电池替换建筑围护结构外表面结构进行发电。
BIPV (光伏建筑一体化)技术将玻璃幕墙和光伏组件予以有机结合,从而生成绿色建筑的技术。
该技术发展前景极好,且具备节能、低碳、环保等诸多优势,所以光伏行业以及建筑行业所一同开拓的新市场就是光伏建筑一体化,这也是光伏产业将来发展的主要趋势。
我国所实施的绿色建筑发展战略,对新能源、新型建筑材料、节能服务等行业起到了一定促进作用,有很大希望能够超出万亿元的绿色市场规模,发展空间极大[1]。
在国家太阳能光伏产业“十二五”发展规划中已经把BIPV组件制造技术列入核心发展项目,还有能够直接和建筑融合的建筑材料,在厂房屋顶、玻璃幕墙以及农业大棚中的中空玻璃组件、BIPV双玻组件等。
再加之国家和政府也对BIPV技术提供了政策扶持与资金助力,包括良好的发展前景以及市场需要,该行径令BIPV技术的发展更加稳健、更加长远,同时对新封装材料、先进生产技术的涌现起到了较大推动作用。
eva胶膜成本

eva胶膜成本摘要:1.EVA胶膜概述2.EVA胶膜的成本构成3.影响EVA胶膜成本的因素4.降低EVA胶膜成本的策略5.总结正文:近年来,EVA胶膜在电子产品、包装行业以及其他领域得到了广泛的应用。
其优良的性能和环保特性使得EVA胶膜成为市场瞩目的焦点。
本文将探讨EVA胶膜的成本问题,分析其成本构成及影响因素,并提出降低成本的策略。
一、EVA胶膜概述EVA,即乙烯-醋酸乙烯酯共聚物,是一种具有良好柔韧性、耐候性和环保性能的聚合物。
EVA胶膜是由EVA树脂与其它助剂经过压延、涂布等工艺制成的一种薄膜。
它广泛应用于电子产品的包装、建筑幕墙、太阳能电池等领域。
二、EVA胶膜的成本构成1.原材料成本:EVA树脂是EVA胶膜的主要原材料,其价格波动直接影响胶膜成本。
此外,还有其他辅助材料,如抗氧剂、增塑剂等,也会影响成本。
2.生产设备成本:包括生产线、模具、辅机等设备的投入。
高效的生产设备可以提高生产效率,降低单位产品成本。
3.人力成本:生产过程中的人力成本包括员工工资、福利等。
优化生产管理,提高员工素质和技能,有助于降低人力成本。
4.能源成本:生产EVA胶膜需要消耗电力、蒸汽等能源。
节能减排的技术和设备可以降低能源成本。
5.管理成本:包括企业管理费用、销售费用等。
合理控制企业规模和优化销售渠道可以降低管理成本。
三、影响EVA胶膜成本的因素1.原材料价格波动:EVA树脂价格受国际原油、石化产品市场等因素影响,价格波动较大。
企业应关注原材料价格走势,合理预测成本。
2.汇率波动:EVA树脂进口依赖度较高,汇率波动会影响原材料成本。
企业可以通过外汇衍生品等手段对冲汇率风险。
3.生产工艺和技术:先进的生产工艺和技术可以提高生产效率,降低单位产品成本。
企业应不断研发和创新,提高核心竞争力。
4.政策环境:政府对环保、能源等方面的政策会影响企业成本。
企业应积极响应政策,争取政策支持,降低成本。
四、降低EVA胶膜成本的策略1.优化原材料采购:合理安排原材料采购计划,与供应商建立长期合作关系,降低采购成本。
细说EVA

细说EVAEVA是太阳能组件生产过程中最关键的封装材料之一,它把电池片上铺下盖封在中间,起到保护电池片的作用;EVA在融化之后具有很高的透光率,可以提高光线的入射率,提高组件的输出功率;另外在组件生产过程中,层压是关键环节,而层压机的参数设置基本上是围绕着EVA的特性设置的,因此EVA对于组件生产至关重要。
1、成分EVA的主要成分为乙烯与醋酸乙烯酯的共聚物,外加各种添加剂如交联剂、增稠剂、抗氧化剂、光稳定剂等等。
1)交联剂——交联剂添加的多,交联度高,但过多易老化,易黄变。
所以一款好的EVA胶膜产品,配方是关键,其次才是工艺流程、工艺设备、生产环境等。
2)VA含量——分子量(融指)一定,VA含量越高,EVA的弹性,耐冲击性、柔软性、耐应力开裂性、耐气候性、粘结性、相容性、热密封性、可焊性、辐射交联性、透明性、光泽度、密度等提高,而强度、硬度、融熔点耐化学性、屈伸应力,热变性、隔离性等降低。
3)融熔指数(M1)——VA含量一定,融指越高,融体的流动性增加,融体的粘度,韧性抗拉强度、耐应力开裂性等则降低。
注:乙烯和醋酸乙烯酯溶于二甲苯,而在交联固化后不溶于二甲苯。
这种特性是EVA交联度实验的理论依据,可以用来测试层压后的EVA的交联度。
·交联剂是一种有机过氧化物,在一定温度下,会分解产生自由基,引发EVA分子间的结合,形成三维网状结构,使EVA固化。
该温度就是EVA的固化温度。
如果温度过高,交联剂会分解,产生氧气,造成组件内部气泡的产生。
·光稳定剂可以提高EVA的抗紫外线能力。
·抗氧化剂可以提高EVA的抗氧化能力,有效防止EVA老化、黄变。
2、特性EVA具有优良的柔韧性、耐冲击性、弹性、光学透明性、低温绕曲性、粘着性、耐环境应力开裂性、耐候性、耐腐蚀性、热密封性以及电性能等。
EVA是一种热熔胶,即在常温下,EVA是固体,没有粘性,透光性差。
当把EVA加热到一定温度时,EVA会熔化粘结在与它接触的物体上。
光转胶膜eva层

光转胶膜eva层
EVA胶膜,全称为Polyethylene vinylacetate,即聚乙烯-聚醋酸乙烯酯共聚物,是一种热固性有粘性的胶膜。
这种胶膜因其优秀的特性,如粘着力、耐久性和光学特性等,被广泛应用于各种领域,尤其是在光伏发电板中作为最常用的封装材料。
EVA胶膜在光伏发电板中的主要作用是将玻璃和硅片牢牢的粘接在一起。
由于其良好的透明度和粘着力,可以确保光伏电池板的有效工作。
同时,EVA胶膜还具有良好的耐久性,可以抵抗高温、潮湿和紫外线等环境因素的影响,从而显著提高光伏电池板的使用寿命。
此外,EVA胶膜在常温时无黏性,便于裁切操作。
但在经过热压处理后,会发生热交联固化与粘结增强反应,产生永久性的粘合密封。
这使得EVA胶膜在封装过程中具有良好的加工性能和使用效果。
需要注意的是,EVA胶膜也存在一些不足之处。
例如,透明EVA胶膜的反射性差、透水率高,易产生PID(潜在电势诱导衰减)现象,导致电池组件功率下降。
因此,在实际应用中需要根据具体需求选择合适的EVA胶膜类型。
总的来说,EVA胶膜作为一种重要的封装材料,在光伏发电板等领域具有广泛的应用前景。
随着科技的不断发展,未来EVA 胶膜的性能和应用领域还有望得到进一步拓展和提升。
EVA胶膜透光率和剥离强度测试方法概述

EVA胶膜透光率和剥离强度测试方法概述摘要:EVA胶膜是一种以EVA为基材经过挤压成型工艺形成的热固性膜状热熔胶,与硅晶片、玻璃、背板粘接制成太阳能电池板。
其透光率和剥离强度对太阳能电池的寿命起着至关重要的作用。
本文从试验的角度,论述了EVA胶膜透光率和剥离强度的测试方法,以期为相关企事业单位和科研院校提供一定的科研帮助。
关键词:EVA胶膜,透光率、剥离强度、XLW(PC)智能电子拉力试验机EVA胶膜是一种以EVA为基材经过挤压成型工艺形成的热固性膜状热熔胶。
这种胶膜在常温下无粘性,便于加工,但在熔融状态下形态会变得完全透明,同时发生粘接与交联固化反应,与硅晶片、玻璃、背板粘接制成太阳能电池板,如图1。
1—顶面玻璃;2—背板;3—硅晶片;4—EVA胶膜图1、太阳能电池板构成简示图太阳能电池发电利用的是硅等半导体材料受到阳光照射时发生光生伏特效应,直接将太阳能辐射转换为电能。
这种原理意味着硅晶片要最大范围吸收阳光辐射,因此作为硅晶片与外层玻璃的唯一“屏障”,EVA胶膜需要具备非常优异的透光率,这种特性同时对电池板的输出具有增益作用。
另外,在结构组成方面,EVA胶膜承担着硅晶片、上层保护材料玻璃、下层背板三者之间的粘接作用。
这种粘接效果一般通过测定EVA胶膜与玻璃、EVA胶膜与背板的剥离强度来评判。
在实际应用中,EVA胶膜需要具备合理的剥离强度。
外界环境,尤其是恶劣天气会对太阳能电池组件内里和外部造成不同程度的损害,如果EVA胶膜与材料间的剥离强度没有达到标准要求,那么环境的侵袭极易造成内部粘接层的脱离,反之如若剥离强度过大,后期返修时会对硅晶片造成一定损伤。
综上所述,EVA胶膜不仅起着封装和粘接的作用,其透光率和剥离性能对太阳能电池的质量与寿命起着至关重要的作用,因此需要重点加强对这两方面的检测控制。
透光率测试国标GB 2410—80 《透明塑料透光率和雾度试验方法》是EVA胶膜透光率测定的标准方法。
EVA的真空层压工艺
EV A的真空层压工艺EV A的真空层压工艺EV A是晶体硅太阳电池封装中应用最广泛的一种热熔胶,真空层压工艺就是针对EV A的特性来设计的。
这个工艺的主要目的就是使EV A实现最优程度的固化,并防止移位和气泡的产生。
本文所关注的就是所有材料准备好了以后,放入层压机中层压的这一个具体过程。
1 EV A的基本特性1.1固化温度。
EV A是一种热熔胶,即在常温下,EV A是固体,没有粘性。
当把EV A加热到一定温度时,EV A会熔化粘结在与它接触的物体上。
用于太阳电池封装的EV A是专门设计的热固性热熔胶,即在加热熔融的同时会发生固化反应。
当温度较低时,交联反应发生的速度很缓慢,完成固化所需要的时间较长,反之需要的时间就比较短。
因此要选择一适宜的层压温度,使EV A在熔融中获得流动性,同时发生固化反应。
随着反应的进行,交联度增加,EV A失去流动性,起到封装的作用。
1.2交联度。
用于太阳电池封装的EV A在层压过程中发生了交联反应,形成了三维网状结构。
通常,EV A的交联度用凝胶含量来表示,凝胶含量是交联的EV A占总的EV A的重量百分含量。
实验上的测定方法有很多,常用的是二甲苯萃取法。
2层压机和层压工艺2.1层压机。
层压机是真空层压工艺使用的主要仪器,它的作用就是在真空条件下对EV A进行加热加压,实现EV A的固化,达到对太阳电池密封的目的。
对于层压机来说需要设置的参数主要有四个:z层压温度:对应着EV A的固化温度。
..抽气时间:对应着加压前的抽气时间。
又因为抽气完成后就是充气加压的过程,所以抽气时间又对应着加压的时机。
抽气的目的,一是排出封装材料间隙的空气和层压过程中产生的气体,消除组件内的气泡;二是在层压机内部造成一个压力差,产生层压所需要的压力(参见层压机的工作原理)。
..充气时间:对应着层压时施加在组件上的压力,充气时间越长,压力越大。
因为像EV A交联后形成的这种高分子一般结构比较疏松,压力的存在可以使EV A胶膜固化后更加致密,具有更好的力学性能。
EVA知识学习总结报告
EV A知识学习总结报告EVA胶膜简介:EVA胶膜是由以乙烯-醋酸乙烯共聚物为主要材料,添加各种助剂,通过特殊工艺加工而成的薄膜。
其主要的作用是用于太阳能组件的封装材料,为组件提供结构支持,保护电池片,提供物理隔缘和电气隔绝以及热的传导等作用。
EVA的主要测试内容:EVA的收缩率;交联度;抗UV老化测试;剥离强度测试;双85测试1.EVA的收缩率测试方法:测验目的∶通过收缩率测试反映EVA胶膜在使用过程中的尺寸稳定性情况。
试验步骤:(1)取样材EVA胶膜,裁剪一个长宽为20cm×20cm的正方形EVA胶膜样板,置放于玻璃上(2)设计层压机的温度为140℃把样品放在层压机上,3分钟左右,待胶膜全部融熔后,取出样板(3)等样板冷却后,用直尺测出五个收缩后的宽度数据,求出平均值记为L (4)计算EVA胶膜的收缩率=(20-L)/20×100%测试总结:行业中的检测标准一般要求EVA胶膜的收缩率﹤6%,并且收缩率越小越好,收缩率越小,越能保证在使用过程中减少缺胶现象。
2.EVA交联度的测试方法∶测试目的∶交联度反映的是EVA由线型结构经过交联反应固化后转变为网状结构的程度。
测试步骤∶(1)取EVA胶膜长宽各为5cm左右的一个样本(两层),置放于涂有硅油的纸上(2)设计层压机的工艺为140℃×(6min+10min),当温度达到了140℃时,放进样本,并把层压机手动/自动调节到自动,待工艺完成后层压机会自动打开。
(3)取出已经经过处理的样板,裁剪出一个约为一克左右的实验品,放入分析天平中称出重量记为W1(4)制作一个钢丝滤网,用分析天平称出重量记为W2(5)把称重的试验品装入钢丝滤网内,放到三口烧瓶中,加入二甲苯(EVA∶二甲苯=1克∶100ml),在烧瓶中煮4个小时,温度设定为140℃(6)待完成上面步骤后,把装有EV A的钢丝滤网放到烘箱了烘干,设计工艺为110℃×8h(7)完成烘干工艺后,用分析天平称出反应后的装有EVA的钢丝滤网的重量记为W3(8)计算EVA的交联度=(W3-W2)/W1×100%测试总结∶影响交联度的因素主要有温度,时间,配方,取样的位置以及样板的制作等,其中最主要的因素是温度,取样位置和样板制作。
eva资料
浙江德斯泰光电有限公司EVA销售业务员学习资料浙江德斯泰光电技术有限公司——是一家专业生产EV A封装膜的有限责任公司。
公司是在PVB销量为全国第一的情况下成立的,胶膜的流延技术处于国内领先地位。
目前公司共有四条EV A生产线,日产值达2.5万平方米,年产值为750万平方米。
由于一开始,我们给公司产品就定位在国内高端产品,所以我们对产品的质量特别注重,包括在原料方面,我们对每一批原料进行了严格的检测,以求在源头上保证了EV A质量的稳定性。
本司的设备是采用国内先进流延工艺生产设备,单线日产量达了8千方,这在国内是绝无它家的。
原料也是全部从三井杜邦那进口的,是150的原料。
我们采用日本的技术,以及日本的原料和配方,使产品的稳定性大大提高,压板的成品率也更高,减少生产厂家的返修率。
同时,在透光率、横向收缩率、双85老化试验也处于国内领先水平,而且我们有专业的售后服务,能够在第一时间满足客户需求。
认证方面,目前我司已通过了德国莱恩TUV论证(与其他生产厂家不同的是我们的TUV是以我们胶膜为主体进行检测的);SGS认证(环保论证);IS09001:2000国际质量体系论证(国家论证)。
公司的销售网络已覆盖全国,长三角、珠三角、环渤海及川渝等地区是我公司主要销售区域,公司25%的产品还出口到欧洲、中东、非洲、美洲和东南亚等国家和地区。
一、太阳能电池组件板分为:晶硅板与非晶硅砖板两大类,其中、晶硅板又分为单晶硅板与多晶硅板。
晶硅板的组成为:玻璃EVA+电池片+EVA+TPT/TPE五层组成;非晶硅板的组成分为两种:1.玻璃+EVA+玻璃;2.玻璃+EVA+TPT(分两次固化)。
二、EVA材料物性:乙烯-醋酸乙烯共聚物(也称为乙烯-乙酸乙烯共聚物)是由乙烯(E)和乙酸乙烯(VA)共聚而制得,英文名称为:Ethylene Vinyl Acetate简称EVA或E/VAC.三、EVA材料的特性:EVA树脂的特点是具有良好的柔软性,橡胶般的弹性,在-50℃下仍能够具有较好的可挠性,透明性和表面光泽性好,化学性质稳定,抗老化和耐臭氧强度好,无毒性。
双玻组件用EVA胶膜的制备及封装工艺研究
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Eva胶膜工艺
1. 胶膜工艺简介
EVA(乙烯—醋酸乙烯共聚物)胶膜工艺是一种常用的薄膜制备技术。
EVA胶膜具
有良好的韧性、耐候性和透明度,常用于包装、太阳能电池背板、绝缘材料等领域。
2. 胶膜制备过程
2.1 原料准备
EVA胶膜的主要原料是乙烯和醋酸乙烯。
乙烯是一种无色、无味、非毒性的气体,
可以通过烷烃转化工艺得到。
醋酸乙烯是乙烯和醋酸的反应生成物,可以通过乙烯的加氢醋酸法制备。
2.2 反应体系组装
将乙烯和醋酸乙烯按照一定的比例加入反应釜中,同时控制温度和压力。
反应釜中通入催化剂,催化剂可以是氧化铜、活性炭等。
反应体系组装完成后,通过搅拌或循环泵将反应物均匀混合。
2.3 反应过程
反应釜中的反应物在一定的温度和压力下进行聚合反应。
聚合反应通常需要一段时间进行,以确保反应物充分反应。
在聚合反应过程中,控制反应温度和压力对聚合物的质量和性质有重要影响。
2.4 胶膜制备
完成反应后,将聚合物溶液通过挤出机或喷涂机制备成薄膜。
挤出机通过加热、压力和挤出模具的作用将聚合物溶液压制成所需厚度的胶膜。
喷涂机利用高速气流将聚合物溶液喷洒在基材上,形成薄膜。
2.5 胶膜处理
制备好的EVA胶膜需要进行后续的处理,以提高其性能和功能。
常见的处理方法包括热熔处理、冷却处理、切割和卷绕等。
热熔处理可以使胶膜表面光滑,提高透明度和耐候性。
冷却处理可以使胶膜快速固化,提高生产效率。
切割和卷绕是将制备好的胶膜切割成所需尺寸并卷绕起来,以便后续使用。
3. Eva胶膜应用
3.1 包装行业
EVA胶膜在包装领域有广泛应用,可以用于食品包装、药品包装、电子产品包装等。
EVA胶膜具有良好的柔韧性和透明度,可以有效保护包装物,同时具有一定的抗撕
裂和防水性能。
3.2 太阳能电池背板
EVA胶膜在太阳能电池背板上充当封装材料的角色。
太阳能电池背板需要具备良好
的电气绝缘性能和封装性能,以保护电池芯片并提高电池的发电效率。
EVA胶膜的
耐候性和耐化学性可以满足太阳能电池长期使用的需求。
3.3 绝缘材料
由于EVA胶膜具有良好的绝缘性能和耐高温性能,可以用于电气绝缘材料的制备。
将EVA胶膜粘结在金属或塑料基材上,可以提供良好的绝缘层,用于电子产品或电力设备的绝缘保护。
4. Eva胶膜优势和挑战
4.1 优势
•韧性好:EVA胶膜具有良好的韧性和拉伸性能,可以适应各种形状的包装和封装需求。
•透明度高:EVA胶膜具有优异的透明度,可以展示包装物的内部情况,提高产品的陈列效果。
•耐候性好:EVA胶膜耐紫外线辐射和氧化性环境,长时间使用不易老化和变色。
•加工性能好:EVA胶膜容易加工,可以通过挤出、喷涂、压延等方式制备。
4.2 挑战
•环境问题:EVA胶膜中含有一定的塑化剂和稳定剂,可能对环境造成一定污染,并带来健康风险。
•成本问题:EVA胶膜的生产成本较高,尤其是原料价格的波动和能源成本的上涨,可能会影响其应用范围和市场竞争力。
•技术问题:EVA胶膜的制备过程需要严格控制温度、压力和反应时间等因素,对生产设备和操作工艺有较高要求。
5. 总结
EVA胶膜工艺是一种常用的薄膜制备技术,广泛应用于包装、太阳能电池背板和绝
缘材料等领域。
EVA胶膜具有良好的韧性、透明度和耐候性,可以满足不同领域的
需求。
然而,在应用过程中也面临着环境问题、成本问题和技术问题等挑战。
为了提高EVA胶膜的应用性能和可持续发展能力,需要进一步研究和改进相应的技术和材料。