最新-四年级奥林匹克数学竞赛专题 应用题 精品
奥数和差倍问题专题训练

奥数和差倍问题专题训练奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
1934年和1935年,苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克。
今日学习啦我就将与大家共享:;具体内容如下,希望能够关怀到大家!和倍问题(差倍问题)已知两个数量的和(或差)与它们的倍数关系,求这两个数量。
关键找出1倍数量(或说单位1),画线段图表示题意。
练习:1.甲乙的和是36,甲是乙的2倍。
甲、乙各是多少?2.妈妈比女儿大28岁,妈妈年龄是女儿的5倍,妈妈和女儿各有几岁?3.一张课桌比一把椅子贵10元,椅子的单价是课桌的,课桌和椅子的单价各是多少元?4.一个数的小数点向右移动二位后增加了87.12,这个数原来是多少?《和倍问题》分析及练习题专题分析:已知两个数的和与它们之间的倍数关系,求这两个数各是多少的应用题,叫做和倍应用题。
要想顺利解决和倍应用题,最好的方法就是根据题意,画出线段图,使数量关系一目了然,从而正确的列式计算。
解答和倍应用题的关键是找出两数的和以及与其对应的倍数和。
解答和倍应用题的基本数量关系是:和(倍数+1)=小数;小数倍数=大数(几倍数)或者:两数和-小数=大数假如遇到三个或三个以上的数的倍数关系,也可用这个公式。
(首先找最小的一个数,再找出另几个数是最小数的倍数即可)练习一:1、学校有科技书和故事书共480本科技书的本数是故事书的3倍,两种书各多少本?2、一个养鸡场有675只鸡,其中母鸡是公鸡的4倍,这个养鸡场有公鸡、母鸡各多少只?3、学校将360本图书分给二、三年级,已知三年级所得的本书比二年级的2倍还多60本,二、三年级各得图书多少本?4、爸爸要把140张邮票分给弟弟和妹妹,已知弟弟分得的邮票张数比妹妹的4倍少10张,弟弟和妹妹各分得邮票多少张?练习二:1、小明有圆珠笔芯30支,小青有圆珠笔芯15支,问小青把多少支笔芯给小明后,小明的圆珠笔芯支数是小青的8倍?2、甲桶有油25千克,乙桶有油17千克,乙桶倒入多少千克油给甲桶后,甲桶的油是乙桶的5倍?3、甲水池有水69吨,乙水池有水36吨,假如甲水池中的水以每分钟2吨1/ 3的速度流入乙池,那么多少分钟后,乙水池的水是甲水池的2倍?4、甲书架有图书18本,乙书架有图书8本,班级图书管理员又买来图书16本,怎样支配才能使甲书架图书的本书是乙书架的2倍?练习三:1、某专业户养鸡、鸭、鹅共有960只,养鸡的只数是鹅的3倍,养鸭的只数是鹅的4倍。
四年级数学竞赛应用题题

四年级数学竞赛练习题(应用题) 姓名:1.祖父今年75岁,3个孙子的年龄分别是17岁、15岁和13岁,多少年后3个孙子的年龄和等于祖父的年龄?2.王雪读一本故事书,第一天读了8页,以后每天都比前一天多读3页,最后一天读了32页正好读完。
她一共读了多少天?3.学校买来一些毽子,分给全校各班。
如果每班16个,恰好分完;如果少给2个班,每个班多分1个,还剩10个。
班级和毽子各多少个?4.从甲城往乙城运58吨货物,如果用载重5吨的大卡车运一趟,运费150元;用载重2吨的中卡车运一趟,运费80元;用载重1吨的小卡车运一趟,运费50元。
要想用最少的钱一次运完这批货物,需大、中、小卡车各多少辆?(只填写得数,不写算式)大卡车()辆,中卡车()辆小卡车()辆5、体育老师买了3个排球和5个篮球,共用了345元,每个排球40元,每个篮球多少?6、某工厂第一车间有150人,第二车间有工人90人,要使第一车间的人数是第二车间的2倍,需要从第二车间调多少人到第一车间?7、一个球从100米的高处自由落下,每次着地后又跳回原来高度的一半又落下,当它第三次着地时,它共经过多少路程?8、在一条长200米公路的两侧栽树,每隔5米栽一棵,一共要栽多少棵树?9、小明读一本事故书,第一天读了8页,以后每天比前一天多读3页,最后一天读了32页,正好读完,这本书一共有多少页?10、从北京运至天津63吨货物,如果用载重5吨的大卡车运一趟,运费150元;用载重2吨的中卡车运一趟,运费80元;用载重1吨的小卡车运一趟,运费50元,要想用最少的钱一次运完这批货物,需大、中、小车各多少辆?答案1.(75—17—15—13)÷(3-1)=30÷2=15(年)2、(32-8)÷3+1=24÷3+1=9(天)3.(16×2-10)+2=(32—10)+2=24(个)16×24=384(个)4、用大卡车(11)辆,中卡车(1)辆,小卡车(1)辆。
四年级下册数学试题-奥数专题讲练:第七讲 应用问题综合强化 竞赛篇(解析版)全国通用

第七讲应用问题综合强化编写说明本讲将要分成:和差倍分问题、年龄问题和盈亏问题三个方面进行讲解.这三个方面按照小学奥数的一般进度,都在四年级上半期的前半期进行系统学习,我们在此讲解的目的主要是帮助孩子“温故”,防止他们遗忘,同时帮助之前没有学习过奥数的同学把这部分知识补习上!教师根据本班孩子学习接受的情况,进行适当的基础知识讲解.内容概述从三年级到最后的小升初、分班考试中,很多学生都会问学了那么多专题(行程问题、年龄问题,植树问题,鸡兔同笼,盈亏问题,牛吃草问题等等),到底应该怎么去记忆和具体解答呢,这也是许多听课的家长所迷惑的问题.其实这所有的专题都不是平行的,也就是划分标准不同,一般是按照三类来划分:第一:按照题目内容,行程问题、年龄问题、时钟问题等;第二:按照题目本质,和差倍分问题、盈亏问题、鸡兔同笼等,涉及的是思想,可以变成第一类的任何一种问题;第三:按照解题思想,从反面考虑问题、还原问题等.本讲是对原来学过和差倍分、年龄、盈亏问题进行总结强化,同时帮助你不断回顾已有知识,更加深刻体会做题的思路方法!和差倍分问题【例1】有5堆苹果.较小的3堆平均有18个苹果.较大的2堆,苹果数之差为5个.又较大的3堆平均有26个苹果,较小的2堆苹果数之差为7个.最大堆与最小堆平均有22个苹果.问:每堆各有多少个苹果?分析:最大堆与最小堆共22×2=44个苹果.较大的2堆与较小的2堆共44×2+7-5=90个苹果.所以中间的一堆有:(18×3+26×3—90)÷2=21个苹果;较大的2堆有:26×3—21=57个苹果;最大的一堆有:(57十5)÷2=31个苹果;次大的2堆有:57—31=26个苹果;较小的2堆有:18×3—21=33个苹果;次小的一堆有:(33+7)÷2=20个苹果;最小的一堆有:20—7=13个苹果.【前铺】小明、小红、小玲共有73块糖.如果小玲吃掉3块,那么小红与小玲的糖就一样多;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍.问小红有多少块糖?分析:如果小玲吃掉3块,那么小红与小玲的糖就一样多,说明小玲比小红多3块;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍,即小明加2是小红减2后的2倍,说明小明是小红的2倍少6(2×2+2).小红的颗数=(73-3+6)÷(1+1+2)=19块.【例2】某项竞赛分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍. 如果评出一、二、三等奖各2人,那么每个一等奖的奖金是308元.如果评出1个一等奖,2个二等奖,3个三等奖,那么一等奖的奖金是多少元?分析:我们把每个三等奖奖金看作1份,那么每个二等奖奖金是2份,每个一等奖奖金则是4份.当一、二、三等奖各评2人时,2个一等奖的奖金是(308×2)元,2个二等奖的奖金等于1个一等奖的奖金308元,2个三等奖的奖金等于1个二等奖奖金(308÷2)元.所以奖金总数是:(308×2+308+308÷2)元.当评1个一等奖,2个二等奖,3个三等奖时,1个一等奖奖金看做4份,2个二等奖奖金2×2=4(份),3个三等奖奖金的份数是1×3=3(份),总份数就是:4+4+3=1l(份).这样,可以求出1份数为98元,一等奖的奖金:98×4=392(元).【例3】有8只盒子,每只盒内放有同一种笔.8只盒子所装笔的支数分别为17支、23支、33支、36支、38支、42支、49支、51支.在这些笔中,圆珠笔的支数是钢笔支数的2倍,钢笔支数是铅笔支数的13,只有一只盒里放的是水彩笔.这盒水彩笔共有多少支?分析:铅笔数是钢笔的3倍,圆珠笔数是钢笔的2倍,因此这三种笔支数的和是钢笔数的6(=l+3+2)倍.17+23+33+36+38+42+49+5l 除以6余l,所以水彩笔的支数除以6余l,在上述8盒的支数中,只有49除以6余1,因此水彩笔共有49支.【前铺】盒中有黄、红、蓝三种颜色的棋子共66粒,其中黄色棋子数是红色棋子数的4倍,蓝色棋子数的2倍等于黄色棋子数的3倍.这个盒中三种颜色的棋子各有多少粒?分析:把红棋子数看作1份,则黄棋子为4份,蓝棋子为6份,红、黄、蓝棋子数分别为:6、24、36粒.【例4】有长短两支蜡烛(两支蜡烛同样时间燃烧的长度相同),它们的长度之和为56厘米.将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃之前一样长,这时短蜡烛的长度又恰好是长蜡烛的23.点燃前,长蜡烛有多长?分析:我们要注意发掘题目中真正的不变量,实际上这个题目中两根蜡烛的长度差是不变的.(为什么?由于两根蜡烛燃烧的速度一样).把原来短蜡烛的长度看作3份,那么后来长蜡烛的长度也为3份,后来短蜡烛的长度为2份,差值为1份,那么原来长蜡烛长度为4份,所以1份为56÷(4+3)=8(厘米),原来长蜡烛为4×8=32(厘米).【前铺】某日停电,房间里燃起了长短两根蜡烛,它们燃烧速度是—样的.开始时长蜡烛是短蜡烛长度的2倍,当送电后吹灭蜡烛,发现此时长蜡烛是短蜡烛长度的3倍.短蜡烛燃烧掉的长度是5厘米.问原来两根蜡烛各有多长?分析:我们要注意发掘题目中真正的不变量,实际上这个题目中两根蜡烛的长度差是不变的.(为什么?由于两根蜡烛燃烧的速度一样).那么我们根据题意可知:原长蜡烛长度=2倍原短蜡烛长度,差为1倍原短蜡烛长度;后长蜡烛长度=3倍后短蜡烛长度,差为2倍后短蜡烛长度;所以原短蜡烛长度=2倍后短蜡烛长度,也就是说短蜡烛燃烧了1倍后短蜡烛长度,为5厘米,所以原短蜡烛长10厘米,原长蜡烛长20厘米.【巩固】某日停电,房间里同时点燃了两支同样长的蜡烛.这两支蜡烛的质量不同,一支可以维持3小时,另一支可以维持5小时,当送电时吹灭蜡烛,发现其中一支剩下的长度是另一支剩下长度的3倍.这次停电时间是多少小时?分析:设停电x小时,可得:1113(1)53x x-=⨯-,解得:x=2.5(小时).【例5】有三堆棋子每堆棋子一样多并且都只有黑白两色棋子.已知第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占到三堆棋子里黑子总数的25,如果把三堆棋子集中到一起,那么白子占全部棋子的几分之几?分析:第一堆里的黑子和第二堆里的白子一样多,那么我们不妨把第一堆里的黑子与第二堆里的白子调换一下,那么第一堆全白子,第二堆全黑子,且每堆总数不变.因为第三堆里的黑子占到三堆棋子里黑子总数的25,我们不妨把第三堆里的黑棋子看作2份,那么剩下的3份都是第二堆的黑子,所以每堆都是三份,白子共(1+3)份,白子占全部棋子的9分之4.【例6】有一个分数,如果分子减1,那么这个分数就变成13;如果分母减少1,那么这个分数变成12.那么这个分数是多少?分析:把分母看成一个3倍量,那么分子就是1倍量+1,根据:如果分母减少1,那么这个分数变成12,那么分母就是:(2倍量+2)+1=2倍量+3,所以1倍量代表3,所以分数为:4 9 .【例7】一批工人到甲乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的3 2 .每天分成上午和下午两段,每人在上午和下午所完成的工作量相等,上午去甲工地的人数是去乙工地人数的3倍;下午这批工人中有712的人去甲工地,其他的人到乙工地.到晚上时,甲工地的工作已完成,乙工地的工作还需要4名工人再做1天.那么这批工人有多少名?分析: 我们定义一个单位量:一个单位工人工作半天所完成的工作量称作1个单位量.假设一共有12单位个工人,那么上午分成4份,每一份有3个.去甲工地的工人是3份9个,完成的工作量是9个单位;去乙工地的工人是1份,3个单位.因此乙工地完成的工作量是3个.下午是这样子的:712的人去甲工地,其他的人到乙工地.所以去甲工地的人有12×712=7个单位,完成了7个单位工作量,乙工地完成的工作量是(12—7)=5个.这样一天和起来:甲工地完成了(9+7)=16个工作量,乙工地完成了(5+3)=8个工作量.甲工地的工作量全部完成了,所以甲工地的任务工作量是16个.甲工地的工作量是乙工地的工作量的32,所以乙工地的任务工作量是16÷3×2=323个.乙工地完成了8个工作量,这样乙工地剩下的工作量是(323-8)=83个工作量,这83个工作量需要4个人工作1天也就是需要8个人工作半天.而83是83个单位的工人作半天完成的工作量,因此83个单位的工人有8个.所以1个单位的工人有8÷83=3(个).这批工人一共是12个单位,所以一共有工人:3×12=36(个).年龄问题年龄问题是小学数学中常见的一类问题.例如:已知两个人或若干个人的年龄,求他们年龄之间的某种数量关系等等.年龄问题又往往是和倍、差倍、和差等问题的综合.它有一定的难度,因此解题时需抓住其特点.年龄问题变化关系的三个基本规律:1、两人年龄的差是不变的量;2、两人年龄的倍数关系是变化的量;3、每个人的年龄随着时间的增加都增加相等的量.年龄问题的解题要点是:1、入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系.2、关键:抓住“年龄差”不变.3、解法:应用“差倍”、“和倍”或“和差”问题数量关系式.年龄问题的解题正确率保证:验算!【例8】女儿今年(2007年)12岁,妈妈对女儿说:“当你有我这么大岁数时,我已经60岁喽!”问:妈妈12岁时,是哪一年?分析:画线段图分析.母女年龄的差是(60-12)÷2=24,2007-24=1983(年).【巩固】(第一届祖冲之杯数学邀请赛) 甲对乙说:“当我的岁数是你现在的岁数时,你才5岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将50岁.”那么,甲现在( )岁,乙现在( )岁.分析:画图分析.年龄差=(50-5)÷3=15,乙现在的岁数为:15+5=20(岁),甲现在的岁数为:20+15=35(岁).【前铺】兄弟二人的年龄相差5岁,兄3年后的年龄为弟4年前的3倍.问:兄、弟二人今年各多少岁?分析:根据题意,作示意图如右:由上图可以看出,兄3年后的年龄比弟4年前的年龄大5+3+4=12(岁),由“差倍问题”解得,弟4年前的年龄为(5+3+4)÷(3-1)=6(岁). 由此得到,弟今年6+4=10(岁),兄今年10+5=15(岁).【前铺】今年爷爷78岁,三个孙子的年龄分别为27、23、16岁.经过多少年后爷爷的年龄等于三个孙子年龄和?分析:三个孙子的年龄和是:27+23+16=66(岁),跟爷爷年龄差等于12岁,过一年两者的年龄差减少2岁,所以6年后爷爷的年龄等于三个孙子年龄和.【拓展】已知祖孙三人,祖父和父亲年龄的差与父亲和孙子年龄的差相同,祖父和孙子年龄之和为82岁,明年祖父年龄恰好等于孙子年龄的5倍.求祖孙三人各多少岁?分析:“祖父和父亲年龄差与父亲和孙子年龄的差相同”这一条件较难理解,可作出示意图,从图中容易看出,祖父和孙子年龄之和恰为父亲年龄的2倍.父亲的年龄:82÷2=41(岁) ,孙子的年龄:(82+1×2)÷(1+5)-1=13(岁),祖父的年龄:82-13=69(岁).【例9】五位老人的年龄互不相同,其中年龄最大的比年龄最小的大6岁,已知他们的平均年龄为85岁,其中年龄最大的一位老人是谁?分析:如果最小的比85只小一岁,那么由于这时其他人的年龄均不小于85,而最大的比85大5(=6-1)岁,这样平均年龄必超过85;如果最小的比85小2,那么可能还有一人比85小1,但最大的比85大4(=6-2)岁,而4>1+2,从而是年龄仍超过85;如果最小的比85小3,那么最大的比85大3(=6-3),两人的平均年龄正好是85,其他三人如果年龄是84、85、86(或83、85、87)那么五人平均年龄正好是85;如果最小的比85小4或小5,这时平均年龄必小于85(与开始两种情况的推理类似,只是将大、小互易)因此,最大的年龄一定是88(=85+3)岁. 【例10】梁老师问陈老师有多少子女,她说:“现在我和爱人的年龄和是子女年龄和的6倍;两年前,我们的年龄和是子女年龄和的10倍;六年后,我们的年龄和是子女年龄和的3倍。
小学四年级奥数题及答案5篇

【导语】奥数是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第⼀届国际数学奥林匹克竞赛。
以下是⽆忧考整理的《⼩学四年级奥数题及答案5篇》相关资料,希望帮助到您。
1.⼩学四年级奥数题及答案 1、某筑路队承担了修⼀条公路的任务。
原计划每天修720⽶,实际每天⽐原计划多修80⽶,这样实际修的差1200⽶就能提前3天完成。
这条公路全长多少⽶? 想:根据计划每天修720⽶,这样实际提前的长度是(720×3-1200)⽶。
根据每天多修80⽶可求已修的天数,进⽽求公路的全长。
解:已修的天数: (720×3-1200)÷80 =960÷80 =12(天) 公路全长: (720+80)×12+1200 =800×12+1200 =9600+1200 =10800(⽶) 答:这条公路全长10800⽶。
2、某鞋⼚⽣产1800双鞋,把这些鞋分别装⼊12个纸箱和4个⽊箱。
如果3个纸箱加2个⽊箱装的鞋同样多。
每个纸箱和每个⽊箱各装鞋多少双? 想:根据已知条件,可求12个纸箱转化成⽊箱的个数,先求出每个⽊箱装多少双,再求每个纸箱装多少双。
解:12个纸箱相当⽊箱的个数: 2×(12÷3)=2×4=8(个) ⼀个⽊箱装鞋的双数: 1800÷(8+4)=18000÷12=150(双) ⼀个纸箱装鞋的双数: 150×2÷3=100(双) 答:每个纸箱可装鞋100双,每个⽊箱可装鞋150双. 3、某⼯地运进⼀批沙⼦和⽔泥,运进沙⼦袋数是⽔泥的2倍。
每天⽤去30袋⽔泥,40袋沙⼦,⼏天以后,⽔泥全部⽤完,⽽沙⼦还剩120袋,这批沙⼦和⽔泥各多少袋? 想:由已知条件可知道,每天⽤去30袋⽔泥,同时⽤去30×2袋沙⼦,才能同时⽤完。
小学数学竞赛四年级试题及答案

小学数学竞赛四年级试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的两位数?A. 10B. 20C. 30D. 40答案:A2. 一个长方形的长是12厘米,宽是8厘米,它的周长是多少厘米?A. 40厘米B. 32厘米C. 24厘米D. 20厘米答案:B3. 一个数的5倍是25,这个数是多少?A. 5B. 4C. 3D. 2答案:A4. 一个班级有40个学生,其中女生比男生多4人,问女生有多少人?A. 22B. 20C. 18D. 16答案:A5. 一个数加上12等于这个数的3倍,这个数是多少?A. 6B. 8C. 10D. 12答案:C二、填空题(每题2分,共10分)6. 一个数的平方是36,这个数是______。
答案:6 或 -67. 一个数的一半加上10等于这个数本身,这个数是______。
答案:208. 一个数的4倍减去8等于这个数的3倍,这个数是______。
答案:89. 一个数的3倍加上另一个数的2倍等于40,如果这个数是5,那么另一个数是______。
答案:1510. 一个数的7倍等于另一个数的5倍,如果这个数是10,那么另一个数是______。
答案:14三、计算题(每题5分,共20分)11. 计算下列各题:(1) 456 - 123 =答案:333(2) 789 × 2 =答案:1578(3) 1024 ÷ 32 =答案:32(4) 1000 - 234 + 567 - 678 =答案:211四、应用题(每题10分,共30分)12. 一个水果店有苹果和梨两种水果,苹果的价格是每千克5元,梨的价格是每千克4元。
如果小明买了3千克苹果和2千克梨,他需要支付多少钱?答案:3千克苹果的价格是3 × 5 = 15元,2千克梨的价格是2 × 4 = 8元。
所以小明需要支付15 + 8 = 23元。
13. 一个班级有45名学生,其中男生比女生多5人。
四年级奥林匹克数学竞赛题目完整版

四年级奥林匹克数学竞赛题目HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】四年级奥林匹克数学竞赛题目一、计算题 (4分)1、11×40+39×48+8×11 =2、1996+1997+1998+1999+2000+2001+2002+2003+2004=二、填空题 (27分)1、找规律填数: 21 26 19 24 ( ) ( ) 15 202、用0--4五个数字组成的最大的五位数与最小的五位数相差( )。
3、用0、5、8、7这四个数字,可以组成()个不同的四位数。
4、小明每天晚上9时30分睡觉,早晨6时30分起床,那么他的睡眠时间是()小时。
5、甲、乙、丙三人站成一排照相,有()种排法。
6、从午夜零时到中午12时,时针和分针共重叠()次。
7、环形运动场上正在进行长跑比赛。
在每位参加赛跑的运动员前面有7个人在跑着,在每位运动员的后面,也有7个人在跑着,现在运动场上一共有()名运动员。
8、一块豆腐,要想切成八块,最少的()刀就可以完成。
9、妈妈使用一个平底锅烙饼,这个平底锅每次只能放2张饼,1张饼要烙两面,烙熟一面要3分钟,烙熟3张饼至少需要()分钟。
三、选择题 (21分)1、公园要建一个正方形花坛,并在花坛四周铺上2米宽的草坪,草坪的面积是96平方米,花坛和草坪的面积总和是( )平方米.(A)204 (B)190 (C)196 (D)1002、小明每分钟走50米,小红每分钟走60 米,两人从相距660米的两村同时沿一条公路相对出发,8分钟后两人相距( )米.(A)75 (B)200 (C)220 (D)1103、右图的周长是()分米.。
4分米 5分米(A)22 (B)20 (C)18 (D)284、500张白纸的厚度为50毫米,那么()张白纸的厚度是 750毫米。
C. 75005、6个男生的平均体重是40千克,4个女生的平均体重是 30千克,这10个同学的平均体重是()千克。
最新-四年级奥林匹克数学综合训练题(十) 精品
四年级奥数综合训练题十
1.鸡兔同笼,共有足248只,兔比鸡少52只,那么免有()只,鸡有()只。
2.工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了()只。
3.有2角、5角和1元人民币20张,共计12元,则1元有()张,5角有()张,2角有()张。
4.班主任张老师带五年级(2)50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵。
问()名男生,()名女生。
5.大油瓶一瓶装4千克,小油瓶2瓶装1千克,现有100千克油装了共60个瓶子。
问大瓶子有()个,小瓶子有()个。
6.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀)。
三种动物各几只?
7.东湖小学六年级举行数学竞赛,共20道试题,做对一题得5分,没有做一题或做错一题倒扣3分,刘刚得了60分,则他做对了( )题。
8.鸡兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只,则鸡( )只,兔( )只。
9.100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有( )个,小和尚有( )个。
10.30枚硬币,由2分和5分组成,共值9角9分,2分硬币有()个,5分有()个。
11.有钢笔和铅笔27盒,共计300支,钢笔每盒10支,铅笔每盒12支,则钢笔有()盒,铅笔有()盒。
四年级奥数应用题
训练A卷(1)小阳期终考试时语文和数学的平均分数是96分,数学比语文多8分。
语文是( )分,数学是( )分。
(2)甲、乙两个仓库共存大米42吨,如果从甲仓库调3吨大米到乙仓库,那么两个仓库所存的大米就正好同样多。
原来甲仓库存大米( )吨,乙仓库存大米( )吨。
(3)爸爸和爷爷1994年的年龄加在一起是127岁,十年前爷爷比爸爸大37岁,爷爷是( )年出生的。
(4)有一个停车场上,现有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子。
其中摩托车有( )辆。
(5)参加少年宫科技小组的同学,今年比去年的3倍少35人,去年比今年少41人,今年参加科技小组的同学有( )人。
(6)父亲今年47岁,儿子今年19岁,( )年前父亲的年龄是儿子的5倍。
(7)一个植树小组植树,如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。
这个植树小组有( )人,一共要栽( )棵树。
2.甲、乙、丙三数之和是1160,甲是乙的一半,乙是丙的2倍。
三个数各是多少?3.某招待所开会,每个房间住3人,则36人没床位;每个房间住4人,则还有13人没床位,如果每个房间住5人,那么情况又怎么样?4.小明读一本书,第一天读83页,第二天读74页,第三天读71页,第四天读64页,第五天读的页数比这五天中平均读的页数要多3.2页。
小明第五天读了多少页?5.在桥上测量桥高,把绳子对折后垂到水面时绳子还剩下8米;把绳子三折后,垂到水面时绳子还剩下2米,求桥高和绳长各是多少米。
6.44名学生去划船,一共乘坐10只船,其中每只大船坐6人,每只小船坐4人。
大船和小船各有多少只?7.实验小学四年级举行数学竞赛,一共出了10道题,答对一题得10分,答错一题倒扣5分。
张华把10道题全部做完,结果得了70分。
他答对了几道题?8.买4支铅笔和5块橡皮,共付6元;买同样的6支铅笔和2块橡皮,共付4.60元。
每支铅笔和每块橡皮各多少钱?9.修一条路,第一天修了全长的一半多6米,第二天修了余下的一半少20米,第三天修了30米,最后还剩14米没修。
小学奥数行程问题应用题五篇
【导语】奥数是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第国际数学奥林匹克竞赛。
以下是整理的《⼩学奥数⾏程问题应⽤题五篇》相关资料,希望帮助到您。
1.⼩学奥数⾏程问题应⽤题 1、甲、⼄两辆汽车分别以不同的速度从东西两城相向⽽⾏,途中相遇,相遇点距离东城75千⽶,相遇后两车继续以原速前进,到达对⽅出发地后,两车⽴即返回,在途中第⼆次相遇,这时相遇点距东城45千⽶。
求东西两城相距多少千⽶? 2、客车和货车分别以不同的速度从A、B两城相向⽽⾏,途中相遇,相遇点距B城40千⽶,相遇后两车继续以原速前进,到达对⽅出发地后,两车⽴即返回,在途中第⼆次相遇,这时相遇点距B城60千⽶,求A、B两城相距多少千⽶? 3、甲、⼄两车同时从A、B两站相对开出,第⼀次相遇在离A站120千⽶处,然后各⾃安原速继续⾏驶,分别到达对⽅车站后⽴即返回,第⼆次相遇时离A站的距离占A、B两站距离的40%,A、B两站相距多少千⽶? 2.⼩学奥数⾏程问题应⽤题 1、A、B两地相距21千⽶,上午9时整,甲、⼄两⼈分别从A、B两地出发,相向⽽⾏,甲到达B地后⽴即返回,⼄到达A 地后⽴即返回,上午11时他们第⼆次相遇。
此时,甲⾏的路程⽐⼄⾏的路程多5千⽶。
甲每⼩时⾏多少千⽶? 2、A、B两城相距160千⽶,早晨6时整,甲车和⼄车分别从A、B两城出发,相向⽽⾏,甲车到达B城后⽴即返回,⼄车到达A城后⽴即返回,12时整他们第⼆次相遇。
此时,甲⾏的路程⽐⼄⾏的路程多24千⽶。
甲车每⼩时⾏多少千⽶? 3、东西两城相距120千⽶,上午8时整,客车和货车分别从东西两城出发,相向⽽⾏,客车到达西城后⽴即返回,货车到达东城后⽴即返回,11时整他们第⼆次相遇。
此时,客车型的路程是货车的2倍。
客车每⼩时⾏多少千⽶?3.⼩学奥数⾏程问题应⽤题 1、甲、⼄两地之间的距离是360千⽶,两辆汽车同时从甲地开往⼄地,第⼀辆汽车每⼩时⾏40千⽶,第⼆辆汽车每⼩时⾏50千⽶,第⼆辆汽车到达⼄地⽴即返回,两辆车从开出到相遇共⽤了多少⼩时? 2、A、B两城之间的距离是880千⽶,甲车和⼄车同时从A城开往B城,甲车每⼩时⾏60千⽶,⼄车车每⼩时⾏50千⽶,甲车车到达B城⽴即返回,两辆车从开出到相遇共⽤了多少⼩时? 3、东、西两城之间的距离是600千⽶,客车和货车同时从东城开往西城,客车每⼩时⾏65千⽶,货车车每⼩时⾏55千⽶,客车车到达西城⽴即返回,客车从开出到与货车相遇共⽤了多少⼩时?4.⼩学奥数⾏程问题应⽤题 1、甲⼄两辆汽车同时从东西两地相向开出,甲车每⼩时⾏56千⽶,⼄车每⼩时⾏48千⽶,两车在离中点32千⽶处相遇,求东西两地的距离是多少千⽶? 2、甲⼄两辆汽车同时从东站开往西站。
全国小学四年级奥林匹克数学竞赛试题及答案.doc
全国小学四年级奥林匹克数学竞赛试题及答案全国小学四年级奥林匹克数学竞赛试题及答案全国小学四年级奥林匹克数学竞赛试题一、填空:(30分)1、300 48的积是一个( )位数,省略万后面的尾数约是( )。
(2分)2、过直线外一点可以画( )条直线与这条直线垂直,可以画( )条直线与这条直线平行,可以画()条直线与这条直线相交。
(3分)3、在内填上或=。
(3分)920 2338 2101021 10019 560 20 5604、一个有余数的除法算式,商和除数都是25,要使余数最大,被除数是()。
(2分)5、两个数相除商是7,余数是29,除数最小是( ),被除数最小是()。
(3分)6、括号里最大能填几?(3分)40 ( ) 236( ) 86 29051 () 4037、根据运算定律填空。
(3分)28 15+15 72= 15 ( )2544= 25 ( )5 86 20=86()8、一个数四舍五入后是10万,这个数最大是(),最小是( )。
(2分)9、钟面上11时,时针和分针成( );3时,时针和分针成();5时,时针和分针成( )。
(填上直角、锐角、钝角) (3分)10、31 327 32万,里最小能填();(1分)71734594 7亿, 里最大能填()。
(1分)11、如右图,1=2=3, 1=( )。
(2分)12、如右图,已知4=45,5=( ) ,6=() 。
(2分)二、判断:(对的在后面括号里打,错的打,5分)1、[345-(87+28)]23=345-(87+28)23 ()2、一、十、百、千、万都是计数单位。
( )3、估算49329时,可以把29看作30,493看作500,这样估算的结果比实际值大。
( )4、在没有余数的除法里,被除数除数商=1。
( )5、求一个数的近似数,只要把这个数的尾数去掉就可以。
()三、选择正确的答案的序号填在括号里:(每个选项各1分,共9分)1、两个锐角不能拼成一个( )。