最新江西省2015年中等学校统一考试数学模拟试卷一(扫描版)

合集下载

2015年中考数学模拟试卷

2015年中考数学模拟试卷

2015年中考数学模拟试卷一、选择题(共10小题,每小题3分,计30分)1.-31的倒数是( ) A .3 B .31 C .-3 D .± 31【解答】解:-31的倒数是-3.故选:C .2.如图,由6个相同的小正方体搭成的立体图形,若由图①变到图②,不改变的是( )A .主视图B .左视图C .俯视图D .左视图和俯视图【解答】解:主视图都是第一层三个正方形,第二层左边一个正方形,故A 正确;故选:A . 3.(2015•西安模拟)计算(-3a 3)2的结果是( )A .-3a 6B .3a 6C .-9a 6D .9a 6【解答】解:(-3a 3)2=9a 6,故选D .4.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是( )A .32°B .58°C .68°D .60°【解答】解:根据题意可知,∠2=∠3,∵∠1+∠2=90°,∴∠2=90°-∠1=58°.故选:B .5.某外贸公司要出口一批食品罐头,标准质量为每听450克,现抽取10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:-10,+5,0,+5,0,0,-5,0,+5,+10,则这10听罐头质量的众数为( )A .460 B .455 C .450 D .0【解答】解:由题意得,质量与标准质量的差值众数为0,则众数为:450+0=450.故选C .6.如果a <b ,那么下列不等式中一定正确的是( )A .a-2b <-bB .a 2<abC .ab <b 2D .a 2<b 2【解答】解:A 、a <b 两边同时减2b ,不等号的方向不变可得a-2b <-b ,故此选项正确; B 、a <b 两边同时乘以a ,应说明a >0才得a 2<ab ,故此选项错误; C 、a <b 两边同时乘以b ,应说明b >0才得a b <b 2,故此选项错误; D 、a <b 两边同时乘以相同的数,故此选项错误;故选:A .7.△ABC 的三边AB ,BC ,CA 的长分别为6cm ,4cm ,4cm ,P 为三边角平分线的交点,则△ABP ,△BCP ,△ACP 的面积比等于( )A .1:1:1B .2:2:3C .2:3:2D .3:2:2【解答】解:∵P 为三边角平分线的交点,∴点P 到△ABC 三边的距离相等,∵AB ,BC ,CA 的长分别为6cm ,4cm ,4cm ,∴△ABP ,△BCP ,△ACP 的面积比=6:4:4=3:2:2.故选D . 8.点A (m 2+1,y A )在正比例函数y=-2x 的图象上,则( )A .y A >0B .y A <0C .y A ≤-2D .y A ≥-2【解答】解:∵A (m 2+1,y A )在正比例函数y=-2x 的图象上,∴y A =-2(m 2+1)=-2m 2-2, ∵-2m 2≤0,∴-2m 2-2≤-2,即y A ≤-2.故选C .9.如图,在菱形ABCD 中,∠A=60°,E 、F 分别是AB 、AD 的中点,DE 、BF相交于点G ,连接BD 、CG .给出以下结论,其中正确的有( ) ①∠BGD=120°;②BG+DG=CG ;③△BDF ≌△CGB ;④S △ADE =43AB 2.A .1个B .2个C .3个D .4个【解答】解:∵四边形ABCD 为菱形,∴AD=AB ,且∠A=60°,∴△ABD 为等边三角形, 又∵E 、F 分别是AB 、AD 的中点,∴DE ⊥AB ,BF ⊥AD ,∴∠GFA=∠GEA=90°, ∴∠BGD=∠FGE=360°-∠A-∠GFA-∠GEA=120°,∴①正确;∵四边形ABCD 为菱形,∴AB ∥CD ,AD ∥BC ,∴∠CDG=∠CBG=90°,在Rt △CDG 和Rt △CBG 中,CD =CB, CG =CG ,∴Rt △CDG ≌Rt △CBG (HL ),∴DG=BG ,∠DCG=∠BCG=0.5∠DCB=30°,∴DG=BG=0.5CG ,∴DG+BG=CG ,∴②正确;在Rt △BDF 中,BD 为斜边,在Rt △CGB 中,CG 为斜边,且BD=BC ,在Rt △CGB 中,显然CG >BC ,即CG >BD ,∴△BDF 和△CGB 不可能全等,∴③不正确;∵△ABD 为等边三角形,∴S △ABD =43AB 2,∴S △ADE =0.5S △ABD =83AB 2,∴④不正确;综上可知正确的只有两个,故选B . 10.已知二次函数y=ax 2+bx+c 中,其函数y 与自变量x 之间的部分对应值如下表所示:点A (x 1,y 1)、B (x 2,y 2)在函数的图象上,则当1<x 1<2,3<x 2<4时,y 1 与y 2的大小关系正确的是( )A .y 1>y 2B .y 1<y 2C .y 1≥y 2D .y 1≤y 2【解答】解:∵当1<x <2时,函数值y 小于1,当3<x <4时,函数值y 大于1,∴y 1<y 2.故选B . 二、填空题(共4小题,每小题3分,计18分)11.分解因式:4x 2-16y 2= ___________________4(x+2y)(x-2y)【解答】解:4x 2-16y 2=4(x 2-4y 2)=4(x+2y )(x-2y ).故答案为:4(x+2y )(x-2y ). 12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A .在平面内,将长度为6的线段AB 绕它的中点M ,按逆时针方向旋转60°,则线段AB 扫过的面积为 ___3 B .用科学计算器计算:13sin42.5°= ________24.03(精确到0.01). 【解答】解:A .半径是3,圆心角是60°的扇形的面积是:60π×32/360=1.5π, 则线段AB 扫过的面积是2×1.5π=3π.故答案是:3π.B .13sin42.5°≈3.60×0.676=24.O3.故答案为24.03.13.(2012•宿迁)在平面直角坐标系中,若一条平行于x 轴的直线l 分别交双曲线y=-x6和y=x2于A ,【解答】解:如图所示:分别过点A 、B 作AC ⊥x 轴,BD ⊥x 轴,∵点A 、B 分别在双曲线y=-x6和y=x2上,∴S 矩形ACOE =6,S 矩形BEOD =2,∴S 矩形ACDB =S 矩形ACOE +S 矩形BEOD =6+2=8,即AB•AC=8,∴S △ABP =0.5AB•AC=0.5×8=4.故答案为:4.x … 0 1 2 3 4 … y … 4 1 0 1 4 …14.在Rt △ABC 中,∠BAC=30°,斜边AB=23,动点P 在AB 边上,动点Q 在AC 边上,且∠CPQ=90°,则线段CQ 长的最小值=38. 【解答】解:以CQ 为直径作⊙O ,当⊙O 与AB 边相切动点P 时,CQ 最短,∴OP ⊥AB , ∵∠B=90°,∠A=30°,∴∠POA=60°,∵OP=OQ ,∴△POQ 为等边三角形,∴∠POQ=60°,∴∠APQ=30°,∴设PQ=OQ=AP=OC=r ,3r=AC=cos30°•AB=3/2×23=3,∴CQ=2,∴CQ 的最小值为2.故答案为2.三、解答题(共11题,78分)15.(1)先化简,再求值:(x+2)2+x (2-x ),其中x=31. (2)解分式方程:22322=--+x x x解:【解答】解:(1)(x+2)2+x (2-x )=x 2+4x+4+2x-x 2=6x+4,当x=31时,原式=6×31+4=6; (2)方程两边都乘以(x+2)(x-2)得:2x (x-2)-3(x+2)=2(x+2)(x-2), 解得:x=72,检验:把x=72代入(x+2)(x-2)≠0,所以,原方程的解为x=72.16.解不等式组:⎪⎩⎪⎨⎧->+-≥+1321112x x x ,并把不等式组的解集在数轴上表示出来.解:【解答】解:由①得,x≥-1,由②得,x <4,故此不等式组的解集为:-1≤x <4.在数轴上表示为:.17.在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:频数(人数)频率劳动时间(时)0.5 12 0.121 30 0.31.5 x 0.42 18 y合计m 1(1)统计表中的x=______ ,y=______ ;(2)被调查同学劳动时间的中位数是______ 时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.解:【解答】解:(1)调查的总人数是12÷0.12=100(人),则x=100×0.4=40(人),y=18/100=0.18;(2)被调查同学劳动时间的中位数是1.5小时;(3);(4)所有被调查同学的平均劳动时间是:(12×0.5+30×1+40×1.5+18×2)/100=1.32(小时).18.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.解:【解答】(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°-∠ACD=∠FCE,在△BCD和△FCE中,CB=CF, ∠BCD=∠FCE,CD=CE,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°-∠DCE=90°,∴∠BDC=90°.19.已知关于x的方程x2+ax+a-2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.解:【解答】解:(1)将x=1代入方程x2+ax+a-2=0得,1+a+a-2=0,解得,a=0.5;方程为x2+0.5x-1.5=0,即2x2+x-3=0,设另一根为x1,则1•x1=-1.5,x1=-1.5.(2)∵△=a2-4(a-2)=a2-4a+8=a2-4a+4+4=(a-2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根.20.黔东南州某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:2≈1.41,3≈1.73)解:【解答】解:过点A 作AM ⊥EF 于M ,过点C 作CN ⊥EF于N ,∴MN=0.25m , ∵∠EAM=45°,∴AM=ME ,设AM=ME=xm ,则CN=(x+6)m ,EN=(x-0.25)m , ∵∠ECN=30°,∴tan ∠ECN=EN/CN=(X-0.25)/(X+6)=33,解得:x≈8.8, 则EF=EM+MF ≈8.8+1.5=10.3(m ).答:旗杆的高EF 为10.3m . 21.如图,一次函数y 1=kx+b 的图象与反比例函数y 2=xm 的图象相交于点A (2,5)和点B ,与y 轴相交于点C (0,7).(1)求这两个函数的解析式; (2)当x 取何值时,y 1<y 2.解:【解答】解:(1)将点(2,5)、(0,7)代入一次函数解析式可得:2k +b =5, b =7,解得:k =−1, b =7.∴一次函数解析式为:y=-x+7; 将点(2,5)代入反比例函数解析式:5=m/2,∴m=10, ∴反比例函数解析式为:y=10/x . (2)由题意,得:y=x10,y=-x+7,解得:x=2,y=5或x=5,y=2,∴点B 的坐标为(5,2), 由图象得:当0<x <2或x >5时,y 1<y 2.22.甲、乙两同学用一副扑克牌中牌面数字分别是:3,4,5,6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由. 解:【解答】解:这个游戏不公平,游戏所有可能出现的结果如下表:3 4 5 6第二次第一次3 33 34 35 364 43 44 45 465 53 54 55 566 63 64 65 66表中共有16种等可能结果,小于45的两位数共有6种.(5分)∴P(甲获胜)=6/16=3/8,P(乙获胜)=10/6=5/8.(7分)∵3/8≠5/8,∴这个游戏不公平.(8分)23.已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.解:【解答】(1)证明:连结OC,OA,∵OC=OA,∴∠ACO=∠CAO,∵PC是⊙O的切线,C为切点,∴PC⊥OC,∴∠PCO=90°,∠PCA+∠ACO=90°,在△AOC中,∠ACO+∠CAO+∠AOC=180°,∵∠AOC=2∠PBC,∴2∠ACO+2∠PBC=180°,∴∠ACO+∠PBC=90°,∵∠PCA+∠ACO=90°,∴∠PCA=∠PBC;(2)解:∵∠PCA=∠PBC,∠CPA=∠BPC,∴△PAC∽△PCB,∴PC/PA=PB/PC,∴PC2=PA•PB,∵PA=3,PB=5,∴PC=15.24. 如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由.解:【解答】解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y=ax2+bx+2.将A(-1,0),B(4,0)代入,得a−b+2=0, 16a+4b+2=0,解得a=−0.5, b=1.5,∴抛物线的解析式为:y=-0.5x2+1.5x+2.(2)存在.由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.在Rt△BOC中,OC=2,OB=4,∴BC=25.在Rt△BOC中,设BC边上的高为h,则0.5×25h=0.5×2×4,∴h=45/5.∵△BEA∽△COB,设E点坐标为(x,y),∴AB/BC=|y|=45/5,∴y=±2将y=2代入抛物线y=-0.5x2+1.5x+2,得x1=0,x2=3.当y=-2时,不合题意舍去.∴E点坐标为(0,2),(3,2).25.如图,在直角梯形AOBC中,AC∥OB,且OB=6,AC=5,OA=4.(1)直接写出B、C两点的坐标;(2)以O、A、B、C中的三点为顶点可组成哪几个不同的三角形?(3)是否在边AC和BC(含端点)上分别存在点M和点N,使得△MON的面积最大时,它的周长还最短?若存在,请说明理由,并求出这时点M、N的坐标;若不存在,为什么?解:(1) B (6,0), C (5,4)(2) 4个,1)存在,过M作MP//OA交ON于P,给N作NQ//OB交OA,MP于Q,G,MP<OA,NQ<OB,N,B重合时,QN,MP取最大值OB,OA,面积为最大值12,2)N,B重合△NOM面积最大值12,O关于AC对称点O’连接O’N,交AC于M,△MON周长最小,M(3,4),N(6,0)。

2015年江西省三县部分高中高考一模数学试卷(理科)【解析版】

2015年江西省三县部分高中高考一模数学试卷(理科)【解析版】

2015年江西省三县部分高中高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)在平面直角坐标系xOy中,如果菱形OABC的边长为2,点A在x轴上,则菱形内(不含边界)整点(横纵坐标都是整数的点)个数的取值集合是()A.{1,2}B.{1,2,3}C.{0,1,2}D.{0,1,2,3} 2.(5分)下列有关命题的说法错误的是()A.命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.若p∧q为假命题,则p、q均为假命题D.对于命题p:∃x∈R,使得x2+x+1<0.则¬p:∀x∈R,均有x2+x+1≥0 3.(5分)已知复数z满足z(1+i)=1(其中i为虚数单位),则z=()A.B.C.D.4.(5分)设f(x)=,则f[f(ln2+2)]=()A.log515B.2C.5D.log5(3e2+1)5.(5分)已知sin(﹣α)=,则cos[2(+α)]的值是()A.B.C.﹣D.﹣6.(5分)已知向量=(3,1),=(x,﹣2),=(0,2),若⊥(﹣),则实数x的值为()A.B.C.D.7.(5分)已知数列{a n}中,a1=2,a n+1﹣2a n=0,b n=log2a n,那么数列{b n}的前10项和等于()A.130B.120C.55D.508.(5分)已知不等式的解集为{x|a<x<b},点A(a,b)在直线mx+ny+1=0上,其中mn>0,则的最小值为()A.B.8C.9D.129.(5分)空间直角坐标系中,点M(2,5,8)关于xOy平面对称的点N的坐标为()A.(﹣2,5,8)B.(2,﹣5,8)C.(2,5,﹣8)D.(﹣2,﹣5,8)10.(5分)若任取x,y∈(0,1],则点P(x,y)满足y≤x的概率为()A.B.C.D.11.(5分)如图所示的三个直角三角形是一个体积为20cm3的几何体的三视图,则h=()cm.A.4B.2C.1D.12.(5分)如图,F1、F2分别是双曲线﹣=1(a>0,b>0)的两个焦点,以坐标原点O为圆心,|OF1|为半径的圆与该双曲线左支交于A、B两点,若△F2AB是等边三角形,则双曲线的离心率为()A.B.2C.﹣1D.1+二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)二项式(ax2﹣)5的展开式中常数项为160,则a的值为.14.(5分)执行如图所示的流程图,则输出的n为.15.(5分)今年一轮又一轮的寒潮席卷全国.某商场为了了解某品牌羽绒服的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,数据如下表:由表中数据算出线性回归方程中的b≈﹣2.气象部门预测下个月的平均气温约为6℃,据此估计,该商场下个月毛衣的销售量的件数约为.16.(5分)正偶数列有一个有趣的现象:①2+4=6②8+10+12=14+16;③18+20+22+24=26+28+30,…按照这样的规律,则2016在第个等式中.三、解答题(共75分)17.(12分)已知函数f(x)=x3+ax2+bx,且f′(﹣1)=0.(1)试用含a的代数式表示b;(2)求f(x)的单调区间;(3)令a=﹣1,设函数f(x)在x1、x2(x1<x2)处取得极值,记点M(x1,f (x1)),N(x2,f(x2)).证明:线段MN与曲线f(x)存在异于M,N的公共点.18.(12分)在平面直角坐标系xOy中,角α的终边经过点P(3,4).(1)求sin(α+)的值;(2)若P关于x轴的对称点为Q,求•的值.19.(12分)已知数列{a n}满足a2=5,且其前n项和S n=pn2﹣n.(Ⅰ)求p的值和数列{a n}的通项公式;(Ⅱ)设数列{b n}为等比数列,公比为p,且其前n项和T n满足T5<S5,求b1的取值范围.20.(12分)如图,直三棱柱ABC﹣A1B1C1,底面△ABC中,CA=CB=1,∠BCA =90°,棱AA1=2,M、N分别是A1B1、A1A的中点.(1)求的长;(2)求cos(•)的值;(3)求证A1B⊥C1M.21.(12分)已知椭圆=1(a>b>0)上的点P到左、右两焦点F1,F2的距离之和为2,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)过右焦点F2的直线l交椭圆于A、B两点.(1)若y轴上一点满足|MA|=|MB|,求直线l斜率k的值;(2)是否存在这样的直线l,使S的最大值为(其中O为坐标原点)?△ABO若存在,求直线l方程;若不存在,说明理由.22.(10分)已知关于x的不等式:|2x﹣m|≤1的整数解有且仅有一个值为2.(Ⅰ)求整数m的值;(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.2015年江西省三县部分高中高考数学一模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)在平面直角坐标系xOy中,如果菱形OABC的边长为2,点A在x轴上,则菱形内(不含边界)整点(横纵坐标都是整数的点)个数的取值集合是()A.{1,2}B.{1,2,3}C.{0,1,2}D.{0,1,2,3}【解答】解:根据对称性我们只研究在第一象限内的整点情况,设∠AOC=θ,则C(2cosθ,2sinθ),B(2cosθ+2,2sinθ),①若0°<θ≤30°,则0<2sinθ≤1,此时区域内整点个数为0,排除A,B,②若30°<θ<45°,则1<2sinθ<,<2cosθ<,+2<2cosθ+2<2+,此时区域内整点为(2,1),个数为1,③若45°<θ<90°,则<2sinθ<2,0<2cosθ<,此时区域内整点为(1,1),(2,1),个数为2,④若θ=90°,则此时区域内整点为(1,1),个数为1个,综上菱形内(不含边界)整点(横纵坐标都是整数的点)个数的取值集合是{0,1,2},故选:C.2.(5分)下列有关命题的说法错误的是()A.命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.若p∧q为假命题,则p、q均为假命题D.对于命题p:∃x∈R,使得x2+x+1<0.则¬p:∀x∈R,均有x2+x+1≥0【解答】解:命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”故A为真命题;“x=1”是“x2﹣3x+2=0”的充分不必要条件.故B为真命题;若p∧q为假命题,则p、q存在至少一个假命题,但p、q不一定均为假命题,故C为假命题;命题p:∃x∈R,使得x2+x+1<0.则非p:∀x∈R,均有x2+x+1≥0,故D为真命题;故选:C.3.(5分)已知复数z满足z(1+i)=1(其中i为虚数单位),则z=()A.B.C.D.【解答】解:∵z(1+i)=1,∴=.故选:D.4.(5分)设f(x)=,则f[f(ln2+2)]=()A.log515B.2C.5D.log5(3e2+1)【解答】解:f(ln2+2)=4e ln2+2﹣2=4e ln2=4×2=8,f(8)=log5(3×8+1)=log525=2,故f[f(ln2+2)]=2,故选:B.5.(5分)已知sin(﹣α)=,则cos[2(+α)]的值是()A.B.C.﹣D.﹣【解答】解:∵sin(﹣α)=cos(﹣+α)=cos()=,∴cos2(+α)=2cos2()﹣1=2×﹣1=﹣.故选:D.6.(5分)已知向量=(3,1),=(x,﹣2),=(0,2),若⊥(﹣),则实数x的值为()A.B.C.D.【解答】解:∵⊥(﹣),∴•(﹣)=0,即,∵向量=(3,1),=(x,﹣2),=(0,2),∴3x﹣2﹣2=0,即3x=4,解得x=,故选:A.7.(5分)已知数列{a n}中,a1=2,a n+1﹣2a n=0,b n=log2a n,那么数列{b n}的前10项和等于()A.130B.120C.55D.50【解答】解:在数列{a n}中,a1=2,a n+1﹣2a n=0,即,∴数列{a n}是以2为首项,2为公比的等比数列,∴=2n.∴=n.∴数列{b n}的前10项和=1+2+…+10==55.故选:C.8.(5分)已知不等式的解集为{x|a<x<b},点A(a,b)在直线mx+ny+1=0上,其中mn>0,则的最小值为()A.B.8C.9D.12【解答】解:不等式⇔(x+2)(x+1)<0,解得﹣2<x<﹣1.∴不等式的解集为{x|﹣2<x<﹣1},∴a=﹣2,b=﹣1.∵点A(﹣2,﹣1)在直线mx+ny+1=0上,∴﹣2m﹣n+1=0,化为2m+n=1.∵mn>0,∴==5+=9,当且仅当m=n=时取等号.∴的最小值为9.故选:C.9.(5分)空间直角坐标系中,点M(2,5,8)关于xOy平面对称的点N的坐标为()A.(﹣2,5,8)B.(2,﹣5,8)C.(2,5,﹣8)D.(﹣2,﹣5,8)【解答】解:由题意,关于平面xoy对称的点横坐标、纵坐标保持不变,第三坐标变为它的相反数,从而有点M(2,5,8)关于平面xoy对称的点的坐标为(2,5,﹣8).故选:C.10.(5分)若任取x,y∈(0,1],则点P(x,y)满足y≤x的概率为()A.B.C.D.【解答】解:由题意可得,x,y∈(0,1)所对应区域为边长为1的正方形,面积为1记“点P(x,y)满足y≤为事件A,则A包含的区域由确定的区域的面积为S===,∴P(A)=.故选:D.11.(5分)如图所示的三个直角三角形是一个体积为20cm3的几何体的三视图,则h=()cm.A.4B.2C.1D.【解答】解:根据几何体的三视图,得:该几何体是底面为直角三角形,侧棱P A⊥底面ABC的三棱锥,如图所示;∴底面ABC的面积为×5×6=15;该三棱锥的体积为×15×h=20,解得h=4.故选:A.12.(5分)如图,F1、F2分别是双曲线﹣=1(a>0,b>0)的两个焦点,以坐标原点O为圆心,|OF1|为半径的圆与该双曲线左支交于A、B两点,若△F2AB是等边三角形,则双曲线的离心率为()A.B.2C.﹣1D.1+【解答】解:连结AF1,∵F1F2是圆O的直径,∴∠F1AF2=90°,即F1A⊥AF2,又∵△F2AB是等边三角形,F1F2⊥AB,∴∠AF2F1=∠AF2B=30°,因此,Rt△F1AF2中,|F1F2|=2c,|F1A|=|F1F2|=c,|F2A|=|F1F2|=c.根据双曲线的定义,得2a=|F2A|﹣|F1A|=(﹣1)c,解得c=(+1)a,∴双曲线的离心率为e==+1.故选:D.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)二项式(ax2﹣)5的展开式中常数项为160,则a的值为2.【解答】解:由通项公式T r+1==•,令10﹣=0,求得r=4,可得常数项为(﹣2)4•C a=160,解得a=2,故答案为:2.14.(5分)执行如图所示的流程图,则输出的n为4.【解答】解:模拟执行程序框图,可得S=511,n=1满足条件S>63,S=255,n=2满足条件S>63,S=127,n=3满足条件S>63,S=63,n=4不满足条件S>63,退出循环,输出n的值为4.故答案为:4.15.(5分)今年一轮又一轮的寒潮席卷全国.某商场为了了解某品牌羽绒服的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,数据如下表:由表中数据算出线性回归方程中的b≈﹣2.气象部门预测下个月的平均气温约为6℃,据此估计,该商场下个月毛衣的销售量的件数约为46.【解答】解:由表格得为:(10,38),又在回归方程上且b≈﹣2∴38=10×(﹣2)+a,解得:a=58,∴.当x=6时,.故答案为:4616.(5分)正偶数列有一个有趣的现象:①2+4=6②8+10+12=14+16;③18+20+22+24=26+28+30,…按照这样的规律,则2016在第31个等式中.【解答】解:①2+4=6;②8+10+12=14+16;③18+20+22+24=26+28+30,…其规律为:各等式首项分别为2×1,2(1+3),2(1+3+5),…,所以第n个等式的首项为2[1+3+…+(2n﹣1)]=2n2,当n=31时,等式的首项为1922,所以2016在第31个等式中故答案为:31.三、解答题(共75分)17.(12分)已知函数f(x)=x3+ax2+bx,且f′(﹣1)=0.(1)试用含a的代数式表示b;(2)求f(x)的单调区间;(3)令a=﹣1,设函数f(x)在x1、x2(x1<x2)处取得极值,记点M(x1,f (x1)),N(x2,f(x2)).证明:线段MN与曲线f(x)存在异于M,N的公共点.【解答】解:解法一:(1)依题意,得f′(x)=x2+2ax+b.由f′(﹣1)=1﹣2a+b=0得b=2a﹣1.(2)由(1)得f(x)=x3+ax2+(2a﹣1)x,故f′(x)=x2+2ax+2a﹣1=(x+1)(x+2a﹣1).令f′(x)=0,则x=﹣1或x=1﹣2a.①当a>1时,1﹣2a<﹣1.当x变化时,f′(x)与f(x)的变化情况如下表:由此得,函数f(x)的单调增区间为(﹣∞,1﹣2a)和(﹣1,+∞),单调减区间为(1﹣2a,﹣1).②当a=1时,1﹣2a=﹣1.此时,f′(x)≥0恒成立,且仅在x=﹣1处f′(x)=0,故函数f(x)的单调增区间为R.③当a<1时,1﹣2a>﹣1,同理可得函数f(x)的单调增区间为(﹣∞,﹣1)和(1﹣2a,+∞),单调减区间为(﹣1,1﹣2a).综上所述:当a>1时,函数f(x)的单调增区间为(﹣∞,1﹣2a)和(﹣1,+∞),单调减区间为(1﹣2a,﹣1);当a=1时,函数f(x)的单调增区间为R;当a<1时,函数f(x)的单调增区间为(﹣∞,﹣1)和(1﹣2a,+∞),单调减区间为(﹣1,1﹣2a).(3)当a=﹣1时,得f(x)=x3﹣x2﹣3x.由f′(x)=x2﹣2x﹣3=0,得x1=﹣1,x2=3.由(2)得f(x)的单调增区间为(﹣∞,﹣1)和(3,+∞),单调减区间为(﹣1,3),所以函数f(x)在x1=﹣1,x2=3处取得极值.故M(﹣1,),N(3,﹣9).所以直线MN的方程为y=﹣x﹣1.由得x3﹣3x2﹣x+3=0.令F(x)=x3﹣3x2﹣x+3.易得F(0)=3>0,F(2)=﹣3<0,而F(x)的图象在(0,2)内是一条连续不断的曲线,故F(x)在(0,2)内存在零点x0,这表明线段MN与曲线f(x)有异于M,N 的公共点.解法二:(1)同解法一.(2)同解法一.(3)当a=﹣1时,得f(x)=x3﹣x2﹣3x.由f′(x)=x2﹣2x﹣3=0,得x1=﹣1,x2=3.由(2)得f(x)的单调增区间为(﹣∞,﹣1)和(3,+∞),单调减区间为(﹣1,3),所以函数f(x)在x1=﹣1,x2=3处取得极值,故M(﹣1,),N(3,﹣9).所以直线MN的方程为y=﹣x﹣1.由x3﹣3x2﹣x+3=0.解得x1=﹣1,x2=1,x3=3.∴,,所以线段MN与曲线F(x)有异于M,N的公共点(1,﹣).18.(12分)在平面直角坐标系xOy中,角α的终边经过点P(3,4).(1)求sin(α+)的值;(2)若P关于x轴的对称点为Q,求•的值.【解答】解:(1)∵角α的终边经过点P(3,4),∴,…(4分)∴.…(7分)(2)∵P(3,4)关于x轴的对称点为Q,∴Q(3,﹣4).…(9分)∴,∴.…(14分)19.(12分)已知数列{a n}满足a2=5,且其前n项和S n=pn2﹣n.(Ⅰ)求p的值和数列{a n}的通项公式;(Ⅱ)设数列{b n}为等比数列,公比为p,且其前n项和T n满足T5<S5,求b1的取值范围.【解答】解:(Ⅰ)由题意,得S1=p﹣1,S2=4p﹣2,因为a2=5,S2=a1+a2,所以S2=4p﹣2=p﹣1+5,解得p=2.…(3分)所以.当n≥2时,由a n=S n﹣S n,…(5分)﹣1得.…(7分)验证知n=1时,a1符合上式,所以a n=4n﹣3,n∈N*.…(8分)(Ⅱ)由(Ⅰ),得.…(10分)因为T5<S5,所以,解得.…(12分)又因为b1≠0,所以b1的取值范围是.…(13分)20.(12分)如图,直三棱柱ABC﹣A1B1C1,底面△ABC中,CA=CB=1,∠BCA =90°,棱AA1=2,M、N分别是A1B1、A1A的中点.(1)求的长;(2)求cos(•)的值;(3)求证A1B⊥C1M.【解答】解:如图,以C为原点建立空间直角坐标系O﹣xyz.(1)依题意得B(0,1,0),N(1,0,1),∴(2分)(2)依题意得A1(1,0,2),B(0,1,0),C(0,0,0),B1(0,1,2).∴,,,,(5分)∴cos<(9分)(3)证明:依题意得C1(0,0,2),M=(﹣1,1,﹣2),=,∴=,∴(12分)21.(12分)已知椭圆=1(a>b>0)上的点P到左、右两焦点F1,F2的距离之和为2,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)过右焦点F2的直线l交椭圆于A、B两点.(1)若y轴上一点满足|MA|=|MB|,求直线l斜率k的值;的最大值为(其中O为坐标原点)?(2)是否存在这样的直线l,使S△ABO若存在,求直线l方程;若不存在,说明理由.【解答】解:(Ⅰ),∴…(1分)∵,∴,∴b2=a2﹣c2=2﹣1=1…(2分)椭圆的标准方程为…(3分)(Ⅱ)已知F2(1,0),设直线的方程为y=k(x﹣1),A(x1,y1)B(x2,y2)联立直线与椭圆方程,化简得:(1+2k2)x2﹣4k2x+2k2﹣2=0∴,…(4分)∴AB的中点坐标为…(5分)(1)k=0时,满足条件,此时AB的中垂线为x=0;当k≠0时,∵|MA|=|MB|,∴,整理得2k2﹣3k+1=0,解得k=1或…(7分)(2)直线l斜率不存在时,直线方程为x=1,代入椭圆方程,此时y=±,S=,△ABO直线l斜率不存在时时,S=|y1﹣y2|=•△ABO∵k∈R,k≠0,∴,∴综上,∴满足题意的直线存在,方程为x=1.…(14分)22.(10分)已知关于x的不等式:|2x﹣m|≤1的整数解有且仅有一个值为2.(Ⅰ)求整数m的值;(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.【解答】解:(I)由|2x﹣m|≤1,得.∵不等式的整数解为2,∴⇒3≤m≤5.又不等式仅有一个整数解2,∴m=4.(2)由(1)知,m=4,故a4+b4+c4=1,由柯西不等式可知;(a2+b2+c2)2≤(12+12+12)[(a2)2+(b2)2+(c2)2]所以(a2+b2+c2)2≤3,即,当且仅当时取等号,最大值为.。

〖双学士教师〗(全国通用)2015年中考数学模拟试题(1)

〖双学士教师〗(全国通用)2015年中考数学模拟试题(1)

(全国通用)2015年中考数学模拟试题(1)一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求的)1.cos 2600的倒数是 ( )A 、 0.5B 、14C 、4D 、-4 2.下列各式计算结果正确的是 ( ) A 、a +a =a 2 B 、(3a )2=6a 2 C 、(a +1)2=a 2+1 D 、a ·a =a 23. 两圆的半径分别为3和7,圆心距为6,则两圆的交点个数为 ( )A. 1个B. 2个C. 0个D. 以上都不对4. 如图,为估计池塘岸边A B 、的距离,小方在池塘的一侧选取一点O ,测得15OA =米,OB =10米,A B 、间的距离不可能是 ( ) A .20米 B .15米 C .10米 D .5米 5. 如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是 ( ) A .1.6 B .2.5 C .3 D .3.46.投掷2个骰子,得到的两个点数都是质数的概率是 ( )A. 14B. 49C. 59D. 127.在反比例函数y=xk 21-的每一条曲线上,y 都随着x 的增大而减小,则k 的值可以是( )A 、-1B 、0C 、1D 、28.已知二次函数2y ax bx c =++的图像如图,则下列5个代数式:,,42,2,2ac a b c a b c a b a b ++-++-,其值大于0的个数为 ( )A 、3B 、2C 、5D 、49.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心,EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB ∠的值为 ( )A 、43B 、34C 、45D 、35OA B10.关于函数232131,(0)y x x a a a a ⎛⎫=+-+-≠ ⎪⎝⎭,给出下列结论: ①当2a =时,该函数的顶点坐标为21(,)36--;②当0a ≠时,该函数图象经过同一点;③当0a <时,函数图象截x 轴所得线段长度大于43; ④当0a >时,函数在13x >时,y 随x 的增大而增大。

2015届中考数学模拟训练题(一)

2015届中考数学模拟训练题(一)

2015届中考数学模拟训练题(一)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.在0,-2, 1,-3这四个数中,最小的数是A.0.B.-2.C.1.D.-3.2x的取值范围是A.x≥3.B.x≤3.C.x≥3-.D.x≤3-.3.把多项式3269x x x-+分解因式正确的是A.2(69)x x x-+.B.(3)(3)x x x+-.C.2(9)x x-.D.2(3)x x-.4.在“我为灾区献爱心”的募捐活动中,某班40位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数和中位数是A. 55,55.B. 60,55.C. 60,50.D. 50,50.5.下列各式计算正确的是A.235235a a a+=B.325a a a=C.729()a a=D.22x x-=6.如图,线段AB的两个端点坐标分别为A(1,-1),B(2,-1),以原点O为位似中心,将线段AB放大后得到线段CD.若CD=2,则端点C的坐标为A.(2,-2)B.(2,-4)C.(-2,2)D.(-4,2)7.如图是由七个相同的小正方体摆成的几何体,则这个几何体的俯视图是A. B. C. D.8.2013年10月国家国民体质监测中心等机构开展了青少年形体测评.某市共有20万初中生,专家组抽查了该市若干名初中生的坐姿,站姿,走姿的好坏情况,我们对专家的测评数据作了适当处理(一名学生以最突出的一项记载),绘制了如图所示的扇形统计图和条形统计图(部分信息未给出).根据以上信息,下列结论中错误的是A .这次形体测评中,一共抽查了500名学生.B . 在本次抽查中,“站姿不良”的扇形的圆心角为108°.C . 抽查的学生中“走姿不良”的比“坐姿不良”的多85﹪.D . 估计该市“三姿良好”的学生不少于3万人.9.下列各图中小黑点按照一定规律排列而成,根据这个规律,则第5个图中小黑点的个数为第1个 第2个 第3个A .78个.B .50个.C .54个.D .87个. 10.如图,在△ABC 中,AC=3,BC=∠ACB=45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为A .1.B .2.CD.3.第Ⅱ卷 (非选择题,共90分)二、填空题(共6小题,每小题3分,共18分) 11.计算52--的结果为 .12.某商场的年营业额为57430000元,把数57430000用科学记数法表示为 . 13.从一副54张牌的扑克牌中任取一张,它是梅花的概率是 .三姿良好20%37%站姿不良坐姿不良走姿不良14.李明早晨从家出发匀速步行去学校,到校后发现忘穿校服,立即原路返回,李明的爸爸在李明出发一段时间后发现李明的校服掉在家里,立即骑车送校服去学校,在途中碰到返回的李明.李明和爸爸相距的距离y (米)与李明出发的时间x (分)对应的关系如图所示,则李明的爸爸骑车的速度是 米/分.15.如图,矩形OABC 的边OA =4,OC =3分别在x 轴,y 轴上,E 点在BC 上,将矩形沿EF 折叠,点B 正好与点O 重合,双曲线y =kx过点E ,则k 的值为 . 16.在△ABC 中,已知∠ABC=2∠BAC ,BC=5,AC=9,则AB 的长为 .三、解答题(共8小题,共72分)17.(本小题满分8分)已知一次函数3y kx =-的图象经过点(﹣4,﹣11). (1)求这个一次函数的解析式;(2)求关于x 的不等式39kx -≤的解集.18. (本小题满分8分)如图,在△ADF 和△BCE 中,∠A = ∠B ,点D 、E 、F 、C 在同一直线上,有如下三个关系式:①AD = BC ;②DE = CF ;③BE ∥AF .(1)请用其中两个关系式作为条件,另一个作为结论,写一个...你认为正确的命题. 如果 ,那么 .(填序号) (2)对(1)中写出的命题给予证明.19.(本小题满分8分)武汉市某校在八、九年级开展了“文明武汉,幸福江城”的征文活动,校学生会对这B第16题图第15题图xy(1)求该校八、九年级各班在这一周内投稿的平均篇数;(2)在投稿篇数为9篇的四个班级中,八、九年级各有两个班,校学生会准备从这四个班中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.20. (本小题满分8分)如图,在平面直角坐标系中,A (-4, -2),B (-2, -2),C (-1, 0). (1)将△ABC 向右平移5个单位长度,画出平移后的△A 1B 1C 1;(2)将△A 1B 1C 1绕点B 1旋转180°,画出旋转后的△A 2B 1C 2;(3)请直接写出△BCB 1的外心的坐标.21.(本小题满分8分)已知:如图,△ABC 内接于⊙O ,AB=AC ,D 在AC 上,∠ABD=45°. (1)如图1,BD 交AC 于E ,连CD ,若AB=BD,求证CD ; (2)如图2,连AD 、CD ,已知tan ∠CAD=15,求sin ∠BDC 的值.D 图2D图1某商场销售的某种商品每件的标价是80元,若按标价的八折销售,仍可盈利60%,此时该种商品每星期可卖出220件,市场调查发现:在八折销售的基础上,该种商品每降价1元,每星期可多卖20件.设每件商品降价x 元(x 为整数),每星期的利润为y 元.(1)求该种商品每件的进价为多少元; (2)当售价为多少时,每星期的利润最大?(3)2015年2月该种商品每星期的售价均为每件m 元,若2015年2月的利润超过了24000元,请直接写出的m 的取值范围.23.(本小题满分10分)如图1,在直角梯形ABCD 中,AB ⊥BC ,AD ∥BC ,点P 为DC 上一点,且AP=AB ,过点C 作CE ⊥BP 交直线BP 于E .(1)若BC AB =43,求证BP=23CE ;(2)若AB=BC ,①如图2,当点P 与E 重合时,求PCPD的值: ②如图3,设∠DAP 的平分线AF 交直线BP 于F ,当CE=1,PC PD =74时,直接写出线段AF 的长为______.AB CDPE (E )P D C B AFEPDCB A如图1,已知抛物线23y ax bx =++,与x 轴交于点A 和点B (3,0)(A 在B 左边),与y 轴交于点C ,当x <1时,y 随着x 的增大而增大,当x >1时,y 随着x 的增大而减小. (1)求抛物线的解析式;(2)如图1,已知点P (1,t )(t >0),设抛物线的顶点E ,问:是否存在实数t ,使以P 点为圆心的⊙P 恰好在线段AB 和线段BE 上截得的线段的长相等?若存在,请求出此时t 的值,若不存在,请说明理由.(3)如图2,若直线22433y kx k =-(k >0)与x 轴交于N ,交y 轴于D ,已知F (0,13-),直线AF 与DN 交于M ,连CM 、CN 、CA ,求证不论k 取何值,MNCN为定值.2015届中考数学模拟训练题(一)答题卷第Ⅰ卷(选择题,共30分)第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11. ; 12. ; 13. ;14. ; 15. ; 16. ;三、解答题(共8小题,共72分)17.(本小题满分8分)18.(本小题满分8分)(1),;(2)19.(本小题满分8分)(1)(2)xy20.(本小题满分8分) (3) .21.(本小题满分8分) (1)(2)22.(本小题满分10分) (1)(2)(3)D 图2D图1(1)ABCDPE(2)①(E )P DCB A②FE PDCBA(1)(2)(3)。

2015中考数学模拟试题含答案(套)

2015中考数学模拟试题含答案(套)

1. 2. 3. 4. 5. 6. 7. 8. 9. 2014年中考数学模拟试卷(一)、选择题(本大题满分36分,每小题3分.在下列各题的四个备选答案中,只有一个是正确的, 请在答题卷上把你认为正确的答案的字母代号按要求用 2B 铅笔涂黑) 2 sin 60 。

的值等于 B.虫 2 F 列的几何图形中,一定是轴对称图形的有 A. 1 扇形 A. 5个 据2013年1月24日《桂林日报》报道,临桂县 名第二.将18亿用科学记数法表示为 8A. 1.8 X 10B. 1.8 X 10估计.8-1的值在 A. 0至U 1之间 B. 1至U 2之间将下列图形绕其对角线的交点顺时针旋转A.平行四边形B.矩形 B. 4个 90° D. .3£3等腰梯形 2012年财政收入突破 gC. 1.8 X 10D. 2个 18亿元,在广西各县中排 10D. 1.8 X 10D. 3至4之间C. 2 到3之间所得图形一定与原图形重合的是C.正方形D.菱形如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是A.为调查某校1500名学生对新闻、体育、动画、娱乐、 戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图.根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200 名 B. 450用配方法解一元二次方程 2 A. (x + 2 ) = 92C. (x + 2 ) = 1如图,在△ ABC 中,AD A. 1 : 2 B. 1 : 4名 C. 400 2 x + 4 x -5 = 0 名 D. 300 名 B. (x - 2 ) D. (x - 2 ) ,此方程可变形为 2 = 9 2 =1 BE 是两条中线,则 S A EDC : S A ABC = C. 1 D. 10.下列各因式分解正确的是 2 2A. x + 2x-1= (x - 1 ) 3 C. x- 4 x = x (x + 2 ) (x - 2 ) 2B.- D.x 2+ (-2 ) (x+ 1 ) 2 = x 2 + 2 x + 111.如图,AB 是O O 的直径,点 E 为BC 的中点,AB = 4 ,/ BED = 120 °则图中阴影部分的面积之和为填空题(本大题满分18分,每小题 计算:丨-1 I =.3已知一次函数y = kx + 3的图象经过第一、二、四象限,贝U k 的取值范围是在10个外观相同的产品中,有 2个不合格产品,现从中任意抽取 1个进行检测,抽到合格产品的概率是 _______ . ___________在临桂新区建设中,需要修一段全长 2400m 的道路,为了尽量减少施工对县城交通所造成的影 响,实际工作效率比原计划提高了 20%结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路 xm 则根据题意可得方程 ______________ . _________________________________________________________在平面直角坐标系中,规定把一个三角形先沿着 x 轴翻折, 再向右平移2个单位称为1次变换.如图,已知等边三角形 ABC 的顶点B , C 的坐标分别是(-1 , -1 ), (-3 , -1 ),把△ ABC 经过连续9次这样的变换得到△ A'B'C ;则点A 的对 应点A'的坐标是如图,已知等腰 Rt △ ABC 的直角边长为1,以Rt △ ABC 的斜 边AC 为直角边,画第二个等腰 Rt △ ACD 再以Rt △ ACD 的 斜边AD 为直角边,画第三个等腰 Rt △ ADE ……依此类推直 到第五个等腰 Rt △ AFG 则由这五个等腰直角三角形所构成 的图形的面积为 .解答题(本大题8题,共66分,解答需写出必要的步骤和过程 卷上答题无效)(本小题满分8分,每题4分)(1)计算:4 COS45 °- 8+( n - . 3 ) +(-1) 3;(2)化简:(1 - )m n(本小题满分6分)A. 3 如图,△ 出发,沿B. 2.3C. —2ABC 中,/ C = 90 ° M 是AB 的中点,动点 P 从点AD. 1AC 方向匀速运动到终点 C,动点Q 从点C 出发,沿 CB 方向匀速运动到终点 B.已知 到达终点,连接 MP MQ PQ . 的面积大小变化情况是 A. 一直增大 C.先减小后增大 P, Q 两点同时出发,并同时 在整个运动过程中,△ MPQ B. D. 一直减小 先增大后减小12. _ 、 13. 14. 15. 16.17.18.三、19. 20.3分,请将答案填在答题卷上,在试卷上答题无效) /I 32 I it11H I ■ r-3 -2 -10VAJ 1 3 jr —i —2 -3请将答案写在答题卷上,在试(第 17题图)解不等式组:3 (x - 1)v 2 x + 1.21. (本小题满分6分)如图,在△ ABC中,AB = AC,/ ABC = 72(1)用直尺和圆规作/ ABC的平分线BD交AC于点D (保留作图痕迹,不要求写作法);⑵在(1)中作出/ ABC的平分线BD后,求/ BDC的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:23. (本小题满分10分)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌2凳的数量不能超过B型课桌凳数量的-,求该校本次购买A型和B型课桌凳共有几种方3案?哪种方案的总费用最低?24. (本小题满分8分)如图,PA, PB分别与O O相切于点A, B,点M在PB上,且OIM/ AP, MN L AP,垂足为N.(1)求证:OM = AN;(2)若O O的半径R = 3 , PA = 9,求OM的长.1200名学生参加活动21. (12 分)如图,Rt△ ABC 中,/ C= 90° AC = BC= 8, DE = 2,线段DE 在AC 边上运动(端点D 从点A开始),速度为每秒1个单位,当端点E到达点C时运动停止.F为DE中点,MF丄DE 交AB于点M , MN // AC交BC于点N,连接DM、ME、EN.设运动时间为t秒.⑴求证:四边形MFCN是矩形;(2) 设四边形DENM的面积为S,求S关于t的函数解析式;当S取最大值时,求t的值;(3) 在运动过程中,若以E、M、N为顶点的三角形与△ DEM相似,求t的值.26.(本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板1 1在两坐标轴上,点C为(-1 , 0).如图所示,B点在抛物线y = x2 - x -2图象上,过点B2 2作BD丄x轴,垂足为D,且B点横坐标为-3.(1)求证:△ BDC也△ COA(2)求BC所在直线的函数关系式;(3)抛物线的对称轴上是否存在点只使厶ACP是以AC为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由•ABC放在第二象限,斜靠A第21题图 C 备用图(第26题图)9. (2013?遵义)如图,在 Rt △ ABC 中,/ C=90° , AC=4cm , BC=3cm .动点 M , N 从点 C 同时 出发,均以每秒1cm 的速度分别沿 CA 、CB 向终点A , B 移动,同时动点 P 从点B 出发,以每秒 2cm 的速度沿BA 向终点A 移动,连接PM ,PN ,设移动时间为t (单位:秒,0 v t v 2.5 ).(1 )当t 为何值时,以 A , P , M 为顶点的三角形与△ ABC 相似?(2)是否存在某一时刻 t ,使四边形 APNC 的面积S 有最小值?若存在,求 S 的最小值;若不存 在,请说明理由.•••在 Rt △ ABC 中,/ C=9C ° , AC=4cm , BC=3cm .•••根据勾股定理,得 AC 2 BC 2 =5cm .(1 )以A , P, M 为顶点的三角形与△ ABC 相似,分两种情况: ①当△ AMPABC 时,AP ACAMAB,即5 2t 4 t4 5 ,3解得t=;2AM AP4 t5 2t②当△ APMABC 时,,即AC AB4 5 '解得t=0 (不合题意,舍去);3综上所述,当t=—时,以A 、P 、 M 为顶点的三角形与△ ABC 相似;27(2)存在某一时刻t ,使四边形APNC 的面积S 有最小值.理由如下: 假设存在某一时刻t ,使四边形APNC 的面积S 有最小值.如图,过点 P 作PH 丄BC 于点H .贝U PH // AC , .PH BP Rn PH 2t • ------ • ---- ------- ,即 AC BA 458•- PH= t ,5 • S=S △ABC -S △ BPH ,118=一 X 3X 4——X ( 3-t ) ? t , 2 2 5 4 3 21=_ (t- _ ) 2+ 一 ( O v t v 2.5). 5 2 5> 0, ••• S 有最小值.321 当t=—时,S 最小值=—25321答:当t= 3时,四边形APNC 的面积S 有最小值,其最小值是.2 52013年初三适应性检测参考答案与评分意见说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而1降低难度,得出答案•当点P , Q 分别位于A C 两点时,S A MPQ = S A ABC ;当点P 、Q 分别运动到AC,2 11 11 1BC 的中点时,此时,— AC. - BC = - S A ABC ;当点 P 、Q 继续运动到点 C, B 时,&MPQ =—S22 2 4 2△ ABC,故在整个运动变化中,△ MPQ 的面积是先减小后增大,应选 C.19.(1)解:原式=4 X -2 < 2 +1-1……2分(每错1个扣1分,错2个以上不给分)13.-;14.k v 0 ; 15.4 (若为 8 一扣1分);16351017.(16, 1+ .3 );18. 15.5(或 31).2细-^^= 8 ;x (1 20%)x二、填空题 三、解答题2 2n 、 m n m n m (m n )(m n)m20. 解:由①得 3 (1 + x ) - 2 (x-1)w 6,化简得x w 1. ............. 3分 由②得3x -3 v 2x + 1, ............. 4分 化简得x v 4.............. 5分•••原不等式组的解是 x < 1. ..... 6分_ 1 3 2 7 3 17 4 18 5 5 '八 x = =3.3 , ............ 1 分50•这组样本数据的平均数是 3.3. ............ 2分 •••在这组样本数据中, 4出现了 18次,出现的次数最多, •这组数据的众数是 4............. 4分3 3•••将这组样本数据按从小到大的顺序排列, 其中处在中间的两个数都是 3,有= 3. 2•这组数据的中位数是 3. .................... 6分(2)v 这组数据的平均数是3.3 ,•••估计全校1200人参加活动次数的总体平均数是 3.3,有3.3 X 1200 = 3900. •••该校学生共参加活动约3960次. . 8分23. 解:在 Rt △ BDC 中,Z BDC = 90 ° BC = 6 米,(2)解:原式(m nm n m m n22. 21.•••/ A= 36 °•••/ BDC =Z A+Z ABD = 36 ° + 36° = 72 ° . ••… 解:(1 )观察条形统计图,可知这组样本数据的平均数是/ BCD = 30 °••• DC = BC • cos30 ° .......................... 1 分[3=6 3 x— = 9 , .......................... 2 分2• DF = DC + CF = 9 + 1 = 10 , ............................ 3 分• GE = DF = 10. ......................... 4 分在Rt△ BGE中,/ BEG = 20 °• BG = CG • tan20 ° .......................... 5 分=10x 0.36=3.6 , ..................... 6 分在Rt△ AGE中,/ AEG = 45 °• AG = GE = 10 , .......................... 7 分• AB = AG -BG = 10 - 3.6 = 6.4.答:树AB的高度约为6.4米. ........ 8分24. ............................................................................................ 解(1)如图,连接OA贝U OAL AP. 1分•/ MNL AP,「. MN// OA. .................. 2 分•/ OM/ AP,「.四边形ANMO1 矩形.• OM = AN. ................... 3 分(2)连接OB 则OB L AP,•/ OA = MN, OA = OB, OM/ BP,• OB = MN,Z OMB =/ NPM.• Rt △ OB阵Rt △ MNP. ................... 5 分• OM = MP.设OM = x,贝U NP = 9- x. ..................... 6 分在Rt△ MNP中,有x2 = 3 2+ (9- x):• x = 5.即OM = 5 .................. 8 分25. 解:(1 )设A型每套x元,贝U B型每套(x + 40 )元. ....... 1分• 4x + 5 (x + 40 ) =1820. .................................................. 2 分• x = 180 , x + 40 = 220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元. ........ 3分(2)设购买A型课桌凳a套,则购买B型课桌凳(200 - a)套.a w : (200 - a),3•弓......... 4分180 I a + 220 (200- a)w 40880.解得78w a< 80. ............... 5 分•/ a 为整数,• a = 78 , 79, 80•共有3种方案. .......... 6分设购买课桌凳总费用为y元,则y = 180a + 220 (200 - a) =-40 a + 44000. ............. 7 分••• -40 v 0, y随a的增大而减小,•当a = 80时,总费用最低,此时200- a =120. .............. 9分即总费用最低的方案是:购买A型80套,购买B型120套. ........... 10分解答:解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗(6000-x)尾.由题意得:0.5X+0.8 (6000 - x) =3600,解这个方程,得:x=4000 ,••• 6000 - x=2000 ,答:甲种鱼苗买4000尾,乙种鱼苗买2000尾;(2)由题意得:0.5X+0.8 (6000 - x)詔200, 解这个不等式,得:x多000,即购买甲种鱼苗应不少于2000尾,乙不超过4000尾;(3)设购买鱼苗的总费用为y,甲种鱼苗买了x尾.则y=0.5x+0.8 (6000 - x) = —0.3x+4800 ,由题意,有x+ (6000 —x) ^^>6000,100 1()IJ100解得:x <2400,在y= —0.3x+4800 中,••• - 0.3v 0, • y随x的增大而减少,•••当x=2400 时,y 最小=4080.答:购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.点评:根据钱数和成活率找到相应的关系式是解决本题的关键,注意不低于是大于或等于;不超过是小于或等于.22. (10分)(2013?鹤壁二模)如图,在梯形BH丄DC于H , CH=DH,点E在AB上,点ABCD 中,AD // BC, / ABC=90 ° DG 丄BC 于G, F在BC上,并且EF// DC .(1 )若AD=3 , CG=2,求CD ;(2)若CF=AD+BF,求证:EF=「CD.考点:直角梯形;勾股定理;矩形的性质;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)由AD // BC, / ABC=90 ° DG丄BC得到四边形ABGD为矩形,利用矩形的性质有AD=BG=3 , AB=DG,而BH丄DC , CH=DH,根据等腰三角形的判定得到△ BDC为等腰三角形,即有BD=BG+GC=3+2=5,先在Rt△ ABD中求出AB,然后在Rt△ DGC中求出DC ;(2)由CF=AD+BF , AD=BG,经过线段代换易得GC=2BF,再由EF // DC得至U / BFE= / GCD,根据三角形相似的判定易得Rt△ BEF s Rt△ GDC,禾U用相似比即可得到结论.解答:(1)解:连BD,如图,•••在梯形ABCD 中,AD // BC , / ABC=90 ° DG 丄BC,•••四边形ABGD为矩形,••• AD=BG=3 , AB=DG ,又••• BH 丄DC , CH=DH ,•△ BDC为等腰三角形,• BD=BG+GC=3+2=5 ,在Rt△ ABD中,辱研苛近品=4,• DG=4 ,在Rt△ DGC 中,• DC=-= 4」(2)证明:•/ CF=AD+BF ,• CF=BG+BF ,• FG+GC=BF+FG+BF,即GC=2BF ,•/ EF / DC,•/ BFE= / GCD ,• Rt△BEF s Rt△GDC ,• EF:DC=BF : GC=1 : 2,• EF=-DC.点评:本题考查了直角梯形的性质:有一组对边平行,另一组对边不平行,且有一个直角•也考查了矩形的性质、勾股定理、等腰三角形的判定以及相似三角形的判定与性质.23. (11分)(2007?可池)如图,四边形OABC为直角梯形,A (4, 0), B ( 3, 4) , C (0, 4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ .(1 )点M (填M或N)能到达终点;(2)求厶AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;(3)是否存在点M,使得△ AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.考点:二次函数综合题.专题:压轴题.分析:(1) (BC请N的运动速度)与(OA -t点M的运动速度)可知点M能到达终点.(2)经过t秒时可得NB=y , OM - 2t.根据/ BCA= / MAQ=45。

2015年江西省八所重点中学高考一模数学试卷(理科)【解析版】

2015年江西省八所重点中学高考一模数学试卷(理科)【解析版】

C.[﹣5,﹣ )
11. (5 分)正三角形 ABC 的边长为 2,将它沿高 AD 翻折,使点 B 与点 C 间的 距离为 A.7π ,此时四面体 ABCD 外接球表面积为( B.19π C. π ) D. π
12. (5 分)已知在平面直角坐标系中,点 P 是直线 l:x=﹣ 上一动点,定点 F ( ,0) ,点 Q 为 PF 的中点,动点 M 满足 • =0, • =λ (λ∈R) .过 )
2015 年江西省八所重点中学高考数学一模试卷(理科)
一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1. (5 分) 已知集合 A={x|x2﹣x﹣2≤0}, B={x|y=ln (1﹣x) }, 则 A∩B= ( A. (1,2) 2. (5 分)如果 z= A.0 B. (1,2] C.[﹣1,1) ) D.1 |=| |” ( ) D. (﹣1,1) )
第 2 页(共 21 页)
15. (5 分)如图,圆 O 与 x 轴的正半轴的交点为 A,点 C、B 在圆 O 上,且点 C 位于第一象限, 点 B 的坐标为 ( ﹣sin cos ﹣ 的值为 , ﹣ . ) , ∠AOC=α, 若|BC|=1, 则 cos2
16. (5 分)用 g(n)表示自然数 n 的所有因数中最大的那个奇数;例如:9 的 因数有 1,3,9,g(9)=9,10 的因数有 1,2,5,10,g(10)=5,那么 g(1)+g(2)+g(3)+…+g(22015﹣1)= 三、解答题(共 5 小题,满分 60 分) 17. (12 分)已知 f(x)=2sin x,集合 M={x||f(x)|=2,x>0},把 M 中的 .
元素从小到大依次排成一列,得到数列{an},n∈N*. (1)求数列{an}的通项公式; (2)记 bn= ,设数列{bn}的前 n 项和为 Tn,求证 Tn< .

2015中考数学模拟试题含答案

2015年中考数学模拟试卷一、选择题(本大题满分36分,每小题3分.) 1. 2 sin 60°的值等于 A. 1B. 23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2 B. 1∶4 C. 1∶3 D. 2∶310. 下列各因式分解正确的是A. x 2+ 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2) D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°,则图中阴影部分的面积之和为A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第12题图)(第17题图)(第18题图)(第7题图)° (第11题图)22-1n m mn m n -÷+)(20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)(第26题图)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°,∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档