高考数学数列专项复习
高考数学专题复习:数列在日常生活中的应用

高考数学专题复习:数列在日常生活中的应用一、单选题1.某房屋开发商出售一套50万元的住宅,可以首付5万元,以后每过一年付5万元,9年后共10次付清,也可以一次付清(此后一年定期存款税后利率设为2%,按复利计算)并优惠%a ,为鼓励购房者一次付款,问优惠率应不低于多少?( )(a 取整数,计算过程中参考以下数据:910111.02 1.195,1.02 1.219,1.02 1.243===) A .8%B .9%C .11%D .19%2.某顾客在2020年1月1日采用分期付款的方式购买一辆价值2万元的家电,在购买一个月后2月1日第一次还款,且以后每个月1日等额还款一次,如果一年内还清全部贷款(12月1日最后一次还款),月利率为0.5%.按复利计算,则该顾客每个月应还款多少元?(精确到1元,参考值101.005 1.05=,111.005 1.06=)( ) A .1767B .1818C .1923D .19463.假设一个蜂巢里只有1只蜜蜂,第1天它飞出去找回了2个伙伴:第2天,3只蜜蜂飞出去,各自找回了2个伙伴……如果这个找伙伴的过程继续下去,则到第4天所有蜜蜂都归巢后,蜂巢中全部蜜蜂的只数是( ). A .1B .3C .9D .814.某车间王师傅、张师傅因工种不同上班规律如下,王师傅休息一天后连续两天上班,再休息一天,张师傅休息一天后连续四天上班,再休息一天,在第一天,王师傅、张师傅都休息,从第1个星期到第15个星期内,记第n 个星期王师傅上班天数为()f n ,张师傅上班天数为()g n ,用a ,b ,c ,d 分别表示()()g n f n -等于2,1,0,1-的个数,则(a ,b ,c ,d )=( )A .(4,7,4,0)B .(3,7,4,1)C .(3,7,5,0)D .(3,8,4,0)5.某人从2015年起,每年1月1日到银行新存入a 元(一年定期),若年利率为r 保持不变,且每年到期存款均自动转为新的一年定期,到2020年1月1日将之前所有存款及利息全部取回,他可取回的钱数(单位为元)( ) A .5(1)a r + B .5(1)(1)ar r r⎡⎤+-+⎣⎦ C .6(1)a r +D .6(1)(1)a r r r ⎡⎤+-+⎣⎦6.某家庭打算为子女储备“教育基金”,计划从2021年开始,每年年初存入一笔专用存款,使这笔款到2027年底连本带息共有40万元收益.如果每年的存款数额相同,依年利息2%并按复利计算(复利是一种计算利息的方法,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息),则每年应该存入约( )万元.(参考数据:781.02 1.149, 1.02 1.172≈≈) A .5.3B .4.6C .7.8D .67.某养猪场2021年年初猪的存栏数1200,预计以后每年存栏数的增长率为8%,且在每年年底卖出100头.设该养猪场从今年起每年年初的计划存栏数依次为123,,,a a a .则2035年年底存栏头数为(参考数据:1415161.08 2.9,1.08 3.2,1.08 3.4≈≈≈)( ) A .1005 B .1080C .1090D .1105二、双空题8.某公司为一个高科技项目投入启动资金2000万元,已知每年可获利20%,但由于竞争激烈,每年年底需从利润中取出200万元资金进行科研、技术改造,方能保持原有利润的增长率,则第三年年初该项目的资金为________万元,该公司经过________年该项目的资金可以达到或超过翻一番(即原来的2倍)的目标.(lg 20.30≈,lg30.48≈)9.某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下第k 棵树种植在点()k k k P x y ,处,其中11x =,11y =,当2k ≥时,11121555{1255k k k k k k x x T T k k y y T T --⎡⎤--⎛⎫⎛⎫=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦--⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,.()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=.按此方案,第6棵树种植点的坐标应为________.第2008棵树种植点的坐标应为________. 10.已知桶0A 中盛有2升水,桶0B 中盛有1升水.现将桶0A 中的水的34和桶0B 中的水的14倒入桶1A 中,再将桶0A 与桶0B 中剩余的水倒入桶1B 中;然后将桶1A 中的水的34和桶1B 中的水的14倒入桶2A 中,再将桶1A 与桶1B 中剩余的水倒入桶2B 中;若如此继续操作下去,则桶n A ()n *∈N 中的水比桶n B ()n *∈N 中的水多________升.11.从2017年到2020年期间,某人每年6月1日都到银行存入1万元的一年定期储蓄.若年利率为20%保持不变,且每年到期的存款本息均自动转为新的一年定期储蓄,到2020年6月1日,该人去银行不再存款,而是将所有存款的本息全部取回,则取回的金额为________万元.四、解答题12.银行按规定每经过一定的时间结算存(货)款的利息一次,结算后即将利息并入本金,这种计算利息的方法叫做复利,现在有某企业进行技术改造,有两种方案:甲方案:一次性货款10万元,第一年便可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年货款1万元,第一年可获得利润1万元,以后每年比前一年多获利5000元.两种方案的期限都是10年,到期一次行归还本息.若银行货款利息均以年息10%的复利计算,试比较两个方案哪个获得纯利润更多?计算精确到千元,参考数据:101.12.594=,101.313.796=)13.某企业2020年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从2021年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(2021为第1年)的利润为150012n⎛⎫+⎪⎝⎭万元(n为正整数).(1)设从2021起的前n年,若该企业不进行技术改造的累计纯利润为n A万元,进行技术改造后的累计纯利润为n B万元(须扣除技术改造资金),求n A、n B的表达式;(2)依上述预测,从2021起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?14.小明的父母为了准备小明将来考入大学的学费,于2017年元旦在某银行存入10000元,并在后续每一年的元旦都在该银行存入1200元,直到2022年存入最后一笔钱为止.如果银行的存款年利率为2.75%,且以复利计息,那么小明的父母在2022年底将存款连本带利全部取出时,能取到多少钱?15.放射性元素在t =0时的原子核总数为0N ,经过一年原子核总数衰变为0N q ,常数1q -称为年衰变率.考古学中常利用死亡的生物体中碳14元素稳定持续衰变的现象测定遗址的年代.已知碳14的半衰期为5730年. (1)碳14的年衰变率为多少(精确到610-)(2)某动物标本中碳14含量为正常大气中碳14含量的60%(即衰变了40%),该动物的死亡时间大约距今多少年?16.某牛奶厂2015年初有资金1000万元,由于引进了先进生产设备,资金年平均增长率可达到50%.每年年底扣除下一年的消费基金后,剩余资金投入再生产,这家牛奶厂每年应扣除多少消费基金,才能实现经过5年资金达到2000万元的目标(精确到1万元)?17.假设某银行的活期存款年利率为0.35%某人存10万元后,既不加进存款也不取款,每年到期利息连同本金自动转存,如果不考虑利息税及利率的变化,用n a 表示第n 年到期时的存款余额,求1a 、2a 、3a 及n a .18.某市准备投入资金进行生态环境建设,促进旅游业的发展.计划本年度投入1200万元,以后每年投入均比上年减少20%,本年度旅游业收入估计为400万元,预计今后旅游业收入的年增长率相同. 设本年度为第一年,已知前三年旅游业总收入为1525万元. (Ⅰ)设第n 年的投入为a n 万元,旅游业收入为b n 万元,写出a n ,b n 的表达式; (Ⅱ)至少经过几年,旅游业的总收入才能超过总投入? (参考数据:lg2 ≈0.301,lg3≈ 0.477)参考答案1.B 【分析】设优惠率应不低于%a ,由已知可得,()()()998501%12%5 1.02 1.02 1.021a -+≤⨯++⋅⋅⋅⋅⋅⋅++,解不等式可得答案. 【详解】设优惠率应不低于%a ,由题意可得,()()()998501%12%5 1.02 1.02 1.021a -+≤⨯++⋅⋅⋅⋅⋅⋅++,即1091.0211%0.91610 1.020.02a --≤≈⨯⨯, 解得%8.4%a ≥, 又∵a 取整数, ∴优惠率应不低于9%, 故选:B . 2.A 【分析】设每月还款x 元,每月还款按得利计算,11次还款的本利和等于银行贷款按复利计算的本利和,由此可得. 【详解】设每月还款x 元,共还款11个月, 所以10911(1.005 1.005 1.0051)20000 1.005x ⨯++++=⨯,1111111020000 1.00520000 1.00520000 1.0617671 1.061 1.0051 1.005 1.0050.0051 1.005x ⨯⨯⨯===≈--+++--. 故选:A . 3.D 【分析】先由前几天结束时,蜂巢中的蜜蜂数量观察出其组成了首项为3,公比为3的等比数列,求出通项公式,把4直接代入即可.【详解】 由题意知,第一天所有蜜蜂归巢后,蜂巢中一共有1+2=3只蜜蜂, 第二天所有蜜蜂归巢后,蜂巢中一共有339⨯=只蜜蜂, 第三天所有蜜蜂归巢后,蜂巢中一共有39=27⨯只蜜蜂,第n 天所有蜜蜂归巢后,蜂巢中一共有133=3n n -⨯只蜜蜂, 所以归巢后的蜜蜂数列组成了首项为3,公比为3的等比数列, 所以其通项公式为:3n , 所以,第四天共有4381=只蜜蜂. 故选:D 4.D 【分析】由已知得出每个星期王师傅上班天数和每个星期张师傅上班天数,由此可得出选项. 【详解】每个星期王师傅上班天数依次为4,5,5,4,5,5,…,每个星期张师傅上班天数依次为5,6,5,6,6,5,6,5,6,6,…,因此()()g n f n -依次为1,1,0,2,1,0,2,0,1,2,0,1,1,1,1所以()(3840)a b c d =,,,,,,, 故选:D. 5.D 【分析】根据题意分析得到:到2020年1月1日将之前所有存款为5432(1)(1)(1)(1)(1)a r a r a r a r a r +++++++++,最后根据等比数列求和即可. 【详解】根据题意可得:自2015年1月1日到银行新存入a 元,则到2016年1月1日之前银行存款共(1)a r +,2016年1月1日再存入a 元, 到2017年1月1日之前银行存款2(1)(1)a r a r +++,2017年1月1日再存入a 元, 到2018年1月1日之前银行存款32(1)(1)(1)a r a r a r +++++,2018年1月1日再存入a 元,到2019年1月1日之前银行存款432(1)(1)(1)(1)a r a r a r a r +++++++,2019年1月1日再存入a 元,到2020年1月1日之前银行存款共计5432(1)(1)(1)(1)(1)a r a r a r a r a r +++++++++, 因为5432(1)(1)(1)(1)(1)a r a r a r a r a r +++++++++5432(1)(1)(1)(1)(1)a r r r r r ⎡⎤=+++++++++⎣⎦56(1)1(1)(1)(1)1(1)a r r ar r r r⎡⎤+-+⎣⎦⎡⎤==+-+⎣⎦-+, 故选:D. 6.A 【分析】设每年存入x 万元,分别求出2021年初至2027年初到2027年底的所有本利和,求和即可求解. 【详解】设每年存入x 万元,则2021年初存入的钱到2027年底本利和为()712%x +, 2022年初存入的钱到2027年底本利和为()612%x +, ……2027年初存入的钱到2027年底本利和为()12%x +, 则()()()2712%12%12%40x x x ++++++=,即()71.021 1.02401 1.02x -=-,解得 5.3x ≈.故选:A. 7.C 【分析】依据题意可得每年年初存栏数满足()118%100n n a a -=⨯+-,构造等比数列{}1250n a -,利用等比数列通项公式求得()15018%1250n n a -=-⨯++,问题得解.【详解】由题可得11200a =,()2120018%100a =⨯+-,()3218%100a a =⨯+-,…… 由此下去可得:()118%100n n a a -=⨯+- 令()()118%n n a x a x -+=++ 整理可得()118%0.08n n a a x -=⨯++ 令0.08100x =-,解得1250x =-∴数列{}1250n a -是以50-为首项,公比为18%+的等比数列 ∴()112505018%n n a --=-⨯+∴()15018%1250n n a -=-⨯++则2035年年底存栏头数为()()()1511518%1005018%125018%100a -⎡⎤⨯+-=-⨯++⨯+-⎣⎦50 3.21250 1.081001090≈-⨯+⨯-=故选:C8.2440 6 【分析】设n a 是经过n 年后该项目的资金,则1(120%)200n n a a +=+-,从而可求出经过两年后该项目的资金,构造等比数列{}1000-n a ,求出n a ,根据翻一番(即原来的2倍)的目标建立不等式,解指数不等式,即可求出所求. 【详解】设n a 是经过n 年后该项目的资金,则1(120%)200n n a a +=+-, 所以12000(120%)2002200a =+-=, 22200(120%)2002440a =+-=,所以经过两年后该项目的资金为2440万元; 因为1(120%)200n n a a +=+-,设1(120%)()n n a p a p ++=++,则1000p =-, 即11000(120%)(1000)n n a a +-=+-,所以{}1000-n a 是以1.2为公比,1200为首项的等比数列, 所以11200 1.210001000 1.21000n n n a -=⨯+=⨯+, 由已知得1000 1.210004000n ⨯+≥,lg3lg36lg 6lg5lg312lg 2n=≈--+,即该公司经过6年该项目的资金可以达到或超过翻一番(即原来的2倍)的目标. 故答案为:①2440;②6. 9. (1,2) (3, 402) 【详解】 T组成的数列为1,0,0,0,0,1, 0,0,0,0,1, 0,0,0,0,1……(k =1,2,3,4……).一一代入计算得数列为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5……;数列为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4…….因此,第6棵树种在 (1,2),第2008棵树种在(3, 402). 10.12n. 【分析】根据题意,得到n A ,n B 之间的关系,然后用数列知识求解. 【详解】根据题意可得,11313,44n n n n n A B A A B --+==+, ∴1113113(3)4424n n n n A A A A ---=+-=+, ∴1313()222n n A A --=-,即数列32n A ⎧⎫-⎨⎬⎩⎭是以1003313124424A A B -=+-=为首项,12为公比的等比数列,∴1131112422n n n A -+-=⋅=⇒13122n n A +=+, ∴131322n n n B A +=-=-,∴*1112()22n n n n A B n N +-=⨯=∈.故答案为:12n11.4.368【分析】分别求出2017年、2018年、2019年这三年每一年存入的1万元取出时的本息,再计算他们的和即可求解. 【详解】2017年存入1万元到2020年取回的本息为()33120% 1.2+=万元, 2018年存入1万元到2020年取回的本息为()22120% 1.2+=万元, 2019年存入1万元到2020年取回的本息为()1120% 1.2+=万元,所以取回的金额为3321.2(1 1.2)1.2 1.2 1.2 4.3681 1.2-++==-万元,故答案为:4.368. 12.答案见解析. 【分析】由题意可知,甲方案中增长利率是定值,所以每年利润数是以1为首项,以1.3为公比的等比数列,再由等比数列的前n 项和公式求出10年利润总数;乙方案中每年增长的利润是一定值,所以每年利润数是以1为首项,以0.5为公差的等差数列,再由等差数列的前n 项和公式求出10年利润总数,然后比较两种情况的数值. 【详解】解:甲方案10年获利润是每年利润数组成的数列的前10项的和:10291.311(130%)(130%)(130%)42.621.31-+++++++==-(元), 到期时银行的本息和为()10110%1010 2.59425.94⨯+=⨯=(万元), ∴甲方案扣除本息后的净获利为:42.6225.9416.7-≈(万元), 乙方案:逐年获利成等差数列,前10年共获利:10(1 5.5)1(10.5)(120.5)(190.5)32.502+++++⨯+++⨯==(万元) 贷款的本利和为:1091.111.11(110%)(110%) 1.117.531.11-⎡⎤+++++=⨯=⎣⎦-(万元), ∴乙方案扣除本利后的净获利为:32.5017.5315.0-=(万元), 所以,甲方穿的获利较多. 13.(1)249010n A n n =-,n B =5005001002nn --;(2)至少经过4年. 【分析】(1)利用等差数列的求和公式可求得n A ,利用分组求和法可求得n B ; (2)作差得出25010102n n n B A n n ⎛⎫-=+-- ⎪⎝⎭,令25010102n n c n n ⎛⎫=+-- ⎪⎝⎭,分析数列{}n c 的单调性,可得出340c c <<,由此可得出结论.【详解】(1)依题设,()()()()2201500205004050020500490102n n n A n n n n +=-+-+⋅⋅⋅+-=-=-, 2111111500225001116005005001001222212n n n n B n n ⎡⎤⎛⎫- ⎪⎢⎥⎡⎤⎛⎫⎛⎫⎛⎫⎝⎭⎢⎥=++++⋅⋅⋅++-=+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦-⎢⎥⎣⎦; (2)()225005050010049010101022n n n n B A n n n n n ⎛⎫-=----=+-- ⎪⎝⎭, 令25010102n n c n n ⎛⎫=+-- ⎪⎝⎭,则数列{}n c 为单调递增数列, 且32510204c ⎛⎫=-< ⎪⎝⎭,425101608c ⎛⎫=-> ⎪⎝⎭,所以,当且仅当4n ≥时,n n B A >.至少经过4年,该企业进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润. 14.18281.21元 【分析】根据复利计算即可得出答案. 【详解】由题意得,小明的父母在2022年底将存款连本带利全部取出的钱数为: ()()()()65411000010.027*******.027*******.027*******.0275++++++++()()()()()56120010.0275110.027********.0275110.0275+-+=++-+18281.21≈(元)即能取到18281.21元.15.(1)0.999879;(2)4221.【分析】(1)根据题意,生物体死亡n 年后,体内每克组织中的碳14的残留量为n a ,则可判断出{}n a 是一个等比数列,由题意列出通项公式,解出q 即可; (2)由题意,利用等比数列的通项公式列方程,解出n. 【详解】(1)设生物体死亡时,体内每克组织中的碳14的含量为1,每年的衰变率为q ,n 年后的残留量为n a ,则{}n a 是一个等比数列.由碳14的半衰期为5730,则 57305730112n a a qq===,解得:157301()0.9998792q =≈. 即碳14的年衰变率为0.999879;(2)设动物约在距今n 年前死亡,由0.6n a =,得10.9998790.6n n n a a q ===,解得4221n ≈,所以动物约在距今4221年前死亡. 16.424万元 【分析】设这家牛奶厂每年应扣除x 万元消费基金,则由规律可得第五年剩余资金为:5234333331000()[1()()()]22222x ⨯-++++,由题意知,5234333331000()[1()()()]200022222x ⨯-++++=,即可求得x 的值. 【详解】解:设这家牛奶厂每年应扣除x 万元消费基金,则: 第一年剩余资金为:31000(150%)10002x x +-=⨯-,第二年剩余资金为:23333(1000)1000()(1)2222x x x ⨯-⨯-=⨯-+, ⋯⋯以此类推,第五年剩余资金为:5234333331000()[1()()()]22222x ⨯-++++,由题意知,5234333331000()[1()()()]200022222x ⨯-++++=,即553()132[]1000()20003212x -=⨯--,解得:424x ≈,故这家牛奶厂每年应扣除424万元消费基金.17.110.035a ,210.070a ,310.105a ,1010.35%nn a . 【分析】本题可根据活期存款年利率的计算方式得出结果. 【详解】11010.35%10.035a ,221010.35%10.070a ,331010.35%10.105a ,1010.35%nna .18.(Ⅰ)1412005n n a -⎛⎫=⋅ ⎪⎝⎭,154004n n b -⎛⎫=⋅ ⎪⎝⎭;(Ⅱ)6年.【分析】(Ⅰ)由题意知{a n },{b n }均为等比数列,根据条件中的数列{a n }的首项和公比直接写出通项公式,设数列{b n }的公比为 q ,根据三年内旅游业总收入求得q ,从而求得{b n }的通项公式;(Ⅱ)设至少经过 n 年,旅游业的总收入才能超过总投入.分别计算出经过 n 年,总投入和旅游业总收入,根据不等关系列出表达式,解得n 的最小值即可. 【详解】解:(Ⅰ)由题意知{a n },{b n }均为等比数列,数列{a n }的首项为1200,公比为4120%5-=,所以1412005n n a -⎛⎫=⋅ ⎪⎝⎭,设数列{b n }的公比为 q ,显然 q > 0 , q ≠ 1. 所以三年内旅游业总收入为()3400115251q q-=-,即261116q q ++=, 所以21616450q q +-=,解得 54q =或49q =-(舍去), 所以 154004n n b -⎛⎫=⋅ ⎪⎝⎭.(Ⅱ)设至少经过 n 年,旅游业的总收入才能超过总投入.则经过 n 年,总投入为 41200154600014515n n⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,经过n 年,旅游业总收入为5400145160015414nn⎡⎤⎛⎫-⎢⎥⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=-⎢⎥⎪⎝⎭⎢⎥⎣⎦-,所以54160016000145n n⎡⎤⎡⎤⎛⎫⎛⎫->-⎢⎥⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,化简得4515419054n n⎛⎫⎛⎫+->⎪ ⎪⎝⎭⎝⎭设4(01)5nt t⎛⎫=<<⎪⎝⎭,代入上式得2151940t t-+>,解此不等式,得t >1(舍去)或t <415,即44515n⎛⎫<⎪⎝⎭,解得454lg42lg2(lg3lg5)3lg2lg3115log 5.94152lg2lg53lg21lg5n-+-->===≈--由此得n≥6 .所以至少经过6 年,旅游业的总收入才能超过总投入.。
数列的综合应用【十二大题型】(举一反三)(新高考专用)(原卷版)—2025年新高考数学一轮复习

数列的综合应用【十二大题型】【题型1 等差、等比数列的交汇问题】................................................................................................................3【题型2 数列中的数学文化问题】........................................................................................................................4【题型3 数列的实际应用问题】............................................................................................................................5【题型4 数列中的不等式恒成立、有解问题】....................................................................................................7【题型5 数列中的不等式证明问题】....................................................................................................................8【题型6 子数列问题】............................................................................................................................................9【题型7 数列与函数的交汇问题】......................................................................................................................11【题型8 数列与导数的交汇问题】......................................................................................................................12【题型9 数列与概率统计的交汇问题】..............................................................................................................13【题型10 数列与平面几何的交汇问题】............................................................................................................14【题型11 数列中的结构不良题】........................................................................................................................16【题型12 数列的新定义、新情景问题】............................................................................................................17
2024年高考数学专项突破数列大题压轴练(解析版)

数列大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·云南曲靖·宣威市第七中学校考模拟预测)记n S 为数列{}n a 的前n 项和,n T 为数列{}n S 的前n 项和,已知2n n S T +=.(1)求证:数列{}n S 是等比数列;(2)求数列{}n na 的前n 项和n A .2.(2023·辽宁铁岭·校联考模拟预测)已知数列{}n a 中,11a =,214a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*1sin 3()cos cos n n n n c N b b +=∈,求数列{}n c 的前n 项和n S .3.(2023·湖南株洲·统考一模)数列{}n a 满足13a =,212n n n a a a +-=.(1)若21n bn a =+,求证:{}n b 是等比数列.(2)若1n nnc b =+,{}n c 的前n 项和为n T ,求满足100n T <的最大整数n .4.(2023·河北衡水·河北衡水中学校考模拟预测)已知数列{}n a 满足21n n n a xa ya ++=+()N n +∈,11a =,22a =,n S 为数列{}n a 前n 项和.(1)若2x =,1y =-,求n S 的通项公式;(2)若1x y ==,设n T 为n a 前n 项平方和,证明:214n n n T S S -<恒成立.5.(2023·山西朔州·怀仁市第一中学校校考二模)已知数列{}n a 满足13a =,且12,1,n n na n a a n +⎧=⎨-⎩是偶数是奇数.(1)设221n n n b a a -=+,证明:{}3n b -是等比数列;(2)设数列{}n a 的前n 项和为n S ,求使得不等式2022n S >成立的n 的最小值.6.(2022春·河北衡水·高三校联考阶段练习)已知正项数列{}n a 的前n 项和为n S ,且满足11a =,23a =,2132n n n a a a ++=-,数列{}n c 满足()22221232341n c c c n c n +++++= .2024年高考数学专项突破数列大题压轴练(解析版)(1)求出{}n a ,{}n c 的通项公式;(2)设数列()()1221log 1n n c n a +⎧⎫⋅+⎪⎪⎨⎬+⎡⎤⎪⎪⎣⎦⎩⎭的前n 项和为n T ,求证:516<n T .7.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)已知数列{}n a 的前n 项和n S 满足36S =,2n n S n na =+,*n ∈N .(1)求{}n a 的通项公式;(2)数列{}n b ,{}n c ,{}n d 满足()21211n n n a b a +=+-,12121n n n n n c b b b b --= ,且2nn nc d n =⋅,求数列{}n d 的前n 项和n T .8.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+--.9.(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)对于项数为m 的数列{}n a ,若满足:121m a a a ≤<<< ,且对任意1i j m ≤≤≤,i j a a ⋅与j ia a 中至少有一个是{}n a 中的项,则称{}n a 具有性质P .(1)如果数列1a ,2a ,3a ,4a 具有性质P ,求证:11a =,423a a a =⋅;(2)如果数列{}n a 具有性质P ,且项数为大于等于5的奇数,试判断{}n a 是否为等比数列?并说明理由.10.(2022秋·山东青岛·高三统考期末)记数列{}n a 的前n 项和为n S ,11a =,______.给出下列两个条件:条件①:数列{}n a 和数列{}1n S a +均为等比数列;条件②:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)记正项数列{}n b 的前n 项和为n T ,12b a =,23b a =,14n n n T b b +=⋅,求211(1)ni i i i b b +=⎡⎤-⎣⎦∑.11.(2022·湖北·黄冈中学校联考模拟预测)已知数列{}n a 满足0n a ≠,*N n ∈.(1)若2210n n n a a ka ++=>且0n a >.(ⅰ)当{}lg n a 成等差数列时,求k 的值;(ⅱ)当2k =且11a =,4a =2a 及n a 的通项公式.(2)若21312n n n n a a a a +++=-,11a =-,20a <,[]34,8a ∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.12.(2022秋·湖南长沙·高三校考阶段练习)已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n *∈N ),数列{}n b 满足2nn n b a =.(1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(2)设数列{}n c 满足()()131n nn n a c n λ--=-(λ为非零整数,n *∈N ),问是否存在整数λ,使得对任意n *∈N ,都有1n n c c +>.13.(2022秋·湖南衡阳·高三衡阳市一中校考期中)已知n S 为数列{}n a 的前n 项和,25a =,14n n n S S a +=++;{}n b 是等比数列,29b =,1330bb +=,公比1q >.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 和{}n b 的所有项分别构成集合A ,B ,将A B ⋃的元素按从小到大依次排列构成一个新数列{}n c ,求2012320T c c c c =++++ .14.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b-+=,证明:122733n c c c ≤++⋅⋅⋅+<15.(2022秋·广东广州·高三校联考阶段练习)已知数列{}n a 的前n 项和为n S ,且12a =,132n n S S +=+,数列{}n b 满足()1122,n n n b b b n++==,其中*n ∈N .(1)分别求数列{}n a 和{}n b 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和nT16.(2023·辽宁朝阳·校联考一模)已知数列{}n a 的前n 项和为()+N 1=∈+n nS n n ,数列{}n b 满足11b =,且()1+N 2+=∈+nn n b b n b (1)求数列{}n a 的通项公式;(2)求数列{}n b 的通项公式;(3)对于N n +∈,试比较1n b +与n a 的大小.17.(2022秋·广东深圳·高三校考阶段练习)记n S 为数列{}n a 的前n 项和,已知{}12,32n n a a S =-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)若{}11,n n n n n a b b a a ++=的前n 项和为n T ,求证:14n T <.18.(2022秋·江苏常州·高三常州市第一中学校考阶段练习)已知正项数列{}n a满足)1,2n n a a n n -+-∈≥N ,11a =.数列{}n b 满足各项均不为0,14b =,其前n项的乘积112n n n T b -+=⋅.(1)求数列{}n a 通项公式;(2)设2log n n c b =,求数列{}n c 的通项公式;(3)记数列(){}1nn a -的前2m 项的和2m S ,求使得不等式21210m S c c c ≥+++L 成立的正整数m 的最小值.19.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)已知数列{}n a 满足2123n n n a a a ++=+,112a =,232a =.(1)证明:数列{}1n n a a ++为等比数列,求{}n a 的通项公式.(2)若数列{}n a 的前n 项和为n S ,且()*127N 4n S n n λ⎛⎫+≥-∈ ⎪⎝⎭恒成立,求实数λ的取值范围.20.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+.数列{}n b 的前n 项和为n T ,且112n n na T ++=(1)求数列{}{},n n ab 的通项公式;(2)数列{}n c 满足cos ,,n n na n n cb n π⎧=⎨⎩为奇数为偶数,求21ni i c =∑.21.(2023秋·广东·高三校联考期末)已知数列1:A a ,2a ,…,n a ,…满足10a =,11i i a a +=+(1,2,,,i n = ),数列A 的前n 项和记为n S .(1)写出3S 的最大值和最小值;(2)是否存在数列A ,使得20221011S =如果存在,写出此时2023a 的值;如果不存在,说明理由.22.(2023秋·山东日照·高三校联考期末)已知数列{}n a 的各项均为非零实数,其前n 项和为(0)n n S S ≠,且21n n n n S a S a ++⋅=⋅.(1)若32S =,求3a 的值;(2)若1a a =,20232023a a =,求证:数列{}n a 是等差数列,并求其前n 项和.23.(2023秋·江苏南京·高三南京市第一中学校考期末)已知数列{}{},n n a b 满足222,1n n n n n a b a b +=-=.(1)求{}{},n n a b 的通项公式;(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:11121n n S n +≤-+-.24.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知数列{}n a 各项都不为0,12a =,24a =,{}n a 的前n 项和为n S ,且满足14n n n a a S +=.(1)求{}n a 的通项公式;(2)若12311231C C CC C n nn nnnn nn nb a a a a a --=+++⋅⋅⋅++,求数列112n n n n b b b ++⎧⎫+⎨⎬⎩⎭的前n 项和n T .25.(2023春·江苏南京·高三校联考阶段练习)已知数列{}n a 中11a =,其前n 项和记为n S ,且满足()()1232n n S S S n S ++⋅⋅⋅+=+.(1)求数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的通项公式;(2)设无穷数列1b ,2b ,…n b ,…对任意自然数m 和n ,不等式1m n m n nb b b m a +--<+均成立,证明:数列{}n b 是等差数列.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC --=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:2221211154n b b b +++< .27.(2022秋·湖北·高三校联考开学考试)已知数列{}n a 满足11a =,1n a +=中*N n ∈)(1)判断并证明数列{}n a 的单调性;(2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.28.(2022秋·山东潍坊·高三统考阶段练习)定义:对于任意一个有穷数列,在其每相邻的两项间都插入这两项的和,得到的新数列称为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和,得到二阶和数列,以此类推可以得到n 阶和数列,如{}2,4的一阶和数列是{}2,6,4,设n 阶和数列各项和为n S .(1)试求数列{}2,4的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想{}n S 的通项公式(无需证明);(2)设()()()()331321log 3log 3n n n n S n b S S +-+=-⋅-,{}n b 的前m 项和m T ,若20252m T >,求m 的最小值29.(2022秋·湖北黄冈·高三统考阶段练习)已知数列{}1,1,n n a a S =为数列{}n a 的前n 项和,且1(2)3n n S n a =+.(1)求数列{}n a 的通项公式;(2)求证:sin 0n n a a -<;(3)证明:212311111sin 1sin 1sin 1sin e n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .30.(2023·浙江温州·统考二模)设n S 为正项数列{}n a 的前n 项和,满足222n n n S a a =+-.(1)求{}n a 的通项公式;(2)若不等式214na n a t ⎛⎫+ ⎪+⎝≥⎭对任意正整数n 都成立,求实数t 的取值范围;(3)设3ln(1)4n a n n b e +=(其中e 是自然对数的底数),求证:123426n n b b b b b b ++++<….数列大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·云南曲靖·宣威市第七中学校考模拟预测)记n S为数列{}n a的前n项和,n T为S T+=.数列{}n S的前n项和,已知2n n(1)求证:数列{}n S是等比数列;(2)求数列{}n na的前n项和n A.2.(2023·辽宁铁岭·校联考模拟预测)已知数列{}n a 中,11a =,24a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*sin 3()cos cos n n c N b b =∈,求数列{}n c 的前n 项和n S .3.(2023·湖南株洲·统考一模)数列{}n a 满足13a =,212n n n a a a +-=.(1)若21n bn a =+,求证:{}n b 是等比数列.(2)若1nnc b =+,{}n c 的前n 项和为n T ,求满足100n T <的最大整数n .4.(2023·河北衡水·河北衡水中学校考模拟预测)已知数列{}n a 满足21n n n a xa ya ++=+()N n +∈,11a =,22a =,n S 为数列{}n a 前n 项和.(1)若2x =,1y =-,求n S 的通项公式;(2)若1x y ==,设n T 为n a 前n 项平方和,证明:214n n n T S S -<恒成立.5.(2023·山西朔州·怀仁市第一中学校校考二模)已知数列{}n a 满足13a =,且12,1,n n na n a a n +⎧=⎨-⎩是偶数是奇数.(1)设221n n n b a a -=+,证明:{}3n b -是等比数列;S>成立的n的最小值.(2)设数列{}n a的前n项和为n S,求使得不等式2022n6.(2022春·河北衡水·高三校联考阶段练习)已知正项数列{}n a 的前n 项和为n S ,且满足11a =,23a =,2132n n n a a a ++=-,数列{}n c 满足()22221232341n c c c n c n +++++= .(1)求出{}n a ,{}n c 的通项公式;(2)设数列()()1221log 1n n c n a +⎧⎫⋅+⎪⎪⎨⎬+⎡⎤⎪⎪⎣⎦⎩⎭的前n 项和为n T ,求证:516<n T .7.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)已知数列{}n a 的前n 项和n S 满足36S =,2n n S n na =+,*n ∈N .(1)求{}n a 的通项公式;(2)数列{}n b ,{}n c ,{}n d 满足()21211n n n a b a +=+-,12121n n n n n c b b b b --= ,且2nn nc d n =⋅,求数列{}n d 的前n 项和n T .8.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+-.9.(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)对于项数为m 的数列{}n a ,若满足:121m a a a ≤<<< ,且对任意1i j m ≤≤≤,i j a a ⋅与j ia a 中至少有一个是{}n a 中的项,则称{}n a 具有性质P .(1)如果数列1a ,2a ,3a ,4a 具有性质P ,求证:11a =,423a a a =⋅;(2)如果数列{}n a 具有性质P ,且项数为大于等于5的奇数,试判断{}n a 是否为等比数列?并说明理由.【答案】(1)证明见解析(2){}n a 为等比数列,理由见解析10.(2022秋·山东青岛·高三统考期末)记数列{}n a 的前n 项和为n S ,11a =,______.给出下列两个条件:条件①:数列{}n a 和数列{}1n S a +均为等比数列;条件②:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)记正项数列{}n b 的前n 项和为n T ,12b a =,23b a =,14n n n T b b +=⋅,求211(1)nii i i b b +=⎡⎤-⎣⎦∑.【答案】(1)12n n a -=(2)288n n+【分析】(1)选择条件①:先由{}1n S a +为等比数列结合等比中项列出式子,再设出等比数列{}n a 的公比,通过等比数列公式化简求值即可得出答案;选择条件②:先由1121222n n n n a a a na -+++⋅⋅⋅+=得出()()12121222212n n n n a a a n a n --++⋅⋅⋅+=-≥,两式做减即可得出()122n n a a n +=≥,再验证1n =时即可利用等比数列通项公式得出答案;(2)通过14n n n T b b +=⋅得出()1142n n n T b b n --⋅≥=,两式相减结合已知即可得出()1142n n b b n +--=≥,即数列{}n b 的奇数项、偶数项分别都成公差为4的等差数列,将211(1)nii i i b b+=⎡⎤-⎣⎦∑转化即可得出答案.【详解】(1)选条件①:数列{}1n S a +为等比数列,()()()2211131S a S a S a ∴+=++,即()()2121123222a a a a a a +=++,11a = ,且设等比数列{}n a 的公比为q ,()()22222q q q ∴+=++,解得2q =或0q =(舍),1112n n n a a q --∴==,选条件②:1121222n n n n a a a na -+++⋅⋅⋅+= ①,()()1212122212n n n n a a a n a n ---++⋅⋅⋅+=-≥∴,即()()12121222212n n n n a a a n a n --++⋅⋅⋅+=-≥ ②,由①②两式相减得:()()12221n n n n a na n a +=-≥-,即()122n n a a n +=≥,令1121222n n n n a a a na -+++⋅⋅⋅+=中1n=得出212a a =也符合上式,故数列{}n a 为首项11a =,公比2q =的等比数列,则1112n n n a a q --==,(2)由第一问可知,不论条件为①还是②,都有数列{}n a 为首项11a =,公比2q =的等比数列,即12n n a -=,11.(2022·湖北·黄冈中学校联考模拟预测)已知数列{}n a 满足0n a ≠,*N n ∈.(1)若2210n n n a a ka ++=>且0n a >.(ⅰ)当{}lg n a 成等差数列时,求k 的值;(ⅱ)当2k =且11a =,4a =2a 及n a 的通项公式.(2)若21312n n n n a a a a +++=-,11a =-,20a <,[]34,8a ∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.12.(2022秋·湖南长沙·高三校考阶段练习)已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n *∈N ),数列{}n b 满足2nn n b a =.(1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(2)设数列{}n c 满足()()131n nn n a c n λ--=-(λ为非零整数,n *∈N ),问是否存在整数λ,使得对任意n *∈N ,都有1n n c c +>.13.(2022秋·湖南衡阳·高三衡阳市一中校考期中)已知n S 为数列{}n a 的前n 项和,25a =,14n n n S S a +=++;{}n b 是等比数列,29b =,1330bb +=,公比1q >.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 和{}n b 的所有项分别构成集合A ,B ,将A B ⋃的元素按从小到大依次排列构成一个新数列{}n c ,求2012320T c c c c =++++ .【答案】(1)43n a n =-,3nn b =(2)660【分析】(1)将14n n n S S a +=++移项作差可得{}n a 是等差数列,结合25a =可求出数列{}n a 的通项公式,将1,b q 代入等式计算,即可求出数列{}n b 的通项公式;(2)由2077a =可判断前20项中最多含有123,,b b b 三项,排除23b a =可确定前20项中14.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b -+=,证明:122733n c c c ≤++⋅⋅⋅+<15.(2022秋·广东广州·高三校联考阶段练习)已知数列{}n a 的前n 项和为n S ,且12a =,132n n S S +=+,数列{}n b 满足()1122,n n n b b b n++==,其中*n ∈N .(1)分别求数列{}n a 和{}n b 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和nT【答案】(1)1*(2)3n n a n -=⋅∈N ,()*)1(n b n n n =+∈N (2)()*)121(3n n T n n =+-∈N 【分析】(1)由132n n S S +=+可得12)3(2n n S S n -=+≥,两式作差即可得数列{}n a 的递推关系,即可求通项,最后验证1a 是否符合即可;数列{}n b 利用累乘法即可求,最后验证1b 是否符合即可;(2)由题,由等差数列的性质得()11n n n a a n c +-=+,即可求出n c 的通项公式,最后利用错位相减法求n T 即可【详解】(1)由132n n S S +=+可得12)3(2n n S S n -=+≥,两式相减可得13(2)n n a a n +=≥,故数列{}n a 从第3项开始是以首项为2a ,公比3q =的等比数列.又由已知132n n S S +=+,令1n =,得213+2S S =,即12132a a a +=+,得21226a a =+=,故123)2(n n a n -=⋅≥;又12a =也满足上式,则数列{}n a 的通项公式为1*(2)3n n a n -=⋅∈N ;16.(2023·辽宁朝阳·校联考一模)已知数列{}n a 的前n 项和为()+N 1=∈+n nS n n ,数列{}n b 满足11b =,且()1+N 2+=∈+nn n b b n b (1)求数列{}n a 的通项公式;(2)求数列{}n b 的通项公式;(3)对于N n +∈,试比较1n b +与n a 的大小.17.(2022秋·广东深圳·高三校考阶段练习)记n S 为数列{}n a 的前n 项和,已知{}12,32n n a a S =-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)若{}1,n n n a b b a a +=的前n 项和为n T ,求证:14n T <.18.(2022秋·江苏常州·高三常州市第一中学校考阶段练习)已知正项数列{}n a 满足)1,2n n a a n n -+-∈≥N ,11a =.数列{}n b 满足各项均不为0,14b =,其前n项的乘积112n n n T b -+=⋅.(1)求数列{}n a 通项公式;(2)设2log n n c b =,求数列{}n c 的通项公式;(3)记数列(){}1nn a -的前2m 项的和2m S ,求使得不等式21210m S c c c ≥+++L 成立的正整数m 的最小值.19.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)已知数列{}n a满足2123n n n a a a ++=+,112a =,232a =.(1)证明:数列{}1n n a a ++为等比数列,求{}n a 的通项公式.(2)若数列{}n a 的前n 项和为n S ,且()*127N 4n S n n λ⎛⎫+≥-∈ ⎪⎝⎭恒成立,求实数λ的取值范围.20.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+.数列{}n b 的前n 项和为n T ,且112n n na T ++=(1)求数列{}{},n n ab 的通项公式;(2)数列{}n c 满足cos ,,n n na n n cb n π⎧=⎨⎩为奇数为偶数,求21ni i c =∑.21.(2023秋·广东·高三校联考期末)已知数列1:A a ,2a ,…,n a ,…满足10a =,11i i a a +=+(1,2,,,i n = ),数列A 的前n 项和记为n S .(1)写出3S 的最大值和最小值;(2)是否存在数列A ,使得20221011S =如果存在,写出此时2023a 的值;如果不存在,说明理由.22.(2023秋·山东日照·高三校联考期末)已知数列{}n a 的各项均为非零实数,其前n 项和为(0)n n S S ≠,且21n n n n S a S a ++⋅=⋅.(1)若32S =,求3a 的值;(2)若1a a =,20232023a a =,求证:数列{}n a 是等差数列,并求其前n 项和.23.(2023秋·江苏南京·高三南京市第一中学校考期末)已知数列{}{},n n a b 满足222,1n n n n n a b a b +=-=.(1)求{}{},n n a b 的通项公式;(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:11121n n S n +≤-+-.24.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知数列{}n a 各项都不为0,12a =,24a =,{}n a 的前n 项和为n S ,且满足14n n n a a S +=.(1)求{}n a 的通项公式;(2)若12311231C C CC C n nn nnnn nn nb a a a a a --=+++⋅⋅⋅++,求数列112n n n n b b b ++⎧⎫+⎨⎬⎩⎭的前n 项和n T .25.(2023春·江苏南京·高三校联考阶段练习)已知数列{}n a 中11a =,其前n 项和记为n S ,且满足()()1232n n S S S n S ++⋅⋅⋅+=+.(1)求数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的通项公式;(2)设无穷数列1b ,2b ,…n b ,…对任意自然数m 和n ,不等式1m n m n nb b b m a +--<+均成立,证明:数列{}n b 是等差数列.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC--=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:22211154b b b +++< .(2)由(1)可得:当1n =时,则1b 当2n ≥时,可得()(2211212n b n n=<-则222121111111114223nb b b ⎛+++=+-+- ⎝L 27.(2022秋·湖北·高三校联考开学考试)已知数列{}n a 满足11a =,1n a +=中*N n ∈)(1)判断并证明数列{}n a 的单调性;(2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.⎫⎪⎪⎪28.(2022秋·山东潍坊·高三统考阶段练习)定义:对于任意一个有穷数列,在其每相邻的两项间都插入这两项的和,得到的新数列称为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和,得到二阶和数列,以此类推可以得到n 阶和数列,如{}2,4的一阶和数列是{}2,6,4,设n 阶和数列各项和为n S .(1)试求数列{}2,4的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想{}n S 的通项公式(无需证明);(2)设()()()()331321log 3log 3n n n n S n b S S +-+=-⋅-,{}n b 的前m 项和m T ,若20252m T >,求m 的最小值【答案】(1)230S =,384S =,133n n S +=+(2)7【分析】(1)根据123,,S S S 进行猜想,结合等比数列的知识进而求解,并进行推导.(2)利用裂项求和法求得m T ,由此列不等式,从而求得m 的最小值.【详解】(1)一阶和数列:{}2,6,4,对应112S =;二阶和数列:{}2,8,6,10,4,对应230S =;三阶和数列:{}2,10,8,14,6,16,10,14,4,对应384S =;故猜想136n n S S -=-,()1333n n S S --=-,所以数列{}3n S -是首项为139S -=,公比为3的等比数列,所以11393,33n n n n S S -+-=⋅=+.下面证明136n n S S -=-:设112124n m m S a a a a --=++++++ ,则()()()()1112112244n m m m m m S a a a a a a a a a --=+++++++++++++29.(2022秋·湖北黄冈·高三统考阶段练习)已知数列{}1,1,n n a a S =为数列{}n a 的前n 项和,且1(2)3n n S n a =+.(1)求数列{}n a 的通项公式;(2)求证:sin 0n n a a -<;(3)证明:212311111sin 1sin 1sin 1sin e n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .30.(2023·浙江温州·统考二模)设n S 为正项数列{}n a 的前n 项和,满足222n n n S a a =+-.(1)求{}n a 的通项公式;(2)若不等式214na n a t ⎛⎫+ ⎪+⎝≥⎭对任意正整数n 都成立,求实数t 的取值范围;(3)设3ln(1)4n a n nb e+=(其中e 是自然对数的底数),求证:123426n n b b b b b b ++++<….。
高考数学二轮专题复习分册一专题三数列课件

余数为4,故100年后地支为未;综上:100年后的2123年为癸未年.故选B.
1.(1)[2023·山东济南模拟](多选)已知等差数列{an},前n项和为Sn ,
a2 023
a1>0,
<-1,则下列结论正确的是(
3.(1)[2023·重庆三模]已知{an}是等差数列,{bn}是等比数列,若a2+
3,d=2,故a5=a1+4d=3+8=11.故选C.
2.[2023·安徽合肥二模]已知等差数列{an}的前n项和为Sn,a4=-1,
a1+a5=2,则S8的值为(
)
A.-27 B.-16 C.-11 D.-9
答案:B
解析:因为{an}是等差数列,设公差为d,因为a4 =-1,a1 +a5 =2,所以
a1 −an q
=
;
1−q
微专题1 等差数列与等比数列的基本量计算
1.[2023·江西赣州二模]已知等差数列{an}中,Sn是其前n项和,若a3
+S3=22,a4-S4=-15,则a5=(
)
A.7
B.10
C.11
D.13
答案:C
解析:设公差为d,则a1+2d+3a1+3d=22,a1+3d-4a1-6d=-15,解得a1=
=4,a5+b9=8,则a4+b7=(
)
A.5
B.6 C.7
D.8
答案:B
解析:因为a3+b5=4,a5+b9=8,所以a3+b5+a5+b9=12,即 a3+a5+b5+
b9=12,根据等差数列的性质可知a3+a5+b5+b9=2a4+2b7=12,所以a4+b7=6.
高考数学专题复习:数列

高考数学专题复习:数列一、单项选择题(共8小题)1.已知在递减等比数列{}n a 中,1852=+a a ,3243=⋅a a ,若1=n a ,则n =()A .6B .7C .8D .92.已知数列{}n a 是等差数列,且满足751098=++a a a ,则126a a +=()A .42B .48C .50D .583.在数列{}n a 中,21=a ,22=a a 2=2且()n n n a a 112-+=-+(n ∈N +),100S =()A .0B .1300C .2600D .26504.已知正项数列{}n a 满足⎪⎭⎫ ⎝⎛+++=+++n a a a a a a n n 2222121,则数列()⎭⎬⎫⎩⎨⎧+n a n n 24的前8项和为()A .4558B .4051C .2027D .1095.在等差数列{}n a 中,39=a ,则前17项的和17S =()A .17B .27C .34D .516.已知函数f (x )是定义在R 上的单调增函数且为奇函数,数列{}n a 是等差数列,若前2022项和小于零,则()()()202221a f a f a f +++ 的值()A .恒为正数B .恒为负数C .恒为0D .可正可负7.设n S 是数列{}n a 的前n 项和,若n n S n 22+=,则5a =()A .-21B .11C .27D .358.无穷数列{}n a 的前n 项和为n S ,满足n n S 2=,则下列结论中正确的有()A .{}n a 为等比数列B .{}n a 为递增数列C .{}n a 中存在三项成等差数列D .{}n a 中偶数项成等比数列二、填空题(共5小题)9.在数列{}n a 中,21=a ,()121+=-+n a a n n ,则5a =__________.10.在等差数列{}n a 中,3a ,9a 是方程x 2+24x +12=0的两根,则数列{}n a 的前11项和等于__________.11.已知正项数列{}n a 满足na a a a a a n n +++=+++ 22121,则数列()⎭⎬⎫⎩⎨⎧+n a n n 12的前n 项和为__________.12.已知数列{}n a 的前n 项和为n S ,51=a ,12=a ,n n n S S S 3211=+-+(n ≥2,n ∈N*),则6S 的值为__________.13.若数列{}n a 满足:211=a ,121+=+n n n a a a ,则第三项3a =__________,它的通项公式n a =__________.三、解答题(共2小题)14.已知数列{}n a 满足11=a ,且⎪⎩⎪⎨⎧=+为偶数,为奇数,n a n a a n n n 2321(1)记n n a b 2=,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求数列{}n a 的前100项和.15.已知n S 为等差数列{}n a 的前n 项和,555=S ,1539=S .(1)求数列{}n a 的通项公式;(2)求数列{}n n b ⋅2的前n 项和n T .参考答案题号12345678答案ACDADBBD9.3010.-13211.12+n n 12.1611113.n2114.(1)21=b ,62=b ,132-⨯=n n b ;(2)()213350-。
高考数学一轮专项复习讲义(通用版)-等比数列(含解析)

等比数列复习要点1.理解等比数列的概念和通项公式的意义.2.掌握等比数列的前n 项和公式,理解等比数列的通项公式与前n 项和公式的关系.3.体会等比数列与指数函数的关系.一等比数列的有关概念1.等比数列的定义一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1q n -1.3.等比中项如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,即G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .二等比数列的有关公式1.通项公式:a n =a 1q n -1.2.前n 项和公式:S n.三等比数列的性质1.通项公式的推广:a n =a m ·q n -m (m ,n ∈N *).2.对任意的正整数m ,n ,p ,q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k .3.若等比数列前n 项和为S n ,则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列(m 为偶数且q =-1除外).4.在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .51>0,>11<0,q <1,则等比数列{a n }递增;1>0,q <11<0,>1,则等比数列{a n }递减.常/用/结/论1.若{a n },{b n }(项数相同)比数列.衍生数列,仔细体会.2.当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n .3.{a n }为等比数列,若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T3n T 2n ,…仍成等比数列.1.判断下列结论是否正确.(1)等比数列的公比q 是一个常数,它可以是任意实数.()(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .()(3)若数列{a n }的通项公式是a n =a n ,则其前n 项和S n =a1-a n 1-a .()(4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.()2.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=________.解析:a 1a 2a 3×a 7a 8a 9=a 65=50,∴a 4a 5a 6=a 35=52.答案:523.在等比数列{a n }中,a 3=4,a 7=16,则a 3与a 7的等比中项为________.解析:设a 3与a 7的等比中项为G ,因为a 3=4,a 7=16,所以G 2=4×16=64,所以G =±8.答案:±84.《八骏图》是从六朝起就很流行的一幅图,传说中有8匹善于奔跑的马,它们奔跑的速度各有差异.已知第i (i =1,2,…,7)匹马的最长日行路程是第i +1匹马最长日行路程的1.1倍,且第8匹马的最长日行路程为400里,则这8匹马的最长日行路程之和为________里.(取1.18≈2.14)解析:依题意可得,第8匹马、第7匹马、…、第1匹马的最长日行路程里数构成递增的等比数列,且首项为400,公比为1.1,故这8匹马的最长日行路程之和为400×1-1.181-1.1≈4000×(2.14-1)=4560(里).答案:4560题型等比数列基本量的计算典例1(1)(2023·全国甲卷,理)已知正项等比数列{a n }中,a 1=1,S n 为{a n }的前n 项和,S 5=5S 3-4,则S 4=()A .7B .9C .15D .30(2)(2023·全国甲卷,文)记S n 为等比数列{a n }的前n 项和.若8S 6=7S 3,则{a n }的公转化为基本量a 1,q 的方程.高考试题的设计也常以基本量的计算为主.比为________.(3)(2023·全国乙卷,理)已知{a n }为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=________.解析:(1)设等比数列{a n }的公比为q (q >0),由S 5=5S 3-4得,S 5-S 3=4S 3-4,即a 4+a 5=4(a 1+a 2+a 3)-4.因为a 1=1,所以q 3+q 4=4(1+q +q 2)-4,所以q 3(1+q )=4q (1+q ),所以q 2将条件转化为a 1,q 的方程,求解q 的值.=4.因为q >0,所以q =2,所以S 4=a 11-q 41-q =1-241-2=15,故选C.(2)因为8S 6=7S 3,显然公比q ≠1,则8×a 11-q 61-q=7×a 11-q 31-q,整理得1+q 3=78,解得q =-12.故答案为-12.(3)设等比数列{a n }的公比为q (q ≠0),则由题意,将条件转化为a 1,q 的方程,利用乘除法求解q 的值.1q =1,5=-2,所以a 7=a 1q 6=a 1q ·q 5=-2.故答案为-2.解决等比数列有关问题的常用思想方法(1)方程的思想:在等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想:等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,数列{a n }的前n 项和S n =na 1;当q ≠1时,数列{a n }的前n 项和S n =a 11-q n1-q=a 1-a n q 1-q.对点练1(1)(2024·广西桂林模拟)朱载堉(1536年—1611年)是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中阐述了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度12个音,相邻两个音之间的频率之比相等,且最后一个音的频率是最初那个音的2倍.设第二个音的频率为f 1,第八个音的频率为f 2,则f2f 1等于()A.1126 B.82C.122D .4122(2)在1和2之间插入11个数使包含1和2的这13个数依次成递增的等比数列,记插入的11个数之和为M ,插入11个数后这13个数之和为N ,则依此规则,下列说法错误的是()A .插入的第8个数为34B .插入的第5个数是插入的第1个数的32倍C .M >3D .N <7解析:(1)设第一个音的频率为a ,相邻两个音之间的频率之比为q ,那么a n =aq n -1,根据最后一个音的频率是最初那个音的2倍,得a 12=2a =aq 11,即q =2111,所以f 2f 1=a 8a 2=q 6=1126.(2)设该等比数列为{a n },公比为q ,则a 1=1,a 13=2,故q 12=a 13a 1=2.插入的第8个数为a 9=a 1q 8=34,故A 正确;插入的第5个数为a 6=a 1q 5,插入的第1个数为a 2=a 1q ,所以a 6a 2=a 1q 5a 1q =q 4=32,故B正确;M =a 21-q 111-q=1221-122111-122=-1-11-2112,要证M >3,即证-1-11-2112>3,即证12112-1>4,即证54>2112,即证>2,而>2成立,故C 正确;N =M+3.因为>(1.4)6>(1.9)3>2,所以65>2112,所以12112-1>5,所以-1-11-2112>4,即M>4.所以N=M+3>7,故D错误.答案:(1)A(2)D题型等比数列性质的多维研讨维度1等比数列通项的性质典例2(1)在等比数列{a n}中,a n>0,a1+a2+…+a8=4,a1a2·…·a8=16,则1a1+1a2+…+1a8的值为()A.2B.4C.8D.16(2)在各项均为正数的等比数列{a n}中,已知a1011=3,那么log3a1+log3a2+…+log3a2021=()对数运算性质的应用,同时运用等比数列积的对称性.A.4042B.2021C.4036D.2018解析:(1)1a1+1a2+…+1a8=a1+a8a1a8+a2+a7a2a7+a3+a6a3a6+a4+a5a4a5.巧妙应用积的对称性,把两个条件代入求值,此法只适用于偶数项的情形.若奇数项呢?a1+a2+…+a7=8,且a1·a2·a3·…·a7=128,求1a1+1a2+…+1a7的值,可先求a4=2,a1·a7=a2·a6=a3·a5=4.因为a1a8=a2a7=a3a6=a4a5,所以原式=a1+a2+…+a8a4a5=4a4a5,又a1a2·…·a8=16=(a4a5)4,a n>0,所以a4a5=2,所以1a1+1a2+…+1a8=2.故选A.(2)因为a1011=3,所以a1a2…a2021=(a1011)2021=32021,所以log3a1+log3a2+…+log3a2021=log3(a1a2 (2021)=log332021=2021.故选B.在等比数列的基本运算问题中,一般是利用通项公式与前n项和公式,建立方程组求解,但如果灵活运用等比数列的性质“若m+n=p+q(m,n,p,q∈N*),则有a m a n=a p a q”,则可减少运算量.解题时,要注意性质成立的前提条件,有时需要进行适当变形.对点练2(1)在等比数列{a n }中,a 1,a 17是方程x 2-14x +9=0的两根,则a 2a 16a 9的值为()A.14B .3C .±14D .±3(2)在各项都为正数的等比数列{a n }中,已知0<a 1<1,其前n 项之积为T n ,且T 12=T 6,则T n 取得最小值时,n 的值是________.解析:(1)因为a 1,a 17是方程x 2-14x +9=0的两根,所以a 1a 17=9,a 1+a 17=14,所以a 1>0,a 17>0.又数列{a n }为等比数列,所以a 1a 17=a 2a 16=a 29=9,且a 9>0,所以a 9=3,因此a 2a 16a 9=a 9=3.故选B.(2)由T 12=T 6得T12T 6=1,即a 7a 8a 9a 10a 11a 12=(a 9a 10)3=1,故a 9a 10=1,因为a 1a 18=a 9a 10,则a 1a 18=1,由于0<a 1<1,得a 18>1,所以等比数列{a n }是递增数列,故0<a 9<1<a 10,则T n 取得最小值时,n =9.答案:(1)B (2)9维度2等比数列前n 项和的性质典例3(1)(2021·全国甲卷,文)记S n 为等比数列{a n }的前n 项和.若S 2=4,S 4=6,则S 6=()A .7B .8C .9D .10(2)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.解析:(1)方法一:设数列{a n }的公比为q ,因为S 2=4,S 4=6,则易知公比q ≠±1,所以由等比数列的前n 项和公式,得此法是方程思想的应用,这也是数列问题中常用的方法,不致于失去解题方向.两式相除,得q 2=12,1=42-2,=221=42+2,=-22,所以S 6=a 11-q 61-q=7.方法二:易知S 2,S 4-S 2,S 6-S 4构成等比数列,此法属于整体思想的应用,由此得S 2,S 4,S 6的方程.由等比中项的性质得S 2(S 6-S 4)=(S 4-S 2)2,即4(S 6-6)=22,所以S 6=7.故选A.(2)奇+S 偶=-240,奇-S 偶=80,奇=-80,偶=-160,所以q =S 偶S 奇=-160-80=2.本题的核心在于理解S 偶S 奇=a 2+a 4+…+a 2na 1+a 3+…+a 2n -1=q ,巧妙应用条件,求得S 奇,S 偶.故答案为2.1.等比数列前n 项和的性质主要是若S n ≠0,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列(q =-1且n 为偶数除外).2.注意等比数列前n 项和公式的变形.当q ≠1时,S n =a 11-q n 1-q=a 11-q -a 11-q·q n ,即S n =A -Aq n (q ≠1).数列{a n }为等比数列⇔前n 项和S n =A(1-q n ).3.利用等比数列的性质可以减少运算量,提高解题速度.解题时,根据题目条件,分析具体的变化特征,即可找到解决问题的突破口.对点练3(1)等比数列{a n }的前n 项和为S n ,若S n =t ·2n -1-1,则t =()A .2B .-2C .1D .-1(2)(2024·安徽安庆模拟)已知等比数列{a n }的公比为q ,前n 项和为S n ,若q >0,则S 1+S 3S 2的最小值是________.解析:(1)设等比数列的公比为q ,当q =1时,S n =na 1,不符合题意;当q ≠1时,等比数列的前n 项和公式为S n =a 11-q n 1-q=-a 11-q ·q n +a 11-q,依题意S n =t ·2n -1-1=12t ·2n -1,即12t +(-1)=0,解得t =2.(2)由题意知,S 1+S 3S 2=a 1+a 1+a 2+a 3a 1+a 2=2+q +q 21+q=q +12-q +1+21+q=q +1+2q +1-1,又q >0,则q +1+2q +1-1≥22-1,当且仅当q =2-1时,等号成立.即S 1+S 3S 2的最小值是22-1.答案:(1)A(2)22-1题型等比数列的判定典例4已知数列{a n }的各项均为正数,记S n 为{a n }的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n }是等比数列;②数列{S n +a 1}是等比数列;③a 2=2a 1.注:如果选择不同的组合分别解答,则按第一个解答计分.解:选①②作为条件证明③:设S n +a 1=Aq n -1(A ≠0),则S n =Aq n -1-a 1,从通项公式反映出S n +a 1是等比数列,这是对条件②的描述.当n =1时,a 1=S 1=A -a 1,所以A =2a 1;从而得到基本量a 1=A2.当n ≥2时,a n =S n -S n -1=Aq n -2(q -1),利用S n 求得a n .因为{a n }是等比数列,所以Aq -1q=A2,解得q =2,所以a 2=2a 1.选①③作为条件证明②:这样选已知条件较简单,计算过程也是从基本量入手.因为a 2=2a 1,{a n }是等比数列,所以公比q =2,所以S n =a 11-2n 1-2=a 1(2n -1),即S n +a 1=a 12n ,所以S n +1+a 1S n +a 1=2,所以{S n +a 1}是等比数列.选②③作为条件证明①:设S n +a 1=Aq n -1(A ≠0),则S n =Aq n -1-a 1,当n =1时,a 1=S 1=A -a 1,所以A =2a 1;当n ≥2时,a n =S n -S n -1=Aq n -2(q -1),说明a 2,a 3,a 4…成等比数列,关键是a 1是否也满足此关系式.因为a 2=2a 1,所以A (q -1)=A ,解得q =2,所以当n ≥2时,a n =S n -S n -1=Aq n -2(q -1)=A ·2n -2=a 1·2n -1,又因为a n +1a n =2(n ≥2),且a 2=2a 1,所以{a n }为等比数列.判定一个数列为等比数列的常用方法(1)定义法:若a n +1a n=q (q 是常数),则数列{a n }是等比数列.(2)等比中项法:若a 2n +1=a n a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若a n =Aq n (A ,q 为常数),则数列{a n }是等比数列.对点练4(2024·福建宁德期末)已知各项都为正数的数列{a n }满足a n +2=2a n +1+3a n .(1)证明:数列{a n +a n +1}为等比数列;(2)若a 1=12,a 2=32,求数列{a n }的通项公式.(1)证明:由a n +2=2a n +1+3a n 可得,a n +2+a n +1=3a n +1+3a n =3(a n +1+a n ),因为数列{a n }的各项都为正数,所以a 1+a 2>0,所以数列{a n +a n +1}是公比为3的等比数列.(2)解:构造a n +2-3a n +1=k (a n +1-3a n ),整理得a n +2=(k +3)a n +1-3ka n ,所以k =-1,即a n +2-3a n +1=-(a n +1-3a n ),因为a 2-3a 1=32-3×12=0,所以a n +1-3a n =0⇒a n +1=3a n ,所以数列{a n }是以a 1=12为首项,3为公比的等比数列.所以a n =3n -12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学数列专项复习
强化主干知识复习
通过新课标与考试大纲对比,我们知道数列这一章的主干知识是:等差数列等比数列数列的通项及前n项和的求法。
因此,在备考复习中应抓住主干知识线,实施有效复习,帮助同学构建知识网络。
1. 等差数列:(1)要求同学理解等差概念,掌握等差数列的通项公式,弄清等差数列与一次函数的关系;(2)抓住等差数列的特征,掌握前n项和公式,弄清前n项的和与二次函数的关系;(3)强化"知三求二'的题型训练。
作为高考复习,适当强化题型训练是很有必要的,"知三求二'是等差数列的重要题型。
所谓"知三求二'就是等差数列有五个参量:项数、通项、前n项和、首项、公差,只要已知这五个量中的任意三个,就可以利用通项公式和前n项和公式求出其余两个。
关于"知三求二'的题型训练要适度,不要人为编造太难、太繁题目给同学做,这样不仅增加同学负担,而且淡化数学本质。
2. 等比数列:(1)要求同学理解等比概念,掌握等比数列的通项公式,弄清等比数列与指数函数的关系;(2)抓住等比数列的特征,掌握等比数列前n项和公式及其推导方法;(3)控制"知三求二'题型的难度。
得注意的是,关于等比数列,"知三求二'的问题可能出现高次方程,这不在新课标要求范围之内。
新课标的要求只限制在
直接用一元二次方程求解问题,因此在复习等比数列"知三求二'问题时要注意控制难度,按新课标的要求复习。
强化信息研究,准确把握高考动向
数列的概念与运算在高考试题中单独出现的频率并不高,常与其他知识综合进行考查。
主要命题点为:数列概念的革新定义性问题、数列的最大(最小)项问题、数列的通项公式或递推公式、数列的前n项和ns与na的关系等,而求数列的通项公式、研究数列的单调性、周期性和数列的递推关系式的应用是命题的热点,一般会在选择题或填空题中出现,且常考常新;
数列的前n项和ns与na的关系是高考命题的重点,往往渗透在数列的解答题中。
等差、等比数列是数列的两个基本的组成部分,在概念、公式和性质上有许多密切的联系,因为大部分的数列问题最后都必须要转化为等差、等比数列来解决,所以说本部分内容在高考中的重要性就不言而喻。
2高考数列复习方法
注重方法,强化变式训练
很多同学在高考复习中由于方法不当,往往采纳题海战术,做了海量的学习,但是收效却并不显然。
分析原因主要是因为,在做题的时候同学的注意力都集中在对结果的获得,而没有重视解
题的方法和解题过程中的思想。
这样在碰到一些老题的变型,就仿佛又是面对一道新题,没有思路,也浪费时间。
因此在复习中,要强调常规题型的示范功能,在复习中明确"万变不离其宗'的道理,要求同学能够熟练掌握解决数列题的基本方法与技巧,注重题与题之间的差别与联系,特别是教材中等差、等比公式的推导方法与运算技巧在解题中的应用。
这样才干减轻题海战术对同学的负担,真正实现"减负高效'。
注意数列与其他知识点的结合
数列的题型多样,通项公式的求解方法也灵活多变,高考中经常把数列、极限与函数、方程、不等式、解析几何等等相关内容综合在一起,再加以导数和向量等新增内容,使数列的综合题不断出新。
同时合计到与生活施行的联系,数列的考题中经常出现如增长率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题。
这就要求同学除了要熟练掌握数列的基础知识及应用,还要熟悉数列与其他数学知识的结合,能综合运用,不仅解决基础问题还要能熟练的解决实际问题。
同时数列中涉及到很多出色的数学思想,如归纳猜测证实,叠加、累乘、错位相减、特别与一般等思维,关于非数列问题的解决也颇有益处,因此在日常学习中,要注意这一方面的训练。
3高考数学知识点复习
高考数学大纲指出:等差数列和等比数列是高考中的热点问题其考试的内容包括:等差、等比数列及其通项公式。
等差、等比数列前n项和公式。
考试要求:(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能依据递推公式写出数列的前几项。
(2)理解等差、等比数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。
而且,在高考试题类型中,数列的题型比较灵活,可以说,不同试题的类型,视察的知识点不同,视察的难易程度也不同,因此,这就必须要〔教师〕引导同学进行总结,以促使同学能够灵活自如的应对高考中的相关试题。
综合试题的考查
高中数学知识点比较多,也比较繁杂。
所以,简单的概念性视察的试题相对来说比较少,基本上都是知识点之间的综合考查。
因此,这就必须要同学对所学知识点灵活运用,进而使同学在不断学习中学会综合利用相关知识点。
下面以一个例题为例进行简单介绍。
从该题中我们不难看出,这道试题是将函数与数列相结合的,并考查了奇函数的基本性质,又考查了等差数列和等比数列的定义。
从题目整体看,简单的已知条件,却必须要求出4个问题,
所以,一般会让同学从心理上产生畏惧,导致不能顺利解答。
因此,不管是综合题还是专项题,基本数学知识都是提升解题效率的关键。
总之,在数列的解题过程中,同学要夯实基础,理清题目中的关键点,灵活应用相关的知识,最终提升同学的解题效率。
4高考数学总复习的策略
熟悉题型考前培训
有所谓"养兵千日用兵一时'之说,就像运动员比赛之前要熟悉场地一样,教师应强化对考试大纲研究,对考试题型进行全面的梳理,剖析,变通,尽量让同学熟悉更多的有可能涉及到的考试题目类型,让他们做到心中有数,尽可能地减少因题型不熟而产生莫名的恐慌,以便将来能坚持优良的考场心态,考出自己应有的水平。
独立完成作业:尽量不用计算器,注意解题规范。
做错的题一定要及时订正:当教师评讲作业时,很多同学都听懂了,但是"听懂'和"会做'是两回事,只听不做是没有效果的,课后一定要自己再做一遍。
另外,学有余力的同学可围绕所学教材的进度看一些课外参照书,在学习过程中,假设发现一些新颖而有价值的习题,一些好的思维方法与解题方法,应该记录下来,以便进一步学习和掌握。
全面整合查漏补缺
综合复习阶段,做一些全真模拟测试卷。
同学在经过两轮复习之后,一般状况下,同学的知识已比较全面,比较系统,但是同学的综合解题能力还不强,应试〔心理素养〕还较差,我们经常会发现平常掌握较好的同学考试时却发挥失常。
因此,在这一轮复习中,要训练同学的应试技巧和技能,训练同学的表达能力和解题思路,训练同学的解题规范,调整心理状态,确保能有优良的心理素养,胸有成竹地去面对高考。
经过前面两轮复习后,大部分同学都能掌握得较好,但每个同学或多或少地存在各种问题,如果再由教师集体辅导的话。
容易出现以偏概全的错误思想,出现好同学懂了不想听,差同学仍然听不懂的状况,应该给同学一段可以自由支配的时间,让同学对前面做错的题目再次复习巩固,做好"查漏补缺'工作。