油色谱分析仪绝缘油分析过程

合集下载

绝缘油试验方法及结果分析

绝缘油试验方法及结果分析
一、变压器油的基本特性
变压器油要充分发挥它在设备中绝缘、散热冷却、 灭弧等多方面的功能作用,必须具备良好的物理特性、 化学特性以及电气特性。
1. 物理特性—外观颜色、密度、运动粘度、凝固点(倾点 )、(闭口)闪点、界面张力、苯胺点
2. 化学特性—成分组成特性(碳型结构—属什么油基)、 水溶性酸(pH值)、酸值、水分、含气量、氧化安定 性、腐蚀性硫、颗粒度
2 所需设备及材料
钝化剂添加系统(含200kg油桶、磁力泵、三通阀、放气 阀、连接油管)
清洁用抹布、吸油纸足量 防雨用塑料薄膜足量 密封胶 扳手等紧固用工具 220V交流电源(须变电站提供并接至施工现场) 钝化剂适量
3. 管道连接示意图
4. 添加钝化剂操作步骤
退出变压器重瓦斯跳闸保护(带电添加时)。
500kV增城变电 500kV#2主变(B相) 500 站
500kV罗洞变电 #2主变压器A相 500 站
SUB-MRG SUB-MRT
1991-1-1 1991-1-1
1992-07-21
日本三菱 MISOBISHI
1993-5-7 三菱MITSUBISHI
229.0 227.4
500kV增城变电 500kV#2主变(C相) 500 站
称量钝化剂 按照添加量为100mg/kg进行计算,即将钝化剂按每10吨添 加1kg的比例计算出需求量并取整至尾数为5或0。例如: 主变铭牌标称油重60吨,则应使用的钝化剂为6kg。
连接管道及电源 根据管道连接图要求,连接好阀门及管道,并确保各个阀门均
处于关闭状态。将油泵电源接好,此时油泵应为关闭状态 。
0 0
0
油源
日本三菱油 尼纳斯油 壳牌油
克拉玛依油 兰炼油 来源不清

变压器油化验标准

变压器油化验标准

变压器油化验标准变压器油是变压器中的重要冷却介质和绝缘介质,常规的油化验可对变压器油的使用情况进行判断和评估,帮助提前发现变压器故障,保证变压器安全稳定运行。

本文将从变压器油化验的方法、常见的油化验指标和对油化验结果的判断等方面展开讨论,以期给读者提供参考。

一、变压器油化验的方法变压器油化验是通过对油中的各种化学成分的定量分析来判断油的质量和使用状况。

常规的变压器油化验方法主要有以下几种:色谱法分析、物理性质测试、电化学测试和光谱分析法等。

下面简单介绍一下这几种方法的原理和操作流程。

1.色谱法分析色谱法是一种分析技术,能够将混合物中的各种成分分离出来,并按照它们的相对含量进行定量。

在变压器油化验中,色谱法可以对油中的杂质、溶解气体、沥青质、氧化产物、硫化产物和有机酸等进行分析,并定量计算出它们的含量和种类。

色谱法分析的操作流程如下:(1)样品处理:将待分析的变压器油样品取出一定量,经过预处理后再进行色谱分析。

(2)分离:将样品注入色谱仪装置中进行分离,以得到各个化学成分的峰形。

(3)检测:在分离出来的化学成分下面安装检测器进行检测,计算各个成分的相对含量。

2.物理性质测试在变压器油化验中,物理性质测试是一种简单的方法,可以通过测试油的密度、黏度和闪点等物理性质来评估油的质量和使用状况。

其中,油的密度和黏度可以反映出油的粘度和流动性,闪点则是油中挥发性成分的度量。

物理性质测试的操作流程如下:(1)密度测试:用密度计或密度比重计测定油的密度。

(2)黏度测试:用黏度计或运动黏度计测定油的黏度。

(3)闪点测试:用闪点仪测试油的闪点,反映出油中挥发性成分的度量。

3.电化学测试电化学测试是一种测试变压器油的酸值、铜腐蚀度、水分含量等指标的方法。

通过电化学测试,可以了解油中水分、氧化酸、杂质和铜腐蚀等情况。

电化学测试的操作流程如下:(1)酸值测试:按照ASTM D974等标准进行测试,测定油的酸值。

(2)铜腐蚀度测试:按照ASTM D130等标准进行测试,测定油的铜腐蚀度。

变压器油气相色谱分析

变压器油气相色谱分析

变压器油气相色谱分析一、基本原理正常情况下充油电气设备内的绝缘油及有机绝缘材料,在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类及二氧化碳、一氧化碳等。

这些气体大部分溶解在油中。

当存在潜伏性过热或放电故障时,就会加快这些气体的产生速度。

随着故障发展,分解出的气体形成的气泡在油里经对流、扩散,不断溶解在油中。

例如在变压器里,当产气量大于溶解量时,变有一部分气体进入气体继电器。

故障气体的组成和含量与故障的类型和故障的严重程度有密切关系。

因此,在设备运行过程中定期分析溶解与由衷的气体就能尽早发现设备内部存在的潜伏性故障并随时掌握故障的发展情况。

当变压器的气体继电器内出现气体时,分析其中的气体,同样有助于对设备的情况做出判断。

二、用气相色谱仪进行气体分析的对象氢(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)、氧(O2)、氮(N2)九种气体作为分析对象。

三、试验结果的判断1、变压器等充油电气中绝缘材料主要是绝缘油和绝缘纸。

设备在故障下产生的气体主要也是来源于油和纸的热裂解。

2、变压器内产生的气体:变压器内的油纸绝缘材料会在电和热的作用下分解,产生各种气体。

其中对判断故障有价值的气体有甲烷、乙烷、乙烯、乙炔、氢、一氧化碳、二氧化碳。

在正常运行温度下油和固体绝缘正常老化过程中,产生的气体主要是一氧化碳和二氧化碳。

在油纸绝缘中存在局部放电时,油裂解产生的气体主要是氢和甲烷。

在故障温度高于正常运行温度不多时,油裂解的产物主要是甲烷。

随着故障温度的升高,乙烯和乙烷的产生逐渐成为主要特征。

在温度高于1000℃时,例如在电弧弧道温度(3000℃)的作用下,油分解产物中含有较多的乙炔。

如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳和二氧化碳。

有时变压器内并不存在故障,而由于其它原因,在油中也会出现上述气体,要注意这些可能引起误判断的气体来源。

电力变压器的油色谱分析

电力变压器的油色谱分析

电力变压器的油色谱分析目前,在变压器的故障诊断中,单靠电气试验的方法往往很难发现某些局部故障和发热缺陷,而通过变压器中气体的油中色谱分析这种化学检测的方法,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常灵敏而有效,这已为大量故障诊断的实践所证明。

油色谱分析的原理是基于任何一种特定的烃类气体的产生速率随温度的变化,在特定温度下,往往有某一种气体的产气率会出现最大值;随着温度的升高,产气率最大的气体依次为CH4、C2H6、C2H4、C2H2。

这也证明在故障温度与溶解气体含量之间存在着对应的关系。

而局部过热、电晕和电弧是导致油浸纸绝缘中产生故障特征气体的主要原因。

变压器在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,并分解出极少量的气体(主要包括氢H2、甲烷CH4、乙烷C2H6、乙烯C2H4、乙炔C2H2、一氧化碳CO、二氧化碳CO2等多种气体)。

当变压器内部发生过热性故障、放电性故障或内部绝缘受潮时,这些气体的含量会逐渐增加。

对应这些故障所增加含量的气体成分见表5-9。

表5-9 不同绝缘故障气体成分的变化(1)分析气体产生的原因及变化。

(2)判断有无故障及故障类型。

如过热、电弧放电、火花放电和局部放电等。

(3)判断故障的状况。

如热点温度、故障回路严重程度及发展趋势等。

(4)提出相应的处理措施。

如能否继续进行,以及运行期间的技术安全措施和监视手段,或是否需要吊心检修等。

若需加强监视,则应缩短下次试验的周期。

这些气体大部分溶解在绝缘油中,少部分上升至绝缘油表面,并进入气体继电器。

经验表明,油中气体的各种成分含量的多少和故障的性质及程度直接有关。

因此在设备运行过程中,定期测量溶解于油中的气体成分和含量,对于及早发现充油电力设备内部存在的潜伏性有非常重要的意义和现实成效,在1997年颁布执行的电力设备预防性试验规程中,已将变压器油的气体色谱分析放到了首要位置,并通过近些年来的普遍推广应用和经验积累取得了显著的成效。

绝缘油溶解气体组分含量的气相色谱测定法

绝缘油溶解气体组分含量的气相色谱测定法

一.绝缘油溶解气体组分含量的气相色谱测定法1 适用范围本标准规定了用气相色谱法测定充油电气设备内绝缘油中的溶解气体组分(包括氢、甲烷、乙烷、乙烯、乙炔、一氧化碳、二氧化碳、氧及氮等)含量的方法,其浓度以μL/L 计量。

充油电气设备中的自由气体(气体继电器中气体、设备中油面气体等)也可参照本方法进行组分分析,其浓度以μL/L计量。

2 试验性质预试、交接、大修3 试验方法3.1 方法概要首先按要求采集充油电气设备中的油样,其次脱出油样中的溶解气体,然后用气相色谱仪分离、检测各气体组分,浓度用色谱数据处理装置或记录仪进行结果计算。

3.2 样品采集按GB7597—1987全密封式取样的有关规定进行。

在运输、保管过程中要注意样品的防尘、防震、避光和干燥等。

3.3 仪器设备和材料3.3.1 从油中脱出溶解气体的仪器,可选用下列仪器中的一种。

3.3.1 恒温定时振荡器往复振荡频率275次/min±5次/min,振幅35mm±3mm,控温精确度±0.3℃,定时精确度±2min。

3.3.2气相色谱仪专用或改装的气相色谱仪。

应具备热导鉴定器(TCD)(测定氢气、氧气、氮气)、氢焰离子化鉴定器(FID)(测定烃类、一氧化碳和二氧化碳气体)、镍触媒转化器(将一氧化碳和二氧化碳鉴定器转化为甲烷)。

检测灵敏度应能满足油中溶解气体最小检测浓度的要求。

3.3.2.1 仪器气路流程。

3.3.2.2色谱柱:对所检测组分的分离度应满足定量分析要求。

常见的气路流程见表1。

表1 色谱流程3.3.3记录装置色谱数据处理机,色谱工作站或具有满量程1mV的记录仪。

3.3.4 玻璃注射器100mL、5mL、1mL医用或专用玻璃注射器。

气密性良好,芯塞灵活无卡涩,刻度经重量法校正。

(机械震荡法用100mL 注射器,应校正40.0mL的刻度)气密性检查可用玻璃注射器取可检出氢气含量的油样,存储至少两周,在存储开始和结束时,分析样品中的氢气含量,以检测注射器的气密性。

主变绝缘油试验

主变绝缘油试验

主变绝缘油试验
结论合格简化分析人杜超刘丽萍审核于国君1号主变有本体谱分析:
1号SVG变本体简化分析:
1号SVG变绝缘油色谱分析:
结论合格色谱分析人杜超刘丽萍审核于国君
2#主变绝缘油试验
结论合格简化分析人杜超刘丽萍审核于国君2号主变有载色谱分析:
2号主变混合油简化分析:
2号主变本体简化分析:
2号主变有本体谱分析:
结论合格色谱分析人杜超刘丽萍审核于国君
新油绝缘油试验
1号新油简化分析:
1号新油色谱分析:
结论合格色谱分析人杜超刘丽萍审核于国君2号新油简化分析:
结论合格简化分析人杜超刘丽萍审核于国君2号新油色谱分析:
3号新油简化分析:
结论合格简化分析人杜超刘丽萍审核于国君3号新油色谱分析:
新混合油简化分析:
结论合格简化分析人杜超刘丽萍审核于国君新混合油色谱分析:
结论合格色谱分析人杜超刘丽萍审核于国君。

变压器绝缘油试验项目

变压器绝缘油试验项目一、前言变压器是电力系统中不可或缺的设备,而变压器绝缘油则是保障变压器正常运行的重要因素之一。

为了确保变压器绝缘油的质量,需要进行多种试验,其中包括绝缘油试验。

二、绝缘油试验概述绝缘油试验是对变压器绝缘油进行的一系列检测和评价,以确定其在使用中是否满足要求。

主要包括以下几个方面:1.外观检查:检查绝缘油是否存在混浊、杂质等现象。

2.介电强度测试:用于评估绝缘油的电气性能,包括直流介电强度和交流介电强度。

3.酸值测试:用于评估绝缘油中酸性物质的含量。

4.水分测试:用于评估绝缘油中水分的含量。

5.溶解气体分析:用于评估绝缘油中溶解气体的种类和含量。

6.色谱分析:通过色谱仪对绝缘油中有机化合物进行分析,以确定其组成和含量。

三、具体项目介绍1.外观检查外观检查是绝缘油试验中最基础的项目之一。

在进行其他试验前,需要先进行外观检查,以确保绝缘油没有明显的混浊、杂质等现象。

具体操作方法为:将绝缘油样品倒入透明的玻璃瓶中,观察其颜色和透明度。

2.介电强度测试介电强度测试是评估绝缘油电气性能的重要项目之一。

直流介电强度测试和交流介电强度测试都是必须进行的试验。

具体操作方法为:(1)直流介电强度测试:将绝缘油样品倒入直流介电强度测量仪中,通过施加高压来评估其承受高压的能力。

(2)交流介电强度测试:将绝缘油样品倒入交流介电强度测量仪中,通过施加交流高压来评估其承受高压的能力。

3.酸值测试酸值测试是评估绝缘油中酸性物质含量的重要项目之一。

具体操作方法为:将绝缘油样品倒入酸值测量仪中,在加入酸碱指示剂的情况下,通过滴定的方式来测量其酸值。

4.水分测试水分测试是评估绝缘油中水分含量的重要项目之一。

具体操作方法为:将绝缘油样品倒入水分测量仪中,在加热和气流吹扫的情况下,通过检测气流中的湿度来评估绝缘油中的水分含量。

5.溶解气体分析溶解气体分析是评估绝缘油中溶解气体种类和含量的重要项目之一。

具体操作方法为:将绝缘油样品倒入溶解气体测量仪中,在加压和降压的情况下,通过检测气体压力变化来评估绝缘油中不同种类气体的含量。

GS-101D油色谱分析仪说明书

变压器油色谱分析仪使用说明书上海菲柯特电气科技有限公司敬告用户:欢迎贵单位使用本公司最新推出变压器油专用油气相色谱仪。

使用前请阁下详细阅读本说明书。

目录一、产品概述 (1)(一)、主要技术指标 (1)(二)、主要性能特点 (2)(三)、工作条件 (2)二键盘使用说明 (3)(一)、面板与键盘 (3)(二)、键盘与显示...........................................................................3-4 (三)、开机 (5)(四)、键盘操作..............................................................................5-7 三、绝缘油分析 (8)(一)、分离流程 (8)(二)、热导检测器 (9)(三)、氢焰检测器 (9)(四)、转化炉 (10)(五)、操作条件的选择 (10)四、柱分流柱系统流程图 (11)五、变压器油专用油气相色谱仪整套系统配置表 (12)一、产品概述变压器油专用油气相色谱仪是按照电力系统《绝缘油中溶解气体组分含量测定法(色谱法)》要求,采用微机自动控制、全键盘操作、大屏幕液晶显示,具有控温精度高、性能稳定可靠、灵敏度高、重复性好等特点。

该仪器采用双柱并联分流系统,配有TCD和双FID及甲烷转化炉,能一次进样实现油中溶解气体九组分(H2、O2、N2、CH4、C2H2、C2H4、C2H6、CO、CO2)的全分析。

仪器可用于电力系统油气设备内部故障检测,氢冷发电机冷却介质分析、六氟化硫杂质分析、锅炉烟气分析、天然气分析和环境监测分析等。

既可作专用分析,又可作通用分析,因而它成为石油、化工、矿山等系统作为气体分析的最有效设备。

(一)、主要技术指标1、温度控制①温控范围:柱室:室温+15℃—399℃汽化室:室温+30℃—399℃转化炉:室温+30℃—399℃热导检测器:室温+30℃—399℃氢焰检测器:室温+30℃—399℃②控温精度:±0.1℃2、热导检测器①灵敏度:对氢最小检测浓度≥5μl/L②噪声:≤0.05mv③漂移:≤0.15mv/30min3、氢焰检测器①对烃类最小检测浓度≥0.1μl/L②对CO、CO2最小检测浓度≤5μl/L③噪声:≤0.05mv④漂移:≤0.15mv/30min4、整机启动时间不大于3小时。

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断变压器油是变压器重要的绝缘介质和冷却介质,通过监测变压器油的色谱可以及时发现变压器的内部故障,确保变压器的安全运行。

本文将介绍变压器油色谱分析的原理、方法以及故障判断的相关知识。

一、变压器油色谱分析的原理变压器油色谱分析是通过检测变压器油中的有机物质和气体成分,对变压器的运行状态进行评估和监测。

其原理是利用油中有机物质和气体成分的种类、含量、比例等信息,来判断变压器的运行状态和可能存在的故障。

变压器油色谱分析的主要原理包括气相色谱(Gas Chromatography, GC)和液相色谱(High Performance Liquid Chromatography, HPLC)两种方法。

气相色谱主要用于检测变压器油中的气体成分,如甲烷、乙烷、乙烯、丙烷、丙烯等;液相色谱则主要用于检测变压器油中的有机物质成分,如苯、酚、醚、醇等。

1. 样品采集:首先需要采集变压器油样品,一般可以通过变压器油位计或油温计的取样孔进行采样。

在采样之前需要确保取样容器和工具的清洁,以避免外部杂质的污染。

2. 样品制备:将采集到的变压器油样品进行预处理,包括脱水、脱气等操作。

脱水可以通过加热和真空脱水的方式进行,脱气则可以通过超声波或真空抽滤的方式进行。

3. 色谱分析:将预处理后的变压器油样品进行气相色谱和液相色谱分析。

通过色谱仪器可以得到变压器油中的有机物质和气体成分的含量、种类、比例等信息。

1. 气体成分分析:变压器油中的气体成分主要包括甲烷、乙烷、乙烯、丙烷、丙烯等。

当油中的气体含量超过正常范围时,通常表明变压器内部存在故障,如油纸绝缘的老化、局部放电等。

气体的种类和比例也可以帮助判断故障的类型和位置。

2. 有机物质分析:变压器油中的有机物质主要包括苯、酚、醚、醇等。

这些有机物质的含量和种类也可以反映变压器的运行状态和可能存在的故障。

苯和酚的含量增加可能表明变压器中存在局部放电、绝缘老化等问题;醇的增加可能表明变压器内部存在绝缘油的氧化和老化等问题。

变压器油色谱分析

变压器油色谱分析摘要:当变压器内部发生过热、放电等故障时,势必导致故障附近的绝缘物分解。

分解产生的气体会不断地溶解在油中的,不同性质的故障所产生的气体成分也不同,即使同一性质的故障,由于故障的程度不同,产生的气体数量也不相等。

因此,对油中溶解气体的色谱分析,可以早期发现潜伏性故障的性质、程度和部位,以便及时处理故障,避免事故的发生。

关键词:变压器油;油色谱分析;故障判断1.气相色谱法的原理色谱法又叫层析法,它是一种物理分离技术。

它的分离原理是使混合物中各组分在两相间进行分配,其中一相是不动的,叫做固定相;另一相则是推动混合物流过此固定相的流体,叫做流动相。

气相色谱的分离原理是利用不同物质在两相间具有不同的分配系数,当两相作相对运动时,试样的各组分就在两相中经反复多次地分配,使得原来分配系数只有微小差别的各组分产生很大的分离效果,从而将各组分分离开来。

然后再进入检测器对各组分进行鉴定。

2、色谱分析的过程2.1取出一定量的变压器油利用变压器油的色谱来判断变压器出现的故障种类,要通过几个过程的操作来进行。

在对变压器油中溶解气体进行色谱分析时,至关重要的一步是取油样,所取油样要有足够代表性,如何取样才不致于使油中溶解气体散失?理想的取样应满足以下条件。

(1)所使用的玻璃注射器严密性要好。

(2)取样时能完全隔绝空气,取样后不要向外跑气或吸入空气。

(3)材质化学性稳定且不易破损,便于保存和运输。

(4)实际取油样时,一般选用容积为100ml全玻璃注射器。

(5)取样前将注射器清洗干净并烘干,注射器芯塞应能自由滑动,无卡涩。

(6) 应从设备底部的取样阀放油取样。

(7)取样阀中的残存油应尽量排除,阀体周围污物擦干净。

(8)取样连接方式可靠,连接系统无漏油或漏气缺陷。

(9)取样前应设法将取样容器和连接系统中的空气排尽。

(10)取样过程中,油样应平缓流入容器,不产生冲击、飞溅或起泡沫。

(11)取完油样后,先关闭放油阀门,取下注射器,并封闭端口,贴上标签,尽快进行色谱分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HZYSP-H 油色谱分析仪绝缘油分析过程油色谱分析仪绝缘油分析
(一)分离流程
色谱柱分离系统运用二维色谱技术,采用双柱并联分流柱。

样品气由进样口注入,由载
气带入色谱柱,在柱箱内由分流三通将载气分成两路,一路进入GDX—502柱,分离C1 C2
在FIDⅠ上检测出烃类。

另一路进入TDX—01柱,分离出H2(O2)、CO、CH4 、CO2
在TCD上检测出H2(O2),然后进入转化炉CO、CO2转化成CH4在FIDⅡ上检测出。

(柱分流柱系统流程图见附页)
出峰顺序:
GDX—502柱: CH4 、C2H4 、C2H6 、C2H2
TDX—01柱: H2(O2)、CO、CH4 、CO2
测定组分:
TCD: H2(O2)
FIDⅠ: CH4 、C2H4 、C2H6 、C2H2
FIDⅡ: CO、CH4 、CO2
(二)热导检测器
1、技术性能
①、TCD池体:半扩散式结构,四臂铼钨丝,常温下100Ω。

②、电源系统:恒流源方式供电,设定0—200mA,每档1mA。

③、保护系统:断气、超温时及时切断恒流源,保护铼钨丝。

2、使用热导池检测器注意事项
在使用热导池检测器时,必须切记先通载气再开机,以保证铼钨丝不被氧化和破坏。

桥电流不宜设置过大。

当使用氮气或氩气作载气时,桥电流使用在60mA—90mA,当使用氢气或氦气作载气时,桥电流使用在60mA—180mA。

载气纯度应在99.99%以上,载气不纯,灵敏度降低,铼钨丝容易氧化导致寿命缩短。

更换色谱柱后必须检漏,以保证气密性。

重点在柱接头和进样口汽化垫处。

(三)氢焰检测器
1. 技术性能
结构:圆桶型收集极
喷嘴:刚玉喷嘴
点火:铂金丝自动点火
极化电压:200V直流电压。

2. 使用氢焰检测器注意事项
①、气体流量与配比
氮气与氢气比:通常在1:1到2:1之间。

空气流量:一般不能低于300ml/min
②、检测器温度
一般不要低于120℃,以防止水蒸汽的冷凝和燃烧产物的污染。

③、色谱柱的老化
色谱柱要充分老化,以减少污染带来的基线澡音和漂移。

分析前最
好高温老化。

④、点火
当五路温度稳定并且“恒温”灯亮时,可轻轻按下“点火”键,可
用光亮的金属物置于离子头上端,如有水蒸汽表明点火成功,否则可适
当加大氢气流量。

(四)转化炉
它使分离后的CO、CO2通过加入氢气的转化炉在镍触媒的作用下转化为甲烷并在FIDⅡ上得到响应。

转化过程如下
(五)操作条件的选择
1. 载气流量
载气流量的大小影响柱分离及各组分的保留时间,柱流量的分配比
例推荐。

GDX—502柱流量:TDX—01柱流量=1:1.9
2. 其它气体流量
氢焰燃烧氢气:25ml/min—30ml/min
助燃空气:380—450ml/min
转化炉的氢气由“氢气Ⅱ”提供,并作为FIDⅡ的燃烧氢气。

3. 温度
柱室一般为60℃
热导一般为120℃
氢焰一般为90℃
转化一般为380℃之间
4. 进样量
一般在0.5ml—1ml之间。

相关文档
最新文档