2010-2019年高考全国I卷数学真题分类汇编:概率与统计(原卷版)
2010-2019学年高考新课标全国I卷数学(文)真题分类汇编专题10 数列(1)(原卷版)

3.(2015年)在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n=.
4.(2013年)设首项为1,公比为 的等比数列{an}的前n项和为Sn,则( )
A.Sn=2an﹣1B.Sn=3an﹣2C.Sn=4﹣3anD.Sn=3﹣2an
专题10:数列பைடு நூலகம்1)
数列小题:10年6考,数列解答题和解三角形解答题每年只考一个,当数列考解答题时,一般不再考小题,当解三角形考解答题时,数列一般考两个小题,交错考法不一定分奇数年或偶数年.
1.(2019年)记Sn为等比数列{an}的前n项和.若a1=1,S3= ,则S4=.
2.(2015年)已知{an}是公差为1的等差数列,Sn为{an}的前n项和,若S8=4S4,则a10=( )
5.(2012年)数列{an}满足an+1+(﹣1)nan=2n﹣1,则{an}的前60项和为( )
A.3690B.3660C.1845D.1830
6.(2012年)等比数列{an}的前n项和为Sn,若S3+3S2=0,则公比q=.
(新课标全国I卷)20102019学年高考数学真题分类汇编专题01集合与常用逻辑用语文(含解析)

专题01会集与常用逻辑用语一、会集小题:10年10考,每年1题,都是交集、并集、补集和子集运算为主,多与解不等式等交汇,新定义运算也有较小的可能,但是难度较低;基本上是每年的送分题,相信命题组对会集小题进行大幅度变动的信心不大.1.(2019年)已知会集U{1,2,3,4,5,6,7},A{2,3,4,5},B{2,3,6,7},则BeUA()A.{1,6} B .{1,7} C .{6,7} D .{1,6,7}【答案】C【分析】U {1,2,3,4,5,6,7},A {2,3,4,5},B{2,3,6,7},C U A{1,6,7},则B e U A {6,7},应选C.2.(2018年)已知会集 A 0,2,B 2,1,0,1,2,则A B ()A.0,2 B .1,2 C .0D .2,1,0,1,2【答案】A【分析】∵A0,2 ,B2,1,0,1,2 ,∴0,2 ,应选A.3.(2017年)已知会集A={x|x<2},B={x|3 ﹣2x>0},则()3 3A.A∩B={x|x <2} B .A∩B=? C .A∪B={x|x<2} D .A∪B=R【答案】A3 3【分析】∵会集A={x|x<2},B={x|3 ﹣2x>0}={x|x<2},∴A∩B={x|x<2},故A正确,B错误;A∪B={x|x <2},故C,D错误;应选A.4.(2016年)设会集A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}【答案】B【分析】∵A={1,3,5,7},B={x|2≤x≤5},∴A∩B={3,5}.应选B.5.(2015年)已知会集A={x|x=3n+2,n∈N},B={6,8,10,12,14},则会集A∩B中元素的个数为()A.5B.4C.3D.2【答案】D【分析】A={x|x=3n+2,n∈N}={2,5,8,11,14,17,},∴A∩B={8,14},故会集A∩B中元素的个数为2个,应选D.6.(2014年)已知会集M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【答案】B【分析】∵M={x|﹣1<x<3},N={x|﹣2<x<1},∴M∩N={x|﹣1<x<1},应选B.7.(2013年)已知会集A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}【答案】A【分析】依据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选A.8.(2012年)已知会集A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.ABB.BAC.A=B D.A∩B=?【答案】B【分析】由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在会集B中的元素都属于会集A,但是在3会集A中的元素不必定在会集B中,比方x=2,∴BA.应选B.9.(2011年)已知会集M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【答案】B【分析】∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3},∴P的子集共有22=4个,应选B.10.(2010年)已知会集A={x||x| ≤2,x∈R},B={x| ≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【答案】D【分析】A={x||x|≤2,x∈R}={x|﹣2≤x≤2},B={x| ≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},∴A∩B={0,1,2},应选D.二、常用逻辑用语小题:10年1考,只有2013年考了一道复合命题的真假判断.这个考点包括的小考点较多,而且简单与函数、不等式、数列、三角函数和立体几何交汇,热门就是“充要条件”;难点:否定与否命题;冷点:全称与特称;思想:逆否.要注意,这种题可以分为两大类,一类只涉及形式的变换,比较简单;另一类涉及命题的真假判断,比较复杂.(2013()年)已知命题p:?x∈R,2x<3x;命题q:?x∈R,x3=1﹣x2,则以下命题中为真命题的是A.p∧qB.¬p∧q C.p∧¬q D.¬p∧¬q【答案】B【分析】由于x=﹣1时,2﹣1>3﹣1,因此命题p:?x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,由于f(0)=﹣1<0,f(1)=1>0.因此函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:?x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.应选B.。
十年真题(2010-2019)高考数学(理)分类汇编专题08 不等式(新课标Ⅰ卷)(原卷版)

专题08不等式历年考题细目表题型年份考点试题位置单选题2014 线性规划2014年新课标1理科09填空题2018 线性规划2018年新课标1理科13填空题2017 线性规划2017年新课标1理科14填空题2016 线性规划2016年新课标1理科16填空题2015 线性规划2015年新课标1理科15填空题2012 线性规划2012年新课标1理科14填空题2011 线性规划2011年新课标1理科13历年高考真题汇编1.【2014年新课标1理科09】不等式组的解集记为D,有下列四个命题:p1:∀(,y)∈D,+2y≥﹣2 p2:∃(,y)∈D,+2y≥2p3:∀(,y)∈D,+2y≤3p4:∃(,y)∈D,+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p32.【2018年新课标1理科13】若,y满足约束条件,则=3+2y的最大值为.3.【2017年新课标1理科14】设,y满足约束条件,则=3﹣2y的最小值为.4.【2016年新课标1理科16】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5g ,乙材料1g ,用5个工时;生产一件产品B 需要甲材料0.5g ,乙材料0.3g ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150g ,乙材料90g ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 216000 元. 5.【2015年新课标1理科15】若,y 满足约束条件.则的最大值为 .6.【2012年新课标1理科14】设,y 满足约束条件:;则=﹣2y 的取值范围为 .7.【2011年新课标1理科13】若变量,y 满足约束条件,则=+2y 的最小值为 .考题分析与复习建议本专题考查的知识点为:不等关系与不等式,一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等.历年考题主要以选择填空题型出现,重点考查的知识点为:一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等,预测明年本考点题目会比较稳定,备考方向以知识点一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等为重点较佳.最新高考模拟试题1.已知11x y -≤+≤,13x y ≤-≤,则182yx⎛⎫⋅ ⎪⎝⎭的取值范围是( )A .82,2⎡⎤⎣⎦B .81,22⎡⎤⎢⎥⎣⎦C .72,2⎡⎤⎣⎦D .71,22⎡⎤⎢⎥⎣⎦2.已知点()2,1A ,动点(),B x y 的坐标满足不等式组2023603260x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,设为向量OB uuu v 在向量OA u u u v 方向上的投影,则的取值范围为( )A.⎣⎦ B.⎣⎦ C .[]2,18D .[]4,183.已知实数x ,y ,满足约束条件13260x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,若2z x y =-+的最大值为( )A .-6B .-4C .2D .34.若直线()1y k x =+与不等式组243322y x x y x y -≤⎧⎪-≤⎨⎪+≥⎩表示的平面区域有公共点,则实数k 的取值范围是( )A .(],1-∞B .[]0,2C .[]2,1-D .(]2,2-5.已知,x y 满足约束条件20,20,20,x y x y -≤⎧⎪-≤⎨⎪+-≥⎩,则2z x y =+ 的最大值与最小值之和为( )A .4B .6C .8D .106.设0.231log 0.6,log 20.6m n ==,则( ) A .m n mn m n ->>+ B .m n m n mn ->+> C .mn m n m n >->+D .m n m n mn +>->7.若x ,y 满足约束条件42y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值是( )A .8B .4C .2D .68.“2a =”是“0x ∀>,1x a x+≥成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.已知函数()ln(1)f x x =-,若f (a )=f (b ),则a+2b 的取值范围为( ) A .(4,+∞)B.[3)++∞C .[6,+∞)D.(4,3+10.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m 、a n ,使得a m a n =16a 12,则1m +9n的最小值为( )A .32B .83C .114D .不存在11.若正数,m n 满足21m n +=,则11m n+的最小值为( ) A .322+ B .32+C .222+D .312.若实数满足,则的最大值是( )A .-4B .-2C .2D .4 13.已知,则取到最小值时( ) A .B .C .D . 14.已知函数,若,则的最小值为( )A .B .C .D .15.在平面直角坐标系中,分别是轴正半轴和图像上的两个动点,且,则的最大值是A .B .C .4D .16.定义:区间的长度均为,若不等式的解集是互不相交区间的并集,设该不等式的解集中所有区间的长度之和为,则( )A .当时,B .当时,C .当时,D .当时,17.关于的不等式的解集为,则的取值范围为 ( )A .B .C .D .18.若关于的不等式上恒成立,则实数a 的取值范围是A .B .C .D .19.已知函数的导函数为的解集为,若的极小值等于-98,则a 的值是( ) A .- B . C .2 D .520.在R 上定义运算⊗:(1)x y x y ⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 恒成立,则实数a 的取值范围为( ) A .11a -<<B .1322a -<< C .3122a -<< D .02a <<21.在ABC ∆中,,,a b c 分别为角,,A B C 所对边的长,S 为ABC ∆的面积.若不等式22233kS b c a ≤+-恒成立,则实数k 的最大值为______.22.已知实数,x y 满足约束条件2020x y x y x a +-≥⎧⎪-+≥⎨⎪≤⎩,若2(0)z ax y a =->的最大值为1-,则实数a 的值是______23.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.24.若x ,y 均为正实数,则221(2)x y x y+++的最小值为_______.25.点(),M x y 在曲线C :224210x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若,a b R +∈,则111a b++的最小值为_____. 26.已知实数,x y 满足约束条件222020x x y x y ≤⎧⎪-+≥⎨⎪++≥⎩,则3xz y =-+的最大值为_____27.已知实数x ,y 满足342y x x y x ≥⎧⎪+≤⎨⎪≥⎩,则3z x y =+的最大值是__________.28.设x ,y 满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b =+>>的值是最大值为12,则23a b+的最小值为______.29.若,x y 满足约束条件40,20,20,x y x x y -+≤⎧⎪-≤⎨⎪+-≥⎩则2z x y =+的最小值为__________.30.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若222a b ab c ++=,且ABC ∆,则ab 最小值为_______.。
2010-2019学年高考新课标全国I卷数学(文)真题分类汇编专题11 数列(2)(原卷版)

专题11:数列(2)
数列大题:10年8考,若解答题考数列大题,则解三角形题一般考一道小题,若解答题考解三角形大题,则数列一般考两道小题.数列一般考查通项、求和.数列应用题已经多年不考了,总体来说数列的地位已经降低,题目难度小.
1.(2019年)记S n 为等差数列{a n }的前n 项和.已知S 9=﹣a 5.
(1)若a 3=4,求{a n }的通项公式;
(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.
(1)求b 1,b 2,b 3;
(2)判断数列{b n }是否为等比数列,并说明理由;
(3)求{a n }的通项公式.
3.(2017年)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.
(1)求{a n }的通项公式;
(2)求S n ,并判断S n +1,S n ,
S n +2是否成等差数列.
(1)求{a n }的通项公式;
(2)求{b n }的前n 项和.
5.(2014年)已知{a n }是递增的等差数列,a
2,a 4是方程x 2﹣5x +6=0的根.
(1)求{a n }的通项公式;
6.(2013年)已知等差数列{a n }的前
n 项和S n 满足S 3=0,S 5=﹣5.
(1)求{a n }的通项公式;
(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.
8.(2010年)设等差数列{a n}满足a3=5,a10=﹣9.(1)求{a n}的通项公式;
(2)求{a n}的前n项和S n及使得S n最大的序号n的值.。
十年真题(2010-2019)高考数学(理)分类汇编专题08 不等式(新课标Ⅰ卷)(原卷版)

专题08不等式历年考题细目表题型年份考点试题位置单选题2014 线性规划2014年新课标1理科09填空题2018 线性规划2018年新课标1理科13填空题2017 线性规划2017年新课标1理科14填空题2016 线性规划2016年新课标1理科16填空题2015 线性规划2015年新课标1理科15填空题2012 线性规划2012年新课标1理科14填空题2011 线性规划2011年新课标1理科13历年高考真题汇编1.【2014年新课标1理科09】不等式组的解集记为D,有下列四个命题:p1:∀(,y)∈D,+2y≥﹣2 p2:∃(,y)∈D,+2y≥2p3:∀(,y)∈D,+2y≤3p4:∃(,y)∈D,+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p32.【2018年新课标1理科13】若,y满足约束条件,则=3+2y的最大值为.3.【2017年新课标1理科14】设,y满足约束条件,则=3﹣2y的最小值为.4.【2016年新课标1理科16】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5g ,乙材料1g ,用5个工时;生产一件产品B 需要甲材料0.5g ,乙材料0.3g ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150g ,乙材料90g ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 216000 元. 5.【2015年新课标1理科15】若,y 满足约束条件.则的最大值为 .6.【2012年新课标1理科14】设,y 满足约束条件:;则=﹣2y 的取值范围为 .7.【2011年新课标1理科13】若变量,y 满足约束条件,则=+2y 的最小值为 .考题分析与复习建议本专题考查的知识点为:不等关系与不等式,一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等.历年考题主要以选择填空题型出现,重点考查的知识点为:一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等,预测明年本考点题目会比较稳定,备考方向以知识点一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等为重点较佳.最新高考模拟试题1.已知11x y -≤+≤,13x y ≤-≤,则182yx⎛⎫⋅ ⎪⎝⎭的取值范围是( )A .82,2⎡⎤⎣⎦B .81,22⎡⎤⎢⎥⎣⎦C .72,2⎡⎤⎣⎦D .71,22⎡⎤⎢⎥⎣⎦2.已知点()2,1A ,动点(),B x y 的坐标满足不等式组2023603260x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,设为向量OB uuu v 在向量OA u u u v 方向上的投影,则的取值范围为( )A.⎣⎦ B.⎣⎦ C .[]2,18D .[]4,183.已知实数x ,y ,满足约束条件13260x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,若2z x y =-+的最大值为( )A .-6B .-4C .2D .34.若直线()1y k x =+与不等式组243322y x x y x y -≤⎧⎪-≤⎨⎪+≥⎩表示的平面区域有公共点,则实数k 的取值范围是( )A .(],1-∞B .[]0,2C .[]2,1-D .(]2,2-5.已知,x y 满足约束条件20,20,20,x y x y -≤⎧⎪-≤⎨⎪+-≥⎩,则2z x y =+ 的最大值与最小值之和为( )A .4B .6C .8D .106.设0.231log 0.6,log 20.6m n ==,则( ) A .m n mn m n ->>+ B .m n m n mn ->+> C .mn m n m n >->+D .m n m n mn +>->7.若x ,y 满足约束条件42y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值是( )A .8B .4C .2D .68.“2a =”是“0x ∀>,1x a x+≥成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.已知函数()ln(1)f x x =-,若f (a )=f (b ),则a+2b 的取值范围为( ) A .(4,+∞)B.[3)++∞C .[6,+∞)D.(4,3+10.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m 、a n ,使得a m a n =16a 12,则1m +9n的最小值为( )A .32B .83C .114D .不存在11.若正数,m n 满足21m n +=,则11m n+的最小值为( ) A .322+ B .32+C .222+D .312.若实数满足,则的最大值是( )A .-4B .-2C .2D .4 13.已知,则取到最小值时( ) A .B .C .D . 14.已知函数,若,则的最小值为( )A .B .C .D .15.在平面直角坐标系中,分别是轴正半轴和图像上的两个动点,且,则的最大值是A .B .C .4D .16.定义:区间的长度均为,若不等式的解集是互不相交区间的并集,设该不等式的解集中所有区间的长度之和为,则( )A .当时,B .当时,C .当时,D .当时,17.关于的不等式的解集为,则的取值范围为 ( )A .B .C .D .18.若关于的不等式上恒成立,则实数a 的取值范围是A .B .C .D .19.已知函数的导函数为的解集为,若的极小值等于-98,则a 的值是( ) A .- B . C .2 D .520.在R 上定义运算⊗:(1)x y x y ⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 恒成立,则实数a 的取值范围为( ) A .11a -<<B .1322a -<< C .3122a -<< D .02a <<21.在ABC ∆中,,,a b c 分别为角,,A B C 所对边的长,S 为ABC ∆的面积.若不等式22233kS b c a ≤+-恒成立,则实数k 的最大值为______.22.已知实数,x y 满足约束条件2020x y x y x a +-≥⎧⎪-+≥⎨⎪≤⎩,若2(0)z ax y a =->的最大值为1-,则实数a 的值是______23.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.24.若x ,y 均为正实数,则221(2)x y x y+++的最小值为_______.25.点(),M x y 在曲线C :224210x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若,a b R +∈,则111a b++的最小值为_____. 26.已知实数,x y 满足约束条件222020x x y x y ≤⎧⎪-+≥⎨⎪++≥⎩,则3xz y =-+的最大值为_____27.已知实数x ,y 满足342y x x y x ≥⎧⎪+≤⎨⎪≥⎩,则3z x y =+的最大值是__________.28.设x ,y 满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b =+>>的值是最大值为12,则23a b+的最小值为______.29.若,x y 满足约束条件40,20,20,x y x x y -+≤⎧⎪-≤⎨⎪+-≥⎩则2z x y =+的最小值为__________.30.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若222a b ab c ++=,且ABC ∆,则ab 最小值为_______.。
2010-2019学年高考新课标全国I卷数学(文)真题分类汇编专题05 三角函数(原卷版)

专题5:三角函数三角函数:10年26考,每年至少1题,有时2题或3题,当考2题或3题时,就不再考三角大题了.题目难度较小,主要考查公式熟练运用,平移、图象与性质、化简求值、解三角形等问题(含应用题),基本属于“送分题”.小心平移(重点+难点+几乎年年考).2013年16题对化简要求较高,难度较大.考三角函数小题时,一般是一个考查三角恒等变换或三角函数的图象与性质,另一个考查解三角形.1.(2019年)tan255°=( )A .﹣2B .﹣C .2D .2.(2019年)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A ﹣b sin B =4c sin C ,cos A =14-,则b c=( ) A .6 B .5 C .4 D .33.(2019年)函数f (x )=sin (2x +32π)﹣3cos x 的最小值为 . 4.(2018年)已知函数f (x )=2cos 2x ﹣sin 2x +2,则( )A .f (x )的最小正周期为π,最大值为3B .f (x )的最小正周期为π,最大值为4C .f (x )的最小正周期为2π,最大值为3D .f (x )的最小正周期为2π,最大值为45.(2018年)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos2α=23,则|a ﹣b |=( )A .15BCD .16.(2018年)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin C +c sin B =4a sin B sin C ,b 2+c 2﹣a 2=8,则△ABC 的面积为 .7.(2017年)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin B +sin A (sin C ﹣cos C )=0,a =2,c,则C =( )A .12πB .6π C .4π D .3π 8.(2017年)已知α∈(0,2π),tanα=2,则cos (α﹣4π)= .9.(2016年)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a c =2,cos A =23,则b =( )A .2B .3C .2D .310.(2016年)将函数y =2sin (2x +6π)的图象向右平移14个周期后,所得图象对应的函数为( ) A .y =2sin (2x +4π) B .y =2sin (2x +3π) C .y =2sin (2x ﹣4π) D .y =2sin (2x ﹣3π) 11.(2016年)已知θ是第四象限角,且sin (θ+4π)=35,则tan (θ﹣4π)= . 12.(2015年)函数f (x )=cos (ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A .(k π﹣14,k π+34),k ∈Z B .(2k π﹣14,2k π+34),k ∈Z C .(k ﹣14,k +34),k ∈Z D .(2k ﹣14,2k +34),k ∈Z 13.(2015年)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a 2,求△ABC 的面积.14.(2014年)若tanα>0,则( )A .sinα>0B .cosα>0C .sin2α>0D .cos2α>015.(2014年)在函数①y =cos|2x |,②y =|cos x |,③y =cos (2x +6π),④y =tan (2x ﹣4π)中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③16.(2014年)如图,为测量山高MN ,选择A 和另一座的山顶C 为测量观测点,从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°,已知山高BC =100m ,则山高MN = m .17.(2013年)函数f (x )=(1﹣cos x )sin x 在[﹣π,π]的图象大致为( )A .B .C .D .18.(2013年)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A +cos2A =0,a =7,c =6,则b =( )A .10B .9C .8D .519.(2013年)设当x =θ时,函数f (x )=sin x ﹣2cos x 取得最大值,则cosθ= .20.(2012年)已知ω>0,0<φ<π,直线x =4π和x =54π是函数f (x )=sin (ωx +φ)图象的两条相邻的对称轴,则φ=( )A .4πB .3πC .2πD .34π 21.(2012年)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c 3a sin C ﹣c cos A .(1)求A ;(2)若a =2,△ABC 3,求b ,c .22.(2011年)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .45-B .35-C .35D .4523.(2011年)设函数,则f (x )=sin (2x +4π)+cos (2x +4π),则( )A .y =f (x )在(0,2π)单调递增,其图象关于直线x =4π对称 B .y =f (x )在(0,2π)单调递增,其图象关于直线x =2π对称 C .y =f (x )在(0,2π)单调递减,其图象关于直线x =4π对称D .y =f (x )在(0,2π)单调递减,其图象关于直线x =2π对称 24.(2011年)△ABC 中,∠B =120°,AC =7,AB =5,则△ABC 的面积为 .25.(2010年)若cos α=45-,α是第三象限的角,则sin (α+4π)=( )A .10-B .10C .10-D .1026.(2010年)在△ABC 中,D 为BC 边上一点,BC =3BD ,AD ,∠ADB =135°.若AC AB ,则BD = .。
专题16函数与导数(2)-2010-2019学年高考新课标全国I卷数学(文)真题分类汇编(Word版含解析)

专题16 函数与导数(2)函数与导数大题:10年10考,每年1题.函数的载体上:对数函数很受“器重”,指数函数也较多出现,两种函数也会同时出现(2015年).第2小题:2019年不等式恒成立问题,2018年证明不等式,2017年不等式恒成立问题,2016年函数的零点问题,2015年证明不等式,2014年不等式有解问题(存在性),2013年单调性与极值,2012年不等式恒成立问题,2011年证明不等式,2010年不等式恒成立问题. 1.(2019年)已知函数f (x )=2sin x ﹣x cos x ﹣x , f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.【解析】(1)∵f (x )=2sin x ﹣x cos x ﹣x ,∴f ′(x )=2cos x ﹣cos x +x sin x ﹣1=cos x +x sin x ﹣1, 令g (x )=cos x +x sin x ﹣1,则g ′(x )=﹣sin x +sin x +x cos x =x cos x ,当x ∈(0,2π)时,x cos x >0,当x ∈(2π,π)时,x cos x <0, ∴当x =2π时,极大值为g (2π)=12π->0,又g (0)=0,g (π)=﹣2, ∴g (x )在(0,π)上有唯一零点, 即f ′(x )在(0,π)上有唯一零点;(2)由(1)知,f ′(x )在(0,π)上有唯一零点x 0,使得f ′(x 0)=0, 且f ′(x )在(0,x 0)为正,在(x 0,π)为负, ∴f (x )在[0,x 0]递增,在[x 0,π]递减,结合f (0)=0,f (π)=0,可知f (x )在[0,π]上非负, 令h (x )=ax , 作出图象,如图所示:∵f (x )≥h (x ), ∴a ≤0,∴a 的取值范围是(﹣∞,0].2.(2018年)已知函数f (x )=ae x ﹣lnx ﹣1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间; (2)证明:当a ≥1e时,f (x )≥0. 【解析】(1)∵函数f (x )=ae x ﹣lnx ﹣1. ∴x >0,f ′(x )=ae x ﹣1x, ∵x =2是f (x )的极值点,∴f ′(2)=ae 2﹣12=0,解得a =212e , ∴f (x )=212e e x ﹣lnx ﹣1,∴f ′(x )=2112x e e x-,当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0, ∴f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)证明:当a ≥1e 时,f (x )≥x e e ﹣lnx ﹣1,设g (x )=x e e ﹣lnx ﹣1,则()1x e g x e x '=-, 由()1x e g x e x'=-=0,得x =1, 当0<x <1时,g ′(x )<0, 当x >1时,g ′(x )>0, ∴x =1是g (x )的最小值点, 故当x >0时,g (x )≥g (1)=0, ∴当a ≥1e时,f (x )≥0. 3.(2017年)已知函数f (x )=e x (e x ﹣a )﹣a 2x . (1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.【解析】(1)f (x )=e x (e x ﹣a )﹣a 2x =e 2x ﹣e x a ﹣a 2x , ∴f ′(x )=2e 2x ﹣ae x ﹣a 2=(2e x +a )(e x ﹣a ), ①当a =0时,f ′(x )>0恒成立, ∴f (x )在R 上单调递增,②当a >0时,2e x +a >0,令f ′(x )=0,解得x =lna , 当x <lna 时,f ′(x )<0,函数f (x )单调递减, 当x >lna 时,f ′(x )>0,函数f (x )单调递增, ③当a <0时,e x ﹣a >0,令f ′(x )=0,解得x =ln (﹣2a), 当x <ln (﹣2a)时,f ′(x )<0,函数f (x )单调递减, 当x >ln (﹣2a)时,f ′(x )>0,函数f (x )单调递增,综上所述,当a =0时,f (x )在R 上单调递增,当a >0时,f (x )在(﹣∞,lna )上单调递减,在(lna ,+∞)上单调递增, 当a <0时,f (x )在(﹣∞,ln (﹣2a ))上单调递减,在(ln (﹣2a ),+∞)上单调递增. (2)①当a =0时,f (x )=e 2x >0恒成立,②当a >0时,由(1)可得f (x )min =f (lna )=﹣a 2lna ≥0, ∴lna ≤0,∴0<a ≤1, ③当a <0时,由(1)可得:f (x )min =f (ln (﹣2a ))=234a ﹣a 2ln (﹣2a)≥0,∴ln (﹣2a )≤34, ∴342e -≤a <0,综上所述,a 的取值范围为[342e -,1].4.(2016年)已知函数f (x )=(x ﹣2)e x +a (x ﹣1)2. (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 【解析】(1)由f (x )=(x ﹣2)e x +a (x ﹣1)2, 可得f ′(x )=(x ﹣1)e x +2a (x ﹣1)=(x ﹣1)(e x +2a ),①当a ≥0时,由f ′(x )>0,可得x >1;由f ′(x )<0,可得x <1, 即有f (x )在(﹣∞,1)递减;在(1,+∞)递增(如图);②当a <0时,(如图)若a =﹣2e,则f ′(x )≥0恒成立,即有f (x )在R 上递增; 若a <﹣2e时,由f ′(x )>0,可得x <1或x >ln (﹣2a ); 由f ′(x )<0,可得1<x <ln (﹣2a ).即有f (x )在(﹣∞,1),(ln (﹣2a ),+∞)递增;在(1,ln (﹣2a ))递减; 若﹣2e<a <0,由f ′(x )>0,可得x <ln (﹣2a )或x >1; 由f ′(x )<0,可得ln (﹣2a )<x <1.即有f (x )在(﹣∞,ln (﹣2a )),(1,+∞)递增;在(ln (﹣2a ),1)递减;(2)①由(1)可得当a >0时,f (x )在(﹣∞,1)递减;在(1,+∞)递增, 且f (1)=﹣e <0,x →+∞,f (x )→+∞;当x →﹣∞时f (x )>0或找到一个x <1使得f (x )>0对于a >0恒成立,f (x )有两个零点; ②当a =0时,f (x )=(x ﹣2)e x ,所以f (x )只有一个零点x =2; ③当a <0时,若a <﹣2e时,f (x )在(1,ln (﹣2a ))递减,在(﹣∞,1),(ln (﹣2a ),+∞)递增, 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点; 当a ≥﹣2e时,在(﹣∞,ln (﹣2a ))单调增,在(1,+∞)单调增,在(1n (﹣2a ),1)单调减, 只有f (ln (﹣2a ))等于0才有两个零点,而当x ≤1时,f (x )<0,所以只有一个零点不符题意. 综上可得,f (x )有两个零点时,a 的取值范围为(0,+∞). 5.(2015年)设函数f (x )=e 2x ﹣alnx . (1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +aln2a. 【解析】(1)f (x )=e 2x ﹣alnx 的定义域为(0,+∞), ∴f ′(x )=2e 2x ﹣ax. 当a ≤0时,f ′(x )>0恒成立,故f ′(x )没有零点, 当a >0时,∵y =e 2x 为单调递增,y =﹣单调递增, ∴f ′(x )在(0,+∞)单调递增, 又f ′(a )>0,假设存在b 满足0<b <ln2a 时,且b <14,f ′(b )<0, 故当a >0时,导函数f ′(x )存在唯一的零点,(2)由(1)知,可设导函数f ′(x )在(0,+∞)上的唯一零点为x 0, 当x ∈(0,x 0)时,f ′(x )<0, 当x ∈(x 0+∞)时,f ′(x )>0,故f (x )在(0,x 0)单调递减,在(x 0+∞)单调递增, 所欲当x =x 0时,f (x )取得最小值,最小值为f (x 0), 由于022x e﹣ax =0,所以f (x 0)=02a x +2ax 0+aln 2a ≥2a +aln 2a. 故当a >0时,f (x )≥2a +aln2a. 6.(2014年)设函数f (x )=alnx +12a -x 2﹣bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0, (1)求b ;(2)若存在x 0≥1,使得f (x 0)<1aa -,求a 的取值范围. 【解析】(1)f ′(x )=()1aa xb x+--(x >0), ∵曲线y =f (x )在点(1,f (1))处的切线斜率为0, ∴f ′(1)=a +(1﹣a )×1﹣b =0,解得b =1.(2)函数f (x )的定义域为(0,+∞),由(1)可知:f (x )=alnx +212a x x --, ∴()()11af x a x x'=+--=()111a a x x x a -⎛⎫-- ⎪-⎝⎭. ①当a 12≤时,则11aa≤-, 则当x >1时,f ′(x )>0,∴函数f (x )在(1,+∞)单调递增, ∴存在x 0≥1,使得f (x 0)<1a a -的充要条件是()11a f a <-,即1121a aa --<-,解得11a <<;②当12<a <1时,则11aa>-, 则当x ∈(1,1a a -)时,f ′(x )<0,函数f (x )在(1,1aa -)上单调递减;当x ∈(1a a -,+∞)时,f ′(x )>0,函数f (x )在(1aa-,+∞)上单调递增.∴存在x 0≥1,使得f (x 0)<1aa -的充要条件是11a a f a a ⎛⎫< ⎪--⎝⎭, 而()2ln 112111a a a a a f a a a a a a ⎛⎫=++> ⎪-----⎝⎭,不符合题意,应舍去. ③若a >1时,f (1)=111221a a aa ----=<-,成立.综上可得:a的取值范围是(11)U(1,+∞).7.(2013年)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.【解析】(1)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4,∴f(0)=4,f′(0)=4,∴b=4,a+b=8,∴a=4,b=4.(2)由(1)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x﹣12),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0.∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2),当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).8.(2012年)设函数f(x)=e x﹣ax﹣2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.【解析】(1)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(2)由于a=1,所以,(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1,故当x>0时,(x﹣k)f′(x)+x+1>0等价于k<11xxxe++-(x>0)①,令g(x)=11xxxe++-,则g′(x)=()()()2221111x xxx xe e xxee e----+=--,由(1)知,当a =1时,函数h (x )=e x ﹣x ﹣2在(0,+∞)上单调递增, 而h (1)<0,h (2)>0,所以h (x )=e x ﹣x ﹣2在(0,+∞)上存在唯一的零点,故g ′(x )在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2) 当x ∈(0,α)时,g ′(x )<0;当x ∈(α,+∞)时,g ′(x )>0; 所以g (x )在(0,+∞)上的最小值为g (α).又由g ′(α)=0,可得e α=α+2所以g (α)=α+1∈(2,3) 由于①式等价于k <g (α),故整数k 的最大值为2. 9.(2011年)已知函数f (x )=ln 1a x x ++bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y ﹣3=0. (1)求a 、b 的值;(2)证明:当x >0,且x ≠1时,f (x )>ln 1xx -. 【解析】(1)()()221ln 1x a x b x f x x x +⎛⎫- ⎪⎝⎭'=-+.由于直线x +2y ﹣3=0的斜率为12-,且过点(1,1), 所以1122b a b =⎧⎪⎨-=-⎪⎩,解得a =1,b =1. (2)由(1)知f (x )=ln 11x x x++, 所以()22ln 112ln 11x x f x x x x x ⎛⎫--=- ⎪--⎝⎭, 考虑函数()212ln x h x x x-=-(0x >),则()()()222222112x x x h x x x x---'=-=-, 所以当x ≠1时,h ′(x )<0而h (1)=0, 当x ∈(0,1)时,h (x )>0,可得()2101h x x >-;当()1,x ∈+∞时,()0h x <,可得()2101h x x >-. 从而当x >0且x ≠1时,()ln 01x f x x ->-,即f (x )>ln 1xx -. 10.(2010年)设函数f (x )=x (e x ﹣1)﹣ax 2. (1)若a =12,求f (x )的单调区间; (2)若当x ≥0时f (x )≥0,求a 的取值范围. 【解析】(1)a =12时,f (x )=x (e x ﹣1)﹣12x 2, ∴()1x x f x e xe x '=-+-=(e x ﹣1)(x +1),令f ′(x )>0,可得x <﹣1或x >0;令f ′(x )<0,可得﹣1<x <0.∴函数()f x 的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0). (2)f (x )=x (e x ﹣1﹣ax ).令g (x )=e x ﹣1﹣ax ,则g '(x )=e x ﹣a .若a ≤1,则当x ∈(0,+∞)时,g '(x )>0,g (x )为增函数, 而g (0)=0,从而当x ≥0时g (x )≥0,即f (x )≥0.若a >1,则当x ∈(0,lna )时,g '(x )<0,g (x )为减函数, 而g (0)=0,从而当x ∈(0,lna )时,g (x )<0,即f (x )<0. 综合得a 的取值范围为(﹣∞,1].。
十年真题(2010-2019)高考数学(理)分类汇编专题08 不等式(新课标Ⅰ卷)(原卷版)

专题08不等式历年考题细目表题型年份考点试题位置单选题2014 线性规划2014年新课标1理科09填空题2018 线性规划2018年新课标1理科13填空题2017 线性规划2017年新课标1理科14填空题2016 线性规划2016年新课标1理科16填空题2015 线性规划2015年新课标1理科15填空题2012 线性规划2012年新课标1理科14填空题2011 线性规划2011年新课标1理科13历年高考真题汇编1.【2014年新课标1理科09】不等式组的解集记为D,有下列四个命题:p1:∀(,y)∈D,+2y≥﹣2 p2:∃(,y)∈D,+2y≥2p3:∀(,y)∈D,+2y≤3p4:∃(,y)∈D,+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p32.【2018年新课标1理科13】若,y满足约束条件,则=3+2y的最大值为.3.【2017年新课标1理科14】设,y满足约束条件,则=3﹣2y的最小值为.4.【2016年新课标1理科16】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5g ,乙材料1g ,用5个工时;生产一件产品B 需要甲材料0.5g ,乙材料0.3g ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150g ,乙材料90g ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 216000 元. 5.【2015年新课标1理科15】若,y 满足约束条件.则的最大值为 .6.【2012年新课标1理科14】设,y 满足约束条件:;则=﹣2y 的取值范围为 .7.【2011年新课标1理科13】若变量,y 满足约束条件,则=+2y 的最小值为 .考题分析与复习建议本专题考查的知识点为:不等关系与不等式,一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等.历年考题主要以选择填空题型出现,重点考查的知识点为:一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等,预测明年本考点题目会比较稳定,备考方向以知识点一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等为重点较佳.最新高考模拟试题1.已知11x y -≤+≤,13x y ≤-≤,则182yx⎛⎫⋅ ⎪⎝⎭的取值范围是( )A .82,2⎡⎤⎣⎦B .81,22⎡⎤⎢⎥⎣⎦C .72,2⎡⎤⎣⎦D .71,22⎡⎤⎢⎥⎣⎦2.已知点()2,1A ,动点(),B x y 的坐标满足不等式组2023603260x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,设为向量OB uuu v 在向量OA u u u v 方向上的投影,则的取值范围为( )A.⎣⎦ B.⎣⎦ C .[]2,18D .[]4,183.已知实数x ,y ,满足约束条件13260x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,若2z x y =-+的最大值为( )A .-6B .-4C .2D .34.若直线()1y k x =+与不等式组243322y x x y x y -≤⎧⎪-≤⎨⎪+≥⎩表示的平面区域有公共点,则实数k 的取值范围是( )A .(],1-∞B .[]0,2C .[]2,1-D .(]2,2-5.已知,x y 满足约束条件20,20,20,x y x y -≤⎧⎪-≤⎨⎪+-≥⎩,则2z x y =+ 的最大值与最小值之和为( )A .4B .6C .8D .106.设0.231log 0.6,log 20.6m n ==,则( ) A .m n mn m n ->>+ B .m n m n mn ->+> C .mn m n m n >->+D .m n m n mn +>->7.若x ,y 满足约束条件42y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值是( )A .8B .4C .2D .68.“2a =”是“0x ∀>,1x a x+≥成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.已知函数()ln(1)f x x =-,若f (a )=f (b ),则a+2b 的取值范围为( ) A .(4,+∞)B.[3)++∞C .[6,+∞)D.(4,3+10.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m 、a n ,使得a m a n =16a 12,则1m +9n的最小值为( )A .32B .83C .114D .不存在11.若正数,m n 满足21m n +=,则11m n+的最小值为( ) A .322+ B .32+C .222+D .312.若实数满足,则的最大值是( )A .-4B .-2C .2D .4 13.已知,则取到最小值时( ) A .B .C .D . 14.已知函数,若,则的最小值为( )A .B .C .D .15.在平面直角坐标系中,分别是轴正半轴和图像上的两个动点,且,则的最大值是A .B .C .4D .16.定义:区间的长度均为,若不等式的解集是互不相交区间的并集,设该不等式的解集中所有区间的长度之和为,则( )A .当时,B .当时,C .当时,D .当时,17.关于的不等式的解集为,则的取值范围为 ( )A .B .C .D .18.若关于的不等式上恒成立,则实数a 的取值范围是A .B .C .D .19.已知函数的导函数为的解集为,若的极小值等于-98,则a 的值是( ) A .- B . C .2 D .520.在R 上定义运算⊗:(1)x y x y ⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 恒成立,则实数a 的取值范围为( ) A .11a -<<B .1322a -<< C .3122a -<< D .02a <<21.在ABC ∆中,,,a b c 分别为角,,A B C 所对边的长,S 为ABC ∆的面积.若不等式22233kS b c a ≤+-恒成立,则实数k 的最大值为______.22.已知实数,x y 满足约束条件2020x y x y x a +-≥⎧⎪-+≥⎨⎪≤⎩,若2(0)z ax y a =->的最大值为1-,则实数a 的值是______23.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.24.若x ,y 均为正实数,则221(2)x y x y+++的最小值为_______.25.点(),M x y 在曲线C :224210x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若,a b R +∈,则111a b++的最小值为_____. 26.已知实数,x y 满足约束条件222020x x y x y ≤⎧⎪-+≥⎨⎪++≥⎩,则3xz y =-+的最大值为_____27.已知实数x ,y 满足342y x x y x ≥⎧⎪+≤⎨⎪≥⎩,则3z x y =+的最大值是__________.28.设x ,y 满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b =+>>的值是最大值为12,则23a b+的最小值为______.29.若,x y 满足约束条件40,20,20,x y x x y -+≤⎧⎪-≤⎨⎪+-≥⎩则2z x y =+的最小值为__________.30.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若222a b ab c ++=,且ABC ∆,则ab 最小值为_______.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品资源·备战高考
高频必考·战胜高考
专题8:概率与统计(1)
概率与统计小题:概率小题10年7考,2012年、2018年和2019年没考小题,但是在大题中考了.统计小
题10年4考,2012年考了一个相关系数概念,2017年则涉及多个特征数的意义,2018年考扇形图,2019
年考系统抽样.
1.(2019年)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用
系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )
A.8号学生 B.200号学生
C.616号学生 D.815号学生
2.(2018年)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地
区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
则下面结论中不正确的是( )
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
3.(2017年)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别
是x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )
A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差
C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数
4.(2017年)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部
分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )
精品资源·备战高考
高频必考·战胜高考
A.14 B.8 C.12 D.4
5.(2016年)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花
种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )
A.13 B.12 C.23 D.56
6.(2015年)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,
3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
A.310 B.15 C.110 D.120
7.(2014年)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率
为 .
8.(2013年)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )
A.12 B.13 C.14 D.16
9.(2012年)在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点
图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=12x+1上,则这组样本数据的样本相关系数
为( )
A.﹣1 B.0 C.12 D.1
10.(2011年)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性
相同,则这两位同学参加同一个兴趣小组的概率为( )
A.13 B.12 C.23 D.34
11.(2010年)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以
用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N
个),区间(0,1]上的均匀随机数x1,x2,…,xn和y1,y2,…,yn,由此得到N个点(x,y)(i﹣1,2…,
N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为 .