2020高考数学新题分类汇编 平面向量(高考真题+模拟新题)

合集下载

专题07 平面向量 解析版(2016-2020)高考数学(理)真题分项详解

专题07 平面向量     解析版(2016-2020)高考数学(理)真题分项详解

专题07 平面向量【2020年】1.(2020·新课标Ⅲ)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( ) A. 3135-B. 1935-C.1735D.1935【答案】D 【解析】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()22222526367a b a ba ab b +=+=+⋅+=-⨯+=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 2.(2020·山东卷)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是( ) A. ()2,6- B. (6,2)- C. (2,4)- D. (4,6)-【答案】A 【解析】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-,3.(2020·北京卷)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________.【答案】 (1).5 (2). 1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+=, 则点()2,1P ,()2,1PD ∴=-,()0,1PB =-, 因此,()22215PD =-+=,()021(1)1PB PD ⋅=⨯-+⨯-=-.4.(2020·天津卷)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.【答案】 (1). 16 (2). 132【解析】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠=,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭,解得16λ=, 以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴,,∵3,60AB ABC =∠=︒,∴A 的坐标为3332A ⎛ ⎝⎭,∵又∵16AD BC =,则533,22D ⎛⎫ ⎪ ⎪⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤), 533,2DM x ⎛=- ⎝⎭,333,2DN x ⎛=- ⎝⎭,()222533321134222222DM DN x x x x x ⎛⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪ ⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 5.(2020·浙江卷)设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______. 【答案】2829【解析】12|2|2e e -≤,124412e e ∴-⋅+≤,1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯. 6.(2020·江苏卷)在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.【答案】185【解析】∵,,A D P 三点共线, ∴可设()0PA PD λλ=>, ∵32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,∴32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+, 若0m ≠且32m ≠,则,,B D C 三点共线, ∴321m m λλ⎛⎫- ⎪⎝⎭+=,即32λ=, ∵9AP =,∴3AD =,∵4AB =,3AC =,90BAC ∠=︒, ∴5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC xAD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,∵()cos cos 0θπθ+-=,∴()()2570665x x x --+=-,解得185x =,∴CD 的长度为185.当0m =时, 32PA PC =,,C D 重合,此时CD 的长度为0, 当32m =时,32PA PB =,,B D 重合,此时12PA =,不合题意,舍去.7.(2020·新课标Ⅱ)已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】2【解析】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.8.(2020·新课标Ⅰ)设,a b 为单位向量,且||1+=a b ,则||a b -=______________.【解析】因为,a b 为单位向量,所以1a b == 所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=【2019年】1.【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B .2.【2019年高考全国II 卷理数】已知AB →=(2,3),AC →=(3,t ),BC →=1,则AB →·BC →= A .−3 B .−2 C .2D .3【答案】C【解析】由BC →=AC →—AB →=(1,t-3),211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .3.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC 的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅,即22||||AB AC AC AB +>-,因为AC AB BC -=,所以|AB +AC |>|BC |;当|AB +AC |>|BC |成立时,|AB +AC |2>|AB -AC |2AB ⇒•AC >0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C .4.【2019年高考全国III 卷理数】已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos ,=a c ___________. 【答案】23【解析】因为2=c a ,0⋅=a b ,所以22⋅=⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c 22133⋅==⨯⋅a c a c .5.【2019年高考天津卷理数】在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________.【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,23,5,AB AD ==则(23,0)B ,535(,)22D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒, 所以直线BE 的斜率为33,其方程为3(23)3y x =-, 直线AE 的斜率为33-,其方程为33y x =-. 由3(23),333y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得3x =,1y =-, 所以(3,1)E -.所以35(,)(3,1)122BD AE =-=-.6.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【答案】3.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭, 得2213,22AB AC =即3,AB AC =故3ABAC=【2018年】1.【2018·全国I 卷 】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC -B .1344AB AC - C .3144AB AC +D .1344AB AC +【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+,所以3144EB AB AC =-. 故选A.2.【2018·全国II 卷 】已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4 B .3 C .2 D .0【答案】B【解析】因为()()22222||1213⋅-=-⋅=--=+=a a b a a b a 所以选B.3.(2018·浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A .3−1 B .3+1 C .2 D .2−3【答案】A【解析】设,则由得,由b 2−4e ·b +3=0得因此|a −b |的最小值为圆心到直线的距离23=32减去半径1,为选A.4.【2018·天津卷 】如图,在平面四边形ABCD 中,,,120,AB BC AD CD BAD ⊥⊥∠=1,AB AD ==若点E 为边CD 上的动点,则AE BE ⋅的最小值为A .2116 B .32C .2516D .3【答案】A【解析】连接AD ,取AD 中点为O ,可知ABD △为等腰三角形,而,AB BC AD CD ⊥⊥,所以BCD △为等边三角形,3BD =. 设()01DE tDC t =≤≤AE BE ⋅ ()()()2232AD DE BD DE AD BD DE AD BD DE BD DE DE =+⋅+=⋅+⋅++=+⋅+ =233322t t -+ ()01t ≤≤ 所以当14t =时,上式取最大值2116,故选A.5.【2018·北京卷 】设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】222222699+63333-=+-=⇔⇔-++⋅=⋅+a a b a b a b a b a b b a a b b ,因为a ,b 均为单位向量,所以2222699+6=0-⋅+=⋅+⇔⋅⇔a a b b a a b b a b a ⊥b ,即“33-=+a b a b ”是“a ⊥b ”的充分必要条件.故选C.6.【2018·全国III 卷 】已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=___________. 【答案】12【解析】由题可得()24,2+=a b ,()2∥c a +b ,()=1,λc ,420λ∴-=,即12λ=,故答案为12.7.【2018·上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =,则AE BF ⋅的最小值为___________. 【答案】-3【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a =b +2,或b =a +2; 且()()1,2,AE a BF b ==-,; ∴2AE BF ab ⋅=-+;当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-; ∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b =a +2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.8.【2018·江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为___________. 【答案】3【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a =【2017年】1.【2017·全国III 卷 】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为 A .3B .22C .5D .2【答案】A【解析】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y , 易得圆的半径5r =C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(20),到直线102xy z -+-=的距离d r ≤21514z -≤+,解得13z ≤≤, 所以z 的最大值是3,即λμ+的最大值是3,故选A .2.【2017·全国II 卷 】已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是 A .2-B .32-C .43-D .1-【答案】B【解析】如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则3)A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以(3)PA x y =-,(1,)PB x y =---,(1,)PC x y =--,所以(2,2)PB PC x y +=--,22()22(3)22(PA PB PC x y y x y ⋅+=-=+-2333)22-≥-,当3P 时,所求的最小值为32-,故选B .3.【2017·北京卷 】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒,那么cos180⋅=︒=m n m n0-<m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分而不必要条件,故选A.4.【2017·全国I 卷 】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________. 【答案】23【解析】方法一:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=a b a a b b , 所以|2|1223+==a b 方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为235.【2017·江苏卷】如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,2,OA 与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+(,)m n ∈R ,则m n +=___________.【答案】3【解析】由tan 7α=可得72sin α=2cos α= 易得cos 45cos 2sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩2222720210n m ⎧=⎪⎪-=⎪⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=.6.【2017·天津卷】在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =,AE AC λ=-()AB λ∈R ,且4AD AE ⋅=-,则λ的值为___________.【答案】311【解析】由题可得1232cos 603,33AB AC AD AB AC ⋅=⨯⨯︒==+, 则12()33AD AE AB AC ⋅=+2123()34934333311AC AB λλλλ-=⨯+⨯-⨯-⨯=-⇒=. 7.【2017·山东卷 】已知12,e e 123-e e 与12λ+e e 的夹角为60︒,则实数λ的值是___________.【解析】∵221212112122)()λλλλ-⋅+=⋅-⋅-e e e e e e e ,12|2-==e ,12||λ+===e e ,cos60λ=︒=λ=. 8.【2017·浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.【答案】4,【解析】设向量,a b 的夹角为θ,则-==a b+==a b则++-=a b a b令y =[]21016,20y =+,据此可得:()()maxmin 4++-==++-==a b a ba b a b ,即++-a b a b 的最小值是4,最大值是 【2016年】1.【2016高考山东理数】已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4 (B )–4 (C )94(D )–94【答案】B【解析】由43=m n ,可设3,4(0)k k k ==>m n ,又()t ⊥+n m n , 所以22221()cos ,34(4)41603t t n n t t k k k tk k ⋅+=⋅+⋅=⋅+=⨯⨯⨯+=+=n m n n m m n m n n , 所以4t =-,故选B.2.【2016高考新课标2理数】已知向量(1,)(3,2)a m a =-,=,且()a b b ⊥+,则m =( ) (A )-8 (B )-6 (C )6 (D )8 【答案】D【解析】向量a b (4,m 2)+=-,由(a b)b +⊥得43(m 2)(2)0⨯+-⨯-=,解得m 8=,故选D.3.【2016高考新课标3理数】已知向量1(2BA = ,31()2BC = ,则ABC ∠=( ) (A)30︒ (B)45︒ (C)60︒ (D)120︒【答案】A【解析】由题意,得112222cos 11||||BA BC ABC BA BC ⋅∠===⨯,所以30ABC ∠=︒,故选A . 4.【2016年高考北京理数】设a ,b 是向量,则“||||a b =”是“||||a b a b +=-”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】D【解析】由22||||()()0a b a b a b a b a b a b +=-⇔+=-⇔⋅=⇔⊥,故是既不充分也不必要条件,故选D.5.【2016高考天津理数】已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则BC AF ⋅的值为( ) (A )85-(B )81 (C )41 (D )811【答案】B【解析】设BA a =,BC b =,∴11()22DE AC b a ==-,33()24DF DE b a ==-, 1353()2444AF AD DF a b a a b =+=-+-=-+,∴25353144848AF BC a b b ⋅=-⋅+=-+=,故选 B.6.【2016年高考四川理数】在平面内,定点A ,B ,C ,D 满足DA=DB =DC ,DA ⋅DB =DB ⋅DC =DC ⋅DA =-2,动点P ,M 满足AP =1,PM =MC ,则2BM 的最大值是( ) (A )434 (B )494 (C )37634+ (D )372334+ 【答案】B【解析】甴已知易得1220,DA ADC ADB D D BDC B C ∠=∠====∠=︒.以D 为原点,直线DA 为x 轴建立平面直角坐标系,如图所示,则()()()2,0,1,3,1,3.A B C ---设(),,P x y 由已知1AP =,得()2221x y -+=,又13133,,,,,2222x y x y PM MC M BM ⎛⎫⎛⎫-+++=∴∴= ⎪ ⎪⎝⎭⎝⎭()()222+1334x y BM ++∴=,它表示圆()2221x y -+=上的点()x y ,与点()1,33--的距离的平方的14,()()2222max149333144BM⎛⎫∴=++= ⎪⎝⎭,故选B.7.【2016高考新课标1卷】设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = . 【答案】-2【解析】由222||||||+=+a b a b ,得⊥a b ,所以1120m ⨯+⨯=,解得2m =-.8.【2016高考江苏卷】如图,在ABC ∆中,D 是BC 的中点,,E F 是,A D 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 ▲ .【答案】78【解析】因为222211436=42244AD BC FD BC BA CA BC AD BC AD --⋅=-⋅--==()(), 2211114123234FD BCBF CF BC AD BC AD -⋅=-⋅--==-()(),因此22513,82FD BC ==,2222114167.22448ED BC FD BC BE CE BC ED BC ED --⋅=-⋅--===()() 9.【2016高考浙江理数】已知向量a 、b , |a | =1,|b | =2,若对任意单位向量e ,均有 |a ·e |+|b ·e |≤,则a ·b 的最大值是 . 【答案】12【解析】221|(a b)||a ||b |6|a b |6|a ||b |2a b 6a b 2e e e +⋅≤⋅+⋅≤⇒+≤⇒++⋅≤⇒⋅≤,即最大值为12。

2020—2021年最新高考总复习数学(通用)平面向量(真题+模拟)专项复习及解析.docx

2020—2021年最新高考总复习数学(通用)平面向量(真题+模拟)专项复习及解析.docx

第四章 平面向量考点14 平面向量的概念与运算两年高考真题演练1.(2015·新课标全国Ⅰ)已知点A(0,1),B(3,2),向量AC →=(-4,-3),则向量BC→=( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4)2.(2015·四川)设向量a =(2,4)与向量b =(x ,6)共线,则实数x =( )A .2B .3C .4D .63.(2015·新课标全国Ⅱ)已知a =(1,-1),b =(-1,2),则(2a +b)·a =( )A .-1B .0C .1D .24.(2015·重庆)已知非零向量a ,b 满足|b|=4|a|,且a ⊥(2a +b),则a 与b 的夹角为( )A.π3B.π2C.2π3D.5π65.(2015·广东)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB→=(1,-2),AD →=(2,1),则AD →·AC →=( ) A .5 B .4 C .3 D .26.(2015·北京)设a ,b 是非零向量,“a ·b =|a||b|”是“a ∥b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.(2015·陕西)对任意平面向量a ,b ,下列关系式中不恒成立的是( )A .|a ·b|≤|a||b|B .|a -b|≤||a|-|b||C .(a +b)2=|a +b|2D .(a +b)·(a -b)=a 2-b 28.(2015·江苏)已知向量a =(2,1),b =(1,-2),若ma +nb =(9,-8)(m ,n ∈R),则m -n 的值为________.9.(2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________.10.(2015·天津)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE →=23BC →,DF →=16DC →,则AE→·AF →的值为________. 11.(2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b|=________.12.(2015·安徽)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是________(写出所有正确结论的编号).①a 为单位向量;②b 为单位向量;③a ⊥b ;④b ∥BC →;⑤(4a +b)⊥BC→. 13.(2014·陕西)在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2),点P(x ,y)在△ABC 三边围成的区域(含边界)上.(1)若PA→+PB →+PC →=0,求|OP →|; (2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.考点14 平面向量的概念与运算一年模拟试题精练1.(2015·惠州市二调)已知向量AB →=(3,7),BC →=(-2,3),则-12AC →=( )A.⎝ ⎛⎭⎪⎪⎫-12,5B.⎝ ⎛⎭⎪⎪⎫12,5C.⎝ ⎛⎭⎪⎪⎫-12,-5D.⎝ ⎛⎭⎪⎪⎫12,-5 2.(2015·山西省三诊)若菱形ABCD 的边长为2,则|AB →-CB →+CD→|等于( ) A .2 B .1 C .2 2 D. 2 3.(2015·山西四校联考)如图,正六边形ABCDEF 中,BA →+CD →+EF →等于( ) A .0 B.BE → C.AD→ D.CF →4.(2015·衡水二调)平面向量a 与b 的夹角为60°,a =(2,0),|b|=1,则|a +2b|等于( )A .2 2B .2 3C .4 D.105.(2015·乐山市调研)在平行四边形ABCD 中,AC ,BD 为对角线,若AB→=(2,4),AC →=(1,3),则BD →=( ) A .(2,4) B .(3,5)C .(-2,-4)D .(-3,-5)6.(2015·烟台市检测)已知向量a =(2,1),a ·b =10,|a +b|=52,则|b|=( )A. 5B.10 C .5 D .257.(2015·山东省实验中学三诊)已知|a|=1,|b|=6,a ·(b -a)=2,则向量a 与b 的夹角为( )A.π2B.π3C.π4D.π68.(2015·洛阳市高三统考)设等边三角形ABC 边长为6,若BC →=3BE→,AD →=DC →,则BD →·AE →等于( ) A .-621 B .621 C .-18 D .189.(2015·西安八校联考)若向量a 、b 满足:a ·b =12,|a|=|b|=1,则|2a +b|=________.10.(2015·成都市一诊)若非零向量a ,b 满足|a +b|=|a -b|,则a ,b 的夹角的大小为________.11.(2015·大同市调研)设非零向量a 、b 、c 满足|a|=|b|=|c|,a +b =c ,则 〈a ,b 〉=________.12.(2015·天津六校联考)在直角三角形ABC 中,∠ACB =90°,AC =BC =2,点P 是斜边AB 上的一个三等分点,则CP →·CB →+CP→·CA →=________. 13.(2015·重庆市一诊)已知向量m =⎝ ⎛⎭⎪⎪⎫cos x 2,-1,n =⎝⎛⎭⎪⎪⎫3sin x 2,cos 2x 2,设函数f(x)=m ·n +1.(1)求函数f(x)的单调增区间;(2)在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,且满足a 2+b 2=6abcos C ,sin 2C =2sin Asin B ,求f(C)的值.考点15 平面向量的应用两年高考真题演练1.(2015·福建)设a =(1,2),b =(1,1),c =a +kb.若b ⊥c ,则实数k 的值等于( )A .-32B .-53 C.53 D.322.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为( )A .6B .7C .8D .93.(2014·重庆,理)已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b)⊥c ,则实数k =( )A .-92B .0C .3 D.1524.(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC.若AE →·AF →=1,CE →·CF →=-23,则λ+μ=( ) A.12 B.23 C.56 D.7125.(2014·安徽)在平面直角坐标系xOy 中,已知向量a ,b ,|a|=|b|=1,a ·b =0,点Q 满足OQ→=2(a +b).曲线C ={P|OP →=acos θ+bcos θ,0≤θ<2π},区域Ω={P|0<r ≤|PQ →|≤R ,r<R}.若C ∩Ω为两段分离的曲线,则( )A .1<r<R<3B .1<r<3≤RC .r ≤1<R<3D .1<r<3<R 6.(2015·江苏)设向量a k =⎝ ⎛⎭⎪⎪⎫cos k π6,sin k π6+cos k π6(k =0,1,2,…,12),则∑k =011(a k ·a k +1)的值为________.7.(2014·陕西)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(1,-cos θ),若a ·b =0,则tan θ=________.8.(2015·陕西)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c.向量m =(a ,3b)与n =(cos A ,sin B)平行.(1)求A; (2)若a =7,b =2,求△ABC 的面积.9.(2014·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a>c.已知BA →·BC →=2,cos B =13,b =3.求: (1)a 和c 的值; (2)cos(B -C)的值.考点15 平面向量的应用一年模拟试题精练1.(2015·江西省质检三)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD→=4DC →,则AD →等于( ) A.23b +13c B.53c -23b C.45b -15c D.45b +15c2.(2015·云南师大附中检测)设x ∈R ,向量a =(1,x),b =(2,-4),且a ∥b ,则a ·b =( )A .-6 B.10 C. 5 D .103.(2015·济南一中高三期中)已知向量a =(1,-2),b =(x ,2),若a ⊥b ,则|b|=( )A. 5 B .2 5 C .5 D .204.(2015·昆明三中,玉溪一中高三统考)已知向量a ,b ,其中|a|=2,|b|=2,且(a -b)⊥a ,则向量a 与b 的夹角是( )A.π6B.π4C.π2D.π35.(2015·晋冀豫三省二调)已知向量a =(1,k),b =(2,2),且a +b 与a 共线,那么a ·b 的值为( )A .1B .2C .3D .46.(2015·北京东城区高三期末)已知向量a =(1,3),b =(m ,2m -3),平面上任意向量c 都可以唯一地表示为c =λa +μb(λ,μ∈R),则实数m 的取值范围是( )A .(-∞,0)∪(0,+∞)B .(-∞,3)C .(-∞,-3)∪(-3,+∞)D .[-3,3)7.(2015·济南一中高三期中)在△ABC 中,若AB →2=AB →·AC →+BA→·BC →+CA →·CB →,则△ABC 是( )A .等边三角形B .锐角三角形C .钝角三角形D .直角三角形8.(2015·杭州七校联考)已知平面向量m ,n 的夹角为π6,且|m|=3,|n|=2,在△ABC 中,AB →=2m +2n ,AC →=2m -6n ,D 为BC 的中点,则|AD→|=( ) A .2 B .4 C .6 D .89.(2015·惠州市三调)已知向量a =(x -1,2),b =(2,1),且a ⊥b ,则实数x =________.10.(2015·衡水中学二调)设平面向量a =(1,2),b =(-2,y),若a ∥b ,则y =________.11.(2015·南昌市调研)已知直线x +y +m =0与圆x 2+y 2=2交于不同的两点A ,B ,O 是坐标原点,|OA →+OB →|≥|AB →|,那么实数m 的取值范围是________.12.(2015·四川省统考)已知锐角△ABC 中的三个内角分别为A ,B ,C.(1)设BC→·CA →=CA →·AB →,求证△ABC 是等腰三角形; (2)设向量s =(2sin C ,-3),t =⎝ ⎛⎭⎪⎪⎫cos 2C ,2cos 2C 2-1,且s∥t ,若sin A =13,求sin ⎝ ⎛⎭⎪⎪⎫π3-B 的值.参考答案第四章 平面向量考点14 平面向量的概念与运算【两年高考真题演练】1.A [AB→=(3,1),AC →=(-4,-3),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4).]2.B [a =(2,4),b =(x ,6),∵a ∥b ,∴4x -2×6=0,∴x =3.]3.C [因为a =(1,-1),b =(-1,2),所以2a +b =2(1,-1)+(-1,2)=(1,0),得(2a +b)·a =(1,0)·(1,-1)=1,选C.]4.C [因为a ⊥(2a +b),所以a ·(2a +b)=2a 2+a ·b =0,即2|a|2+|a||b|cos 〈a ,b 〉=0,又|b|=4|a|,则上式可化为2|a|2+|a|×4|a|·cos 〈a ,b 〉=0即2+4cos 〈a ,b 〉=0,所以cos 〈a ,b 〉=-12,即a ,b 夹角为23π.]5.A [∵四边形ABCD 为平行四边形,∴AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1).∴AD→·AC →=2×3+(-1)×1=5.] 6.A [由数量积定义a ·b =|a|·|b|·cos θ=|a|·|b|,(θ为a ,b 夹角),∴cos θ=1,θ∈[0°,180°],∴θ=0°,∴a ∥b ;反之,当a ∥b 时,a ,b 的夹角θ=0°或180°, a ·b =±|a|·|b|.]7.B [对于A ,由|a ·b|=||a||b|cos a ,b |≤|a||b|恒成立;对于B ,当a ,b 均为非零向量且方向相反时不成立;对于C 、D 容易判断恒成立.故选B.]8.-3 [∵a =(2,1),b =(1,-2),∴ma +nb =(2m +n ,m -2n)=(9,-8),即⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,故m -n =2-5=-3.]9.9 [因为OA →⊥AB →,所以OA →·AB →=0.所以OA →·OB →=OA →·(OA →+AB→)=OA →2+OA →·AB →=|OA →|2+0=32=9.] 10.2918 [在等腰梯形ABCD 中,AB ∥DC ,AB =2,BC =1, ∠ABC =60°,∴CD =1,AE →=AB →+BE →=AB →+23BC →,AF →=AD →+DF →=AD →+16DC →, ∴AE →·AF →=⎝⎛⎭⎪⎪⎫AB →+23BC →·⎝ ⎛⎭⎪⎪⎫AD →+16DC →=AB →·AD →+AB →·16DC →+23BC →·AD →+23BC →·16DC →=2×1×cos 60°+2×16+23×1×cos 60°+23×16×cos120°=2918.]11.233 [因为|e 1|=|e 2|=1且e 1·e 2=12.所以e 1与e 2的夹角为60°.又因为b ·e 1=b ·e 2=1,所以b ·e 1-b ·e 2=0,即b ·(e 1-e 2)=0,所以b ⊥(e 1-e 2).所以b 与e 1的夹角为30°,所以b ·e 1=|b|·|e 1|cos30°=1.∴|b|=233.]12.①④⑤ [∵△ABC 为边长是2的等边三角形,∴|AB →|=|2a|=2|a|=2,从而|a|=1,故①正确;又BC→=AC →-AB →=2a +b -2a =b ,∴b ∥BC→,故④正确;又(AB →+AC →)·(AB →-AC →)=AB →2-AC →2=0,∴(AB→+AC →)⊥BC →,即(4a +b)⊥BC →,故⑤正确.] 13.解 (1)法一 ∵PA→+PB →+PC →=0, 又PA→+PB →+PC →=(1-x ,1-y)+(2-x ,3-y)+(3-x ,2-y)=(6-3x ,6-3y),∴⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2即OP→=(2,2),故|OP →|=2 2. 法二 ∵PA→+PB →+PC →=0,则(OA→-OP →)+(OB →-OP →)+(OC →-OP →)=0,∴OP →=13(OA →+OB →+OC →)=(2,2), ∴|OP→|=2 2. (2)解 ∵OP→=mAB →+nAC →, ∴(x ,y)=(m +2n ,2m +n),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x. 令y -x =t ,由图知,当直线y =x +t 过点B(2,3)时,t 取得最大值1,故m -n 的最大值为1.【一年模拟试题精练】1.C [-12AC →=-12(AB →+BC →)=-12[(3,7)+(-2,3)]=⎝ ⎛⎭⎪⎪⎫-12,-5.] 2.A [|AB→-CB →+CD →|=|AB →+BC →+CD →|=|AD →|=2.] 3.D [因为ABCDEF 是正六边形,故BA →+CD →+EF →=DE →+CD →+EF →=CE →+EF →=CF→.] 4.B [由已知得|a|=2,∴|a +2b|2=a +4a ·b +4b 2=4+4×2×1×cos 60°+4=12,∴|a +2b|=23,故选B.]5.D [由题可知BD→=BC →+CD →=(AC →-AB →)+BA →=AC →+2BA →=(1,3)+2(-2,-4)=(-3,-5),故选D.]6.C [(a +b)2=a 2+2a ·b +b 2=5+2×10+|b|2=50,|b|=5.]7.B [a ·(b -a)=a ·b -a 2=|a||b|cos θ-|a|2=2,故cos θ=12,θ=π3.]8.C [令AB →=c ,AC →=b ,则BD →=BA →+AD →=-c +12b , AE →=AB →+BE →=13b +23c ,BD →·AE →=⎝ ⎛⎭⎪⎪⎫-c +12b ·⎝ ⎛⎭⎪⎪⎫13b +23c =-12b 2=-18.]9.7 [∵a ·b =12,|a|=|b|=1,∴|2a +b|=(2a +b )2=7.]10.90° [∵|a +b|=|a -b|, ∴(a +b)2=(a -b)2,即a 2+2a ·b +b 2=a 2-2a ·b +b 2,a ·b =0,故a ⊥b.] 11.23π [∵非零向量a 、b 、c 满足|a|=|b|=|c|,a +b =c , ∴(a +b)2=c 2, 即a 2+b 2+2a ·b =c 2, ∴|a|2+2|a|2cos a ,b =0, ∴cos a ,b=-12,∴a ,b=23π.故答案为:23π.] 12.4 [设CB→=a ,CA →=b ,AB →=AC →+CB →=a -b ,CP →=CA →+AP→ =CA →+13AB →=13a +23b ,CP→·CB →+CP →·CA → =CP →·(CB →+CA →)=13a 2+a ·b +23b 2=4.]13.解 (1)f(x)=3sin x 2cos x 2-cos 2x 2+1=32sin x -12cos x +12=sin ⎝ ⎛⎭⎪⎪⎫x -π6+12. 令2k π-π2≤x -π6≤2k π+π2,∴2k π-π3≤x ≤2k π+2π3(k ∈Z).所以所求增区间为⎣⎢⎢⎡⎦⎥⎥⎤2k π-π3,2k π+2π3(k ∈Z). (2)由a 2+b 2=6abcos C ,sin 2C =2sin Asin B ,得c 2=2ab ,因为cos C =a 2+b 2-c 22ab =6abcos C -2ab 2ab =3cos C -1得cos C =12,又∵0<C <π,C =π3,∴f(C)=f ⎝ ⎛⎭⎪⎪⎫π3=1.考点15 平面向量的应用【两年高考真题演练】1.A [c =a +kb =(1,2)+k(1,1)=(1+k ,2+k),∵b ⊥c ,∴b ·c =0,b ·c =(1,1)·(1+k ,2+k)=1+k +2+k =3+2k =0,∴k =-32,故选A.]2.B [由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴线段AC 为圆的直径,故PA→+PC →=2PO →=(-4,0), 设B(x ,y),则x 2+y 2=1且x ∈[-1,1],PB→=(x -2,y),所以PA→+PB →+PC →=(x -6,y),∴|PA →+PB →+PC →|=-12x +37,∴当x =-1时,此式有最大值49=7,故选B.]3.C [因为a =(k ,3),b =(1,4),所以2a -3b =2(k ,3)-3(1,4)=(2k -3,-6).因为(2a -3b)⊥c ,所以(2a -3b)·c =(2k -3,-6)·(2,1)=2(2k -3)-6=0,解得k =3,故选C.]4.C [∵AE→=AB →+λBC →,AF →=AD →+μDC →, ∴AE→·AF →=(AB →+λBC →)·(AD →+μDC →) =AB→·AD →+μAB →·DC →+λBC →·AD →+λμBC →·DC → =2×2×⎝ ⎛⎭⎪⎪⎫-12+4μ+4λ+2×2×⎝ ⎛⎭⎪⎪⎫-12λμ =-2+4(λ+μ)-2λμ=1. ∴2(λ+μ)-λμ=32.①∵CE→·CF →=(1-λ)CB →·(1-μ)CD → =(λμ-λ-μ+1)CB→·CD →=2×2×⎝ ⎛⎭⎪⎪⎫-12(λμ-λ-μ+1) =-2[λμ-(λ+μ)+1]=-23,∴λμ-(λ+μ)+1=13,即λμ-(λ+μ)=-23.②由①②解得λ+μ=56.]5.A [由已知可设OA→=a =(1,0),OB →=b =(0,1),P(x ,y),则OQ →=(2,2),曲线C ={P|OP→=(cos θ,sin θ),0≤θ<2π},即C :x 2+y 2=1,区域Ω={P|0<r ≤|PQ→|≤R ,r<R}表示圆P 1:(x -2)2+(y -2)2=r 2与圆P 2:(x -2)2+(y -2)2=R 2所形成的圆环,如图所示,要使C ∩Ω为两段分离的曲线,只有1<r<R<3.]6.9 3[∵a k =⎝ ⎛⎭⎪⎪⎫cos k π6,sin k π6+cos k π6,∴a k ·a k +1=⎝ ⎛⎭⎪⎪⎫cos k π6,sin k π6+cos k π6· ⎝ ⎛⎭⎪⎪⎫cos k +16π,sin k +16π+cos k +16π =cos k π6·cos k +16π+⎝ ⎛⎭⎪⎪⎫sin k π6+cos k π6· ⎝ ⎛⎭⎪⎪⎫sin k +16π+cos k +16π =32cos π6+12cos 2k +16π+sin 2k +16π. 故错误!错误!=32k =011cos π6+12k =011cos 2k +16π+k =011sin 2k +16π. 由k =011cos 2k +16π=0,k =011sin 2k +16π=0,得 ∑k =011a k ·a k +1=32cos π6·12=9 3.] 7.12 [因为a ·b =0,所以sin 2θ-cos 2θ=0,2sin θcos θ=cos 2θ,因为0<θ<π2,所以cos θ>0,得2sin θ=cos θ,tan θ=12.] 8.解 (1)因为m ∥n ,所以asin B -3bcos A =0,由正弦定理,得sin Asin B -3sin Bcos A =0, 又sin B ≠0,从而tan A =3, 由于0<A <π,所以A =π3.(2)法一 由余弦定理,得a 2=b 2+c 2-2bccos A , 而a =7,b =2,A =π3,得7=4+c 2-2c , 即c 2-2c -3=0, 因为c >0,所以c =3,故△ABC 的面积为S =12bcsin A =332.法二 由正弦定理,得7sin π3=2sin B ,从而sin B =217,又由a >b ,知A >B ,所以cos B =277,故sin C =sin(A +B)=sin ⎝ ⎛⎭⎪⎪⎫B +π3 =sin Bcos π3+cos Bsin π3=32114.所以△ABC 的面积为S =12absin C =332. 9.解 (1)由BA→·BC →=2得c ·acos B =2, 又cos B =13,所以ac =6. 由余弦定理,得a 2+c 2=b 2+2accos B.又b =3,所以a 2+c 2=9+2×2=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2. 因a>c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-(13)2=223, 由正弦定理,得sin C =c b sin B =23×223=429. 因a =b>c ,所以C 为锐角,因此cos C =1-sin 2C =1-(429)2=79. 于是cos(B -C)=cos Bcos C +sin Bsin C=13×79+223×429=2327. 【一年模拟试题精练】1.D [∵BD→=4DC →,∴AD →-AB →=BD →=4DC →=4(AC →-AD →), ∴5AD →=4AC →+AB →,∴AD →=45AC →+15AB →=45b +15c.]2.D [∵a =(1,x),b =(2,-4),且a ∥b ,∴-4-2x =0,x =-2,∴a =(1,-2),a ·b =10.]3.B [∵a ⊥b ,∴a ·b =x -4=0,即x =4,故|b|=42+22=2 5.] 4.B [因为(a -b)⊥a ,所以(a -b)·a =0,即a 2=a ·b =|a|2=2,所以cosa ,b =a ·b |a|·|b|=22×2=22,所以向量a 与b 的夹角为π4.] 5.D [∵a =(1,k),b =(2,2),∴a +b =(3,k +2),又∵a +b 与a 共线,∴3×2-(k +2)·2=0,即k =1,故a ·b =(1,1)·(2,2)=2+2=4.]6.C [由题意可得,{a ,b}是平面的一组基底,所以a 与b 不共线,所以2m -3≠3m ,所以m ≠-3.]7.D [∵AB→2=AB →·AC →+BA →·BC →+CA →·CB →,∴AB →2-AB →·AC →=AB→·CB →=BC →·(BA →-CA →)=BC →2,∴BC →·(BC →-BA →)=0,即BC →·AC →=0,故△ABC 是直角三角形.]8.A [AD →=12(AB →+AC →)=12(2m +2n +2m -6n)=2m -2n , 故|AD→|=2|m -n|=2(m -n )2=2m 2-2m ·n +n 2 =2m 2-2|m||n|cos m ,n +n 2=2.] 9.0 [∵a =(x -1,2),b =(2,1),且a ⊥b ,∴a ·b =2(x +1)+2=0,解之可得x =0.]10.-4 [∵a =(1,2),b =(-2,y),a ∥b ,∴1·y =2×(-2),∴y =-4.]11.(-2,-2]∪[2,2) [圆心O 到直线x +y +m =0的距离d =|m|2.由|OA →+OB →|≥|AB|得,|OA →+OB →|≥|OB →-OA →|, 所以|OA→|2+|OB →|2+2OA →·OB →≥|OA →|2+|OB →|2-2OA →·OB →, 所以OA→·OB →≥0, 所以0<∠AOB ≤π2,22≤cos 12∠AOB <1, 又|m|2=2cos 12∠AOB , 所以2×22≤|m|<2, 解得-2<m ≤-2或2≤m <2.]12.(1)证明 因为BC→·CA →=CA →·AB →, 所以CA→·(BC →-AB →)=0, 又AB→+BC →+CA →=0, 所以CA→=-(AB →+BC →), 所以-(AB→+BC →)·(BC →-AB →)=0, 所以AB→2-BC →2=0, 所以|AB→|2=|BC →|2,即|AB →|=|BC →|, 故△ABC 为等腰三角形.(2)解 ∵s ∥t ,∴2sin C ⎝ ⎛⎭⎪⎪⎫2cos 2C 2-1=-3cos 2C , ∴sin 2C =-3cos 2C ,即tan 2C =-3,∵C 为锐角,∴2C ∈(0,π),∴2C =2π3,∴C =π3, ∴A =2π3-B ,∴sin ⎝ ⎛⎭⎪⎪⎫π3-B =sin ⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎪⎫2π3-B -π3=sin ⎝ ⎛⎭⎪⎪⎫A -π3, 又sin A =13,且A 为锐角,∴cos A =223, ∴sin ⎝ ⎛⎭⎪⎪⎫π3-B =sin ⎝ ⎛⎭⎪⎪⎫A -π3=sin Acos π3-cos Asin π3=1-266。

《备战2020年高考》专题07平面向量-2019年高考真题和模拟题分项汇编数学(文)(原卷版)

《备战2020年高考》专题07平面向量-2019年高考真题和模拟题分项汇编数学(文)(原卷版)

1 专题07 平面向量1.【2019年高考全国I 卷文数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π62.【2019年高考全国II 卷文数】已知向量a =(2,3),b =(3,2),则|a -b |= AB .2C .D .503.【2019年高考北京卷文数】已知向量a =(–4,3),b =(6,m ),且⊥a b ,则m =__________.4.【2019年高考全国III 卷文数】已知向量(2,2),(8,6)==-a b ,则cos ,=a b ___________.5.【2019年高考天津卷文数】在四边形ABCD中,,5,30AD BC AB AD A ==∠=︒∥,点E在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________.6.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.7.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.8.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在矩形ABCD 中,4AB =uu u r ,2AD =.若点M ,N 分别是CD ,BC 的中点,则AM MN ⋅= A .4 B .3C .2D .19.【福建省漳州市2019届高三下学期第二次教学质量监测数学试题】已知向量a ,b 满足||1=a,||=b2且a 与b 的夹角为6π,则()(2)+⋅-=a b a b A .12 B .32-C .12-D .3210.【安徽省江淮十校2019届高三年级5月考前最后一卷数学试题】已知向量(1,2)=a ,(2,3)=-b ,(4,5)=c ,若()λ+⊥a b c ,则实数λ=A .12-B .12C .2-D .211.【2019届北京市通州区三模数学试题】设a ,b 均为单位向量,则“a 与b 夹角为2π3”是“||+=a b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件12.【辽宁省丹东市2019届高三总复习质量测试数学(二)】在ABC △中,2AB AC AD +=,AE DE +=0,若EB xAB y AC =+,则 A .3y x = B .3x y =C .3y x =-D .3x y =-13.【2019年辽宁省大连市高三5月双基考试数学试题】已知直线y =x +m 和圆x 2+y 2=1交于A 、B 两点,O为坐标原点,若32AO AB ⋅=,则实数m = A .1±B.2±C.2±D .12±14.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查数学试题】已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC ,DC 上,3BC BE =,DC DF λ=,若1A E A F ⋅=,则λ的值为 A .3B .23 C .23 D .5215.【江西省新八校2019届高三第二次联考数学试题】在矩形ABCD 中,3,4,AB AD AC ==与BD 相交于点O ,过点A 作AE BD ⊥,垂足为E ,则AE EC ⋅=A .572B .14425C .125D .251216.【湖师范大学附属中学2019届高三数学试题】如图所示,在正方形ABCD 中,E 为AB 的中点,F 为CE 的中点,则AF =A .3144AB AD + B .1344AB AD + C .12AB AD +D .3142AB AD +17.【2019年北京市高考数学试卷】已知向量a =(-4,3),b =(6,m ),且⊥a b ,则m =__________.18.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】已知圆22450x y x ++-=的弦AB 的中点为(1,1)-,直线AB 交x 轴于点P ,则PA PB ⋅的值为__________.。

高考数学压轴专题最新备战高考《平面向量》真题汇编含答案解析

高考数学压轴专题最新备战高考《平面向量》真题汇编含答案解析

新数学复习题《平面向量》专题解析一、选择题1.设双曲线()222210,0x y a b a b -=>>的右焦点为F ,过点F 作x 轴的垂线交两渐近线于,A B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,225+=8λμ,则双曲线的离心率为( ) A .233 B .35 C .322 D .98【答案】A【解析】【分析】先根据已知求出,u λ,再代入225+=8λμ求出双曲线的离心率. 【详解】由题得双曲线的渐近线方程为b y x a =±,设F(c,0),则2(,),(,),(,),bc bc b A c B c P c a a a- 因为(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,所以2(,)((),())b bc c u c u a aλλ=+-. 所以,,b u c u c λλ+=-=解之得,.22b c c b u c c λ+-== 因为225+=8λμ,所以22522()(),3, 3.22833b c c b c e c c a +-+=∴=∴= 故答案为A【点睛】 本题主要考查双曲线的几何性质和离心率的求法,意在考查学生对这些基础知识的掌握能力.解答本题的关键是根据(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v求出,u λ. 2.在ABC V 中,E 是AC 的中点,3BC BF =u u u r u u u r ,若AB a =u u u r r ,AC b =u u u r r ,则EF =u u u r ( )A .2136a b -r rB .1133a b +r rC .1124a b +r rD .1133a b -r r【答案】A【解析】【分析】根据向量的运算法则计算得到答案.【详解】 1223EF EC CF AC CB =+=+u u u r u u u r u u u r u u u r u u u r ()12212336AC AB AC AB AC =+-=-u u u r u u u r u u u r u u u r u u u r 2136a b =-r r . 故选:A .【点睛】本题考查了向量的基本定理,意在考查学生的计算能力和转化能力.3.已知AB 是圆22:(1)1C x y -+=的直径,点P 为直线10x y -+=上任意一点,则PA PB ⋅u u u v u u u v 的最小值是( )A .21-B .2C .0D .1【答案】D【解析】 试题分析:由题意得,设,,,又因为,所以,所以PA PB ⋅u u u r u u u r的最小值为1,故答案选D. 考点:1.圆的性质;2.平面向量的数量积的运算.4.如图,在圆O 中,若弦AB =3,弦AC =5,则AO uuu v ·BC uuu v的值是A .-8B .-1C .1D .8【答案】D【解析】【分析】【详解】 因为AO AC CO AB BO =+=+u u u v u u u v u u u v u u u v u u u v ,所以1()2AO AC BO AB CO =+++u u u v u u u v u u u v u u u v u u u v ,而BC AC AB BO CO =-=-u u u v u u u v u u u v u u u v u u u v ,所以1()2BC AC AB BO CO =-+-u u u v u u u v u u u v u u u v u u u v ,则 1()()4AO BC AC AB CO BO AC AB BO CO ⋅=+++-+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()CO BO BO CO ++-u u u v u u u v u u u v u u u v221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v2211(||)()42AC AB AC BO AB CO =-+⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)[()]42AC AB AB BC BO AB CO =-++⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AB BC BC BO =-+⋅+⋅u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)42AC AB AO BC =-+⋅u u u v u u u v u u u v u u u v 所以221(||)82AO BC AC AB ⋅=-=u u u v u u u v u u u v u u u v ,故选D 5.在ABC V 中,若2AB BC BC CA CA AB ⋅=⋅=⋅u u u v u u u v u u u v u u u v u u u v u u u v ,则AB BC=u u u v u u u v ( ) A .1BCD【答案】C【解析】【分析】根据题意,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v 可以推得AB AC =,再利用向量运算的加法法则,即可求得结果.【详解】由题意得,AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v ,即A A =0+BC B C ⋅uu u v uu u v uuu v(),设BC 的中点为D ,则AD BC ⊥,即ABC V 为等腰三角形,B=C AB AC =∠∠, 又因为2BC CA CA AB ⋅=⋅uu u v uu v uu v uu u v即2222222C Ccos2C2C cos112C+22232C2AB BCCA A BAB BC B A CA B CBC A BCA BC⋅=⋅-=-+-=-+⨯=uu u v uu u v uu v uu u v uuvuu u v uu u v uu u v uu v uuvuu u v uu u v uu u vuu u v uu u v()所以32ABBC=uu u vuu u v.【点睛】本题主要考查平面向量的线性运算.6.已知向量av,bv满足a b a b+=-r rv v,且||3a=v,||1b=r,则向量bv与a b-v v的夹角为()A.3πB.23πC.6πD.56π【答案】B【解析】【分析】对a b a b+=-v vv v两边平方,求得0a b⋅=vv,所以a b⊥vv.画出图像,根据图像确定bv与a b-vv的夹角,并根据它补角的正切值求得对应的角的大小.【详解】因为a b a b+=-v vv v,所以222222a ab b a a b b+⋅+=-⋅+v v v vv v v v,即0a b⋅=vv,所以a b⊥vv.如图,设AB a=u u u v v,AD b=u u u v v,则向量bv与a b-vv的夹角为BDE∠,因为tan3BDA∠=,所以3BDAπ∠=,23BDEπ∠=.故选B.【点睛】本题考查平面向量的模以及夹角问题,考查运算求解能力,考查数形结合的数学思想方法.属于中档题.7.已知向量(cos,sin)aαα=r,(cos,sin)bββ=r,a b⊥r r,则当,1[]2t∈-时,a tb-r r的最大值为( )AB C .2 D 【答案】D【解析】【分析】 根据(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r ,得到1a =r ,1b =r ,0a b ⋅=r r ,再利用a tb -==r r 求解.【详解】 因为(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r , 所以1a =r ,1b =r ,0a b ⋅=r r ,所以a tb -==r r当[]2,1t ∈-时,maxa tb -=r r 故选:D【点睛】本题考查向量的模以及数量积的运算,还考查运算求解能力,属于中档题.8.已知向量m =r (1,cos θ),(sin ,2)n θ=-r ,且m r ⊥n r,则sin 2θ+6cos 2θ的值为( )A .12B .2C .D .﹣2 【答案】B【解析】【分析】根据m r ⊥n r 可得tanθ,而sin 2θ+6cos 2θ22226sin cos cos sin cos θθθθθ+=+,分子分母同除以cos 2θ,代入tanθ可得答案.【详解】 因为向量m =r (1,cosθ),n =r (sinθ,﹣2), 所以sin 2cos m n θθ⋅=-u r r 因为m r ⊥n r ,所以sin 2cos 0θθ-=,即tanθ=2,所以sin 2θ+6cos 2θ22222626226141sin cos cos tan sin cos tan θθθθθθθ++⨯+====+++ 2. 故选:B.【点睛】 本题主要考查平面向量的数量积与三角恒等变换,还考查运算求解的能力,属于中档题.9.在ABC V 中,312AB AC ==,D 是AC 的中点,BD u u u r 在AC u u u r 方向上的投影为4-,则向量BA u u u r 与AC u u u r 的夹角为( )A .45°B .60°C .120°D .150° 【答案】C【解析】【分析】设BDC α∠=,向量BA u u u r 与AC u u u r 的夹角为θ,BD u u u r 在AC u u u r 方向上的投影为cos =4BD α-u u u r ,利用线性代换并结合向量夹角公式即可求出夹角.【详解】312AB AC ==,D 是AC 的中点,则4AC =,2AD DC ==,向量BD u u u r 在AC u u u r 方向上的投影为4-,设BDA α∠=,向量BA u u u r 与AC u u u r的夹角为θ, 则cos =4BD α-u u u r , ∴()cos ===BD DA AC BA AC BD AC DA AC BA AC BA AC BA ACθ+⋅⋅⋅+⋅⋅⋅⋅u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u r u u u r u u u r u u u r u u u r ()()cos cos180444211===1242BD AC DA AC AB AC α⋅+⋅⨯+-⨯-⨯︒⨯⋅-u u u u u r u u u r u u u u r u u u r u ur r u , 故夹角为120°,故选:C .【点睛】本题考查向量的投影,利用数量积求两个向量的夹角,属于中等题.10.设()1,a m =r ,()2,2b =r ,若()2a mb b +⊥r r r ,则实数m 的值为( ) A .12 B .2 C .13- D .-3【答案】C【解析】【分析】 计算()222,4a mb m m +=+r r ,根据向量垂直公式计算得到答案.【详解】 ()222,4a mb m m +=+r r ,∵()2a mb b +⊥r r r ,∴()20a mb b +⋅=r r r ,即()22280m m ⋅++=,解得13m =-. 故选:C . 【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.11.下列说法中说法正确的有( ) ①零向量与任一向量平行;②若//a b r r ,则()a b R λλ=∈r r ;③()()a b c a b c ⋅⋅=⋅⋅r r r r r r ④||||||a b a b +≥+r r r r ;⑤若0AB BC CA ++=u u u r u u u r u u u r r ,则A ,B ,C为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底;A .①④B .①②④C .①②⑤D .③⑥ 【答案】A【解析】【分析】直接利用向量的基础知识的应用求出结果.【详解】对于①:零向量与任一向量平行,故①正确; 对于②:若//a b r r ,则()a b R λλ=∈r r ,必须有0b ≠r r ,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅r r r r r r ,a r 与c r 不共线,故③错误;对于④:a b a b +≥+r r r r ,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=u u u r u u u r u u u r r ,则,,A B C 为一个三角形的三个顶点,也可为0r ,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误.综上:①④正确.故选:A.【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.12.已知5MN a b =+u u u u r r r ,28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r ,则( )A .,,M N P 三点共线B .,,M N Q 三点共线C .,,N P Q 三点共线D .,,M P Q 三点共线【答案】B【解析】【分析】利用平面向量共线定理进行判断即可.【详解】 因为28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r 所以()2835NQ NP PQ a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r,因为5MN a b =+u u u u r r r ,所以MN NQ =u u u u r u u u r 由平面向量共线定理可知,MN u u u u r 与NQ uuu r 为共线向量,又因为MN u u u u r 与NQ uuu r 有公共点N ,所以,,M N Q 三点共线. 故选: B【点睛】本题考查利用平面向量共线定理判断三点共线;熟练掌握共线定理的内容是求解本题的关键;属于中档题、常考题型.13.已知ABC V 为直角三角形,,6,82C BC AC π===,点P 为ABC V 所在平面内一点,则()PC PA PB ⋅+u u u r u u u r u u u r 的最小值为( )A .252-B .8-C .172-D .1758- 【答案】A【解析】【分析】根据,2C π=以C 点建系, 设(,)P x y ,则22325()=2(2)222PC PA PB x y ⎛⎫⋅+-+-- ⎪⎝⎭u u u r u u u r u u u r ,即当3=2=2x y ,时,取得最小值. 【详解】如图建系,(0,0), (8,0), (0,6)C A B ,设(,)P x y ,(8,)PA x y =--u u u r ,(,6)PB x y =--u u u r,则22()(,)(82,62)2826PC PA PB x y x y x x y y ⋅+=--⋅--=-+-u u u r u u u r u u u r 22325252(2)2222x y ⎛⎫=-+--≥- ⎪⎝⎭. 故选:A.【点睛】本题考查平面向量数量积的坐标表示及其应用,根据所求关系式运用几何意义是解题的关键,属于中档题.14.在△ABC 中,D 是BC 中点,E 是AD 中点,CE 的延长线交AB 于点,F 则( )A .1162DF AB AC =--u u u r u u u r u u u r B .1134DF AB AC =--u u u r u u u r u u u r C .3142DF AB AC =-+u u u r u u u r u u u r D .1126DF AB AC =--u u u r u u u r u u u r 【答案】A【解析】【分析】设AB AF λ=u u u r u u u r ,由平行四边形法则得出144AE AF AC λ=+u u u r u u u r u u u r ,再根据平面向量共线定理得出得出=3λ,由DF AF AD =-u u u r u u u r u u u r ,即可得出答案.【详解】设AB AF λ=u u u r u u u r ,111124444AE AB A A C A AC D F λ==+=+u u u r u u u u u u r u u u r r u u u r u u u r 因为C E F 、、三点共线,则1=144λ+,=3λ 所以1111132262DF AF AD AB AB AC AB AC =-=--=--u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选:A【点睛】本题主要考查了用基底表示向量,属于中档题.15.下列命题为真命题的个数是( )①{x x x ∀∈是无理数},2x 是无理数;②若0a b ⋅=r r ,则0a =r r 或0b =r r;③命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”的逆否命题为真命题;④函数()x x e e f x x --=是偶函数. A .1B .2C .3D .4【答案】B【解析】【分析】利用特殊值法可判断①的正误;利用平面向量垂直的等价条件可判断②的正误;判断原命题的真假,利用逆否命题与原命题的真假性一致的原则可判断③的正误;利用函数奇偶性的定义可判断④的正误.综合可得出结论.【详解】对于①中,当2x =时,22x =为有理数,故①错误; 对于②中,若0a b ⋅=r r ,可以有a b ⊥r r ,不一定要0a =r r 或0b =r r ,故②错误;对于③中,命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”为真命题, 其逆否命题为真命题,故③正确;对于④中,()()x x x xe e e ef x f x x x-----===-, 且函数的定义域是(,0)(0,)-∞+∞U ,定义域关于原点对称,所以函数()x xe ef x x--=是偶函数,故④正确. 综上,真命题的个数是2.故选:B.【点睛】本题考查命题真假的判断,涉及全称命题的真假的判断、逆否命题真假的判断、向量垂直等价条件的应用以及函数奇偶性的判断,考查推理能力,属于中等题.16.如图,向量a b -r r 等于A .1224e e --u r u u rB .1242e e --u r u u rC .123e e -r u u rD .123e e -+r u u r 【答案】D【分析】【详解】 由向量减法的运算法则可得123a e b e -=-+r r r u u r ,17.已知向量OA u u u r 与OB uuu r 的夹角为θ,2OA =u u u r ,1OB =uu u r ,=u u u r u u u r OP tOA ,()1OQ t OB =-u u u r u u u r ,PQ u u u r 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( )A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫ ⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭【答案】C【解析】【分析】 根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r ,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围. 【详解】 因为2cos OA OB θ⋅=u u u r u u u r ,()1PQ OQ OP t OB tOA =-=--u u u r u u u r u u u r u u u r u u u r ,()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r , ∵PQ u u u r 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤, 所以223ππθ<<, 故选:C.【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题.18.三角形ABC 中,5BC =,G ,O 分别为三角形ABC 的重心和外心,且5GO BC ⋅=u u u r u u u r ,则三角形ABC 的形状是( )A .锐角三角形B .钝角三角形C .直角三角形D .上述均不是【解析】【分析】取BC 中点D ,利用GO GD DO =+u u u r u u u r u u u r代入计算,再利用向量的线性运算求解.【详解】如图,取BC 中点D ,连接,OD AD ,则G 在AD 上,13GD AD =,OD BC ^, ()GO BC GD DO BC GD BC DO BC ⋅=+⋅=⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r221111()()()53326GD BC AD BC AB AC AC AB AC AB =⋅=⋅=⨯+⋅-=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , ∴2223025AC AB BC -=>=,∴2220AB BC AC +-<,由余弦定理得cos 0B <,即B 为钝角,三角形为钝角三角形.故选:B .【点睛】本题考查平面向量的数量积,考查向量的线性表示,考查余弦定理.解题关键是取BC 中点D ,用,AB AC u u u r u u u r 表示出,GD BC u u u r u u u r. 19.已知向量()1,3a =-v ,()3,b m =v ,若a b ⊥v v ,则2a b +v v 等于( )A .10B .16C .52D .410【答案】C【解析】【分析】 先利用向量垂直的坐标表示求出实数m 的值,得出向量b r 的坐标,并计算出向量2a b +r r ,最后利用向量模的坐标运算得出结果.【详解】 ()1,3a =-r Q ,()3,b m =r ,a b ⊥r r ,则1330a b m ⋅=⨯-=r r ,得1m =,()3,1b ∴=r ,则()()()221,33,15,5a b +=-+=-r r ,因此,()2225552a b +=+-=r r C.【点睛】本题考查向量垂直的坐标表示以及向量模的坐标运算,意在考查学生对这些公式的理解掌握情况,考查运算求解能力,属于中等题.20.已知1F 、2F 分别为双曲线22146x y -=的左、右焦点,M 为双曲线右支上一点且满足120MF MF ⋅=u u u u v u u u u v ,若直线2MF 与双曲线的另一个交点为N ,则1MF N ∆的面积为( )A .12B .C .24D .【答案】C【解析】【分析】 设1MF m =,2MF n =,根据双曲线的定义和12MFMF ⊥,可求出6m =,2n =,再设2NF t =,则14NF t =+根据勾股定理求出6t =即可求出三角形的面积.【详解】 解:设1MF m =,2MF n =, ∵1F 、2F 分别为双曲线22146x y -=的左、右焦点,∴24m n a -==,122F F c ==∵120MF MF ⋅=u u u u v u u u u v , ∴12MF MF ⊥,∴222440m n c +==,∴()2222m n m n mn -=+-,即2401624mn =-=,∴12mn =,解得6m =,2n =, 设2NF t =,则124NF a t t =+=+,在1Rt NMF ∆中可得()()222426t t +=++,解得6t =, ∴628MN =+=,∴1MF N ∆的面积111862422S MN MF =⋅=⨯⨯=. 故选C .【点睛】本题考查了双曲线的定义和向量的数量积和三角形的面积,考查了运算能力和转化能力,属于中档题.。

2020届高考数学(理)一轮必刷题 专题25 平面向量基本定理及坐标表示(解析版)

2020届高考数学(理)一轮必刷题 专题25 平面向量基本定理及坐标表示(解析版)

考点25 平面向量基本定理及坐标表示1、已知向量a =(3,-4),b =(x ,y ).若a ∥b ,则( ) A .3x -4y =0 B .3x +4y =0 C .4x +3y =0 D .4x -3y =0【答案】C【解析】∵a ∥b ,∴3y +4x =0.故选C.2、已知向量a =(5,2),b =(-4,-3),c =(x ,y ).若3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0) D .(-7,0)【答案】A【解析】由题意可得3a -2b +c =3(5,2)-2(-4,-3)+(x ,y )=(23+x ,12+y )=(0,0),所以⎩⎪⎨⎪⎧ 23+x =0,12+y =0,解得⎩⎪⎨⎪⎧x =-23,y =-12,所以c =(-23,-12).3、若AC 为平行四边形ABCD 的一条对角线,AB →=(3,5),AC →=(2,4),则AD →=( ) A .(-1,-1) B .(5,9) C .(1,1) D .(3,5)【答案】A【解析】由题意可得AD →=BC →=AC →-AB →=(2,4)-(3,5)=(-1,-1). 4、已知平面向量a =(1,-2),b =(2,m ).若a ∥b ,则3a +2b =( ) A .(7,2) B .(7,-14) C .(7,-4) D .(7,-8)【答案】B【解析】∵a ∥b ,∴m +4=0,∴m =-4,∴b =(2,-4),∴3a +2b =3(1,-2)+2(2,-4)=(7,-14). 5、设向量a =(x,1),b =(4,x ),且a ,b 方向相反,则x 的值是( ) A .2 B .-2 C .±2 D .0【答案】B【解析】因为a 与b 方向相反,故可设b =m a ,m <0,则有(4,x )=m (x,1),所以⎩⎪⎨⎪⎧4=mx ,x =m ,解得m =±2.又m <0,所以m =-2,x =m =-2.6、设向量a =(1,-3),b =(-2,4),c =(-1,-2).若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d =( ) A .(2,6) B .(-2,6) C .(2,-6) D .(-2,-6)【答案】D【解析】设d =(x ,y ),由题意知4a =4(1,-3)=(4,-12),4b -2c =4(-2,4)-2(-1,-2)=(-6,20),2(a -c )=2[(1,-3)-(-1,-2)]=(4,-2).又4a +(4b -2c )+2(a -c )+d =0,所以(4,-12)+(-6,20)+(4,-2)+(x ,y )=(0,0),解得x =-2,y =-6,所以d =(-2,-6).7、已知平行四边形ABCD 中,AD →=(3,7),AB →=(-2,3),对角线AC 与BD 交于点O ,则CO →的坐标为( ) A.⎝⎛⎭⎫-12,5 B .⎝⎛⎭⎫12,5 C.⎝⎛⎭⎫12,-5 D .⎝⎛⎭⎫-12,-5 【答案】D【解析】AC →=AB →+AD →=(-2,3)+(3,7)=(1,10).∴OC →=12AC →=⎝⎛⎭⎫12,5.∴CO →=⎝⎛⎭⎫-12,-5. 8、在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,|OC →|=2.若OC →=λOA →+μOB →,则λ+μ=( ) A .2 2B . 2C .2D .42【答案】A【解析】因为|OC →|=2,∠AOC =π4,所以点C 的坐标为(2,2).又OC →=λOA +μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=22.9、已知向量()sin ,2x =a ,()cos ,1x =b ,满足∥a b ,则.【答案】【解析】因为向量()sin ,2x =a ,()cos ,1x =b ,∥a b ,sin 2cos 0x x ∴-=,tan 2x =,10、若A (1,-5),B (a ,-2),C (-2,-1)三点共线,则实数a 的值为________. 【答案】-54【解析】AB →=(a -1,3),AC →=(-3,4),由题意知AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5,∴a =-54.11、已知向量()12,=-m ,(),4x =n ,若⊥m n ,则2+=m n __________. 【答案】10【解析】由题意可得:240x ⋅=-+⨯=m n ,8x ∴=, 即()1,2=-m ,()8,4=n ,则()()()22,48,46,8+=-+=m n , 据此可知:210+=m n .12、在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点.若 P A →=(4,3),PQ →=(1,5),则BC →=________. 【答案】(-6,21)【解析】∵AQ →=PQ →-P A →=(1,5)-(4,3)=(-3,2),∴AC →=2AQ →=2(-3,2)=(-6,4).又PC →=P A →+AC →=(4,3)+(-6,4)=(-2,7),∴BC →=3PC →=3(-2,7)=(-6,21).11.(2018青海西宁质检)已知向量AC →,AD →和AB →在正方形网格中的位置如图所示.若AC →=λAB →+μAD →,则λμ=________. 【答案】-3【解析】建立如题图所示的平面直角坐标系xAy ,则AC →=(2,-2),AB →=(1,2),AD →=(1,0).由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧ 2=λ+μ,-2=2λ,解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.13、P ={a|a =(-1,1)+m (1,2),m ∈R },Q ={b|b =(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q =________. 【答案】{(-13,-23)}【解析】集合P 中,a =(-1+m,1+2m ),集合Q 中,b =(1+2n ,-2+3n ).则⎩⎪⎨⎪⎧-1+m =1+2n ,1+2m =-2+3n .得⎩⎪⎨⎪⎧m =-12,n =-7.此时a =b =(-13,-23).14、已知点()4,1A ,()1,5B ,则与向量AB 方向相同的单位向量为________. 【答案】34,55⎛⎫- ⎪⎝⎭【解析】()()()154134AB =-=-,,,,5AB =,∴与向量AB 方向相同的单位向量为34,55⎛⎫- ⎪⎝⎭. 16.已知()2,3A ,()4,3B -,点P 在线段AB 的延长线上,3AP PB =,则点P 的坐标是____________. 【答案】()8,15-【解析】因为P 在AB 的延长线上,故AP ,PB 共线反向,故3AP PB =-,设(),P x y , ,解得815x y ==-⎧⎨⎩,P 的坐标为()8,15-,故填()8,15-.15、给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB →上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.【解】以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则点A 的坐标为(1,0),点B 的坐标为⎝⎛⎭⎫-12,32,设∠AOC =α⎝⎛⎭⎫α∈⎝⎛⎭⎫0,2π3,则点C 的坐标为(cos α,sin α), 由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =2 33sin α, 所以x +y =cos α+3sin α=2sin ⎝⎛⎭⎫α+π6, 又α∈⎣⎡⎦⎤0,2π3,则α+π6∈⎣⎡⎦⎤π6,5π6. 所以当α+π6=π2,即α=π3时,x +y 取得最大值2.16、已知向量()1,3=a ,()2,2=-b , (1)设2=+c a b ,求()⋅b a c ; (2)求向量a 在b 方向上的投影.【答案】(1)()16,16--;(2) 【解析】(1)()()()2,62,24,4=+-=c ,()()26416,16⋅=-=-⇒⋅=--b a b a c .(2)向量a 在b 方向的投影17,()sin ,cos x x =n , (1)若⊥m n ,求tan x 的值;(2)若向量m ,n【答案】(1)tan 1x =;(2)12.【解析】(1)由⊥m n 可得0⋅=m n ,即sin cos 022x x -=, 化简可得sin cos x x =,则tan 1x =.(2而由m ,n )1sin cos 2x x -=,18、如图,在OAB △中,点P 为直线AB 上的一个动点,且满足AP AB λ=. (1)若13λ=,用向量OA ,OB 表示OP ; (2)若4OA =,3OB =,且60AOB ∠=︒,请问λ取何值时使得OP AB ⊥?)213OP OA OB =+;213)由题意得1AP AB =,∴()1OP OA OB OA -=-,∴21OP OA OB =+.(2)由题意知43cos606OA OB ⋅=⨯⨯︒=.∵AP AB λ=, ∴()OP OA OB OA λ-=-,∴()1OP OA OB λλ=-+.∵OP AB ⊥,∴()()10OP AB OA OB OB OA λλ⎡⎤⋅=-+⋅-=⎣⎦,∴()()()()2212161216190OA OB OA OB λλλλλλ+-⋅--=---+=,。

高考数学压轴专题2020-2021备战高考《平面向量》真题汇编及答案

高考数学压轴专题2020-2021备战高考《平面向量》真题汇编及答案

【高中数学】数学《平面向量》期末复习知识要点一、选择题1.已知菱形ABCD 的边长为4,60ABC ∠=︒,E 是BC 的中点2DF AF =-u u u r u u u r,则AE BF ⋅=u u u r u u u r( )A .24B .7-C .10-D .12-【答案】D 【解析】 【分析】根据平面向量的基本定理,将AE BF ⋅u u u r u u u r用基底,AB AD u u u r u u u r 表达,再根据平面向量的数量积公式求解即可. 【详解】由已知得13AF AD =u u u r u u u r ,12BE BC =u u u r u u u r ,AD BC =u u u r u u u r,所以1122AE AB BC AB AD =+=+u u u r u u u r u u u r u u u r u u u r ,13BF AF AB AD AB =-=-u u ur u u u r u u u r u u u r u u u r .因为在菱形ABCD 中,60ABC ∠=︒,所以120BAD ∠=︒.又因为菱形ABCD 的边长为4,所以1||||cos1204482AB AD AB AD ⎛⎫⋅=⋅︒=⨯⨯-=- ⎪⎝⎭u u u r u u u r u u u r u u u r ,所以1123AE BF AB AD AB AD ⎛⎫⎛⎫⋅=+⋅-+= ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r221111||||16(8)16126666AB AB AD AD --⋅+=--⨯-+⨯=-u u u r u u u r u u u r u u u r .故选:D 【点睛】本题考查平面向量的线性运算及向量的数量积,考查推理论证能力以及数形结合思想.2.已知点M 在以1(,2)C a a -为圆心,以1为半径的圆上,距离为23,P Q 在圆222:8120C x y y +-+=上,则MP MQ ⋅u u u r u u u u r的最小值为( )A .18122-B .19122-C .18122+D .19122+【答案】B 【解析】 【分析】设PQ 中点D ,得到,MP MD DP MQ MD DQ =+=+u u u r u u u u r u u u r u u u u r u u u u r u u u r,求得23MP MQ MD ⋅=-u u u r u u u u r u u u u r ,再利用圆与圆的位置关系,即可求解故()23223MP MQ ⋅≥--u u u r u u u ur ,得到答案.【详解】依题意,设PQ 中点D ,则,MP MD DP MQ MD DQ =+=+u u u r u u u u r u u u r u u u u r u u u u r u u u r ,所以23MP MQ MD ⋅=-u u u r u u u u r u u u u r ,22222()12PQ C D QC =-=Q ,D ∴在以1为半径,以2C 为圆心的圆上, 22221[(2)4]2(3)1832C C a a a =+--=-+≥Q ,1221min min MD C C C D MC ∴=--故()2322319122MP MQ ⋅≥--=-u u u r u u u u r.【点睛】本题主要考查了圆的方程,圆与圆的位置关系的应用,以及平面向量的数量积的应用,着重考查了推理论证能力以及数形结合思想,转化与化归思想.3.在ABC ∆中,已知8AB =,4BC =,6CA =,则AB BC ⋅u u u v u u u v的值为( )A .22B .19C .-19D .-22【答案】D 【解析】由余弦定理可得22211cos 216AB BC AC B AB BC +-==⋅,又()11cos 482216AB BC AB BC B π⎛⎫⋅=⋅⋅-=⨯⨯-=- ⎪⎝⎭u u u v u u u v u u u v u u u v ,故选D.【思路点睛】本题主要考查平面向量数量积公式以、余弦定理解三角形,属于简单题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60ooo等特殊角的三角函数值,以便在解题中直接应用.4.若向量a b r r ,的夹角为3π,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( )A .12-B .12CD. 【答案】A 【解析】 【分析】由|2|||a b a b -=+r r r r 两边平方得22b a b =⋅r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r,可得20t a a b ⋅+⋅=r r r,即可得出答案.【详解】由|2|||a b a b -=+r r r r两边平方得2222442a a b b a a b b -⋅+=+⋅+r r r r r r r r .即22b a b =⋅r r r ,也即22cos 3b a b π=r r r ,所以b a =r r .又由()a ta b ⊥+r r r ,得()0a ta b ⋅+=r r r,即20t a a b ⋅+⋅=r r r . 所以2221122ba b t a b⋅=-=-=-r r r r r 故选:A 【点睛】本题考查数量积的运算性质和根据向量垂直求参数的值,属于中档题.5.已知在平面直角坐标系xOy 中,O 为坐标原点,()0,2A ,2220OB OA +=,若平面内点P 满足3PB PA =u u u r u u u r,则PO 的最大值为( )A .7B .6C .5D .4【答案】C 【解析】 【分析】设(),P x y ,(),B m n ,根据3PB PA =u u u r u u u r可得262m x n y=-⎧⎨=-⎩,再根据2220OB OA +=可得点P 的轨迹,它一个圆,从而可求PO 的最大值. 【详解】设(),P x y ,(),B m n ,故(),PB m x n y =--u u u r ,(),2PA x y =--u u u r. 由3PB PA =u u u r u u u r可得363m x x n y y-=-⎧⎨-=-⎩,故262m x n y=-⎧⎨=-⎩,因为2220OB OA +=,故()22443420x y +-+=,整理得到()2234x y +-=,故点P 的轨迹为圆,其圆心为()0,3,半径为2,故PO 的最大值为325+=, 故选:C. 【点睛】本题考查坐标平面中动点的轨迹以及圆中与距离有关的最值问题,一般地,求轨迹方程,可以动点转移法,也可以用几何法,而圆外定点与圆上动点的连线段长的最值问题,常转化为定点到圆心的距离与半径的和或差,本题属于中档题.6.已知向量a r 与向量b r 满足||2a =r ,||b =r ||||a b a b +⋅-=r r r r ,则向量a r与向量b r的夹角为( )A .4π或34π B .6π或56πC .3π或23πD .2π 【答案】A 【解析】 【分析】设向量a r ,b r的夹角为θ,则2||12a b θ+=+r r ,2||12a b θ-=-r r ,即可求出2cos θ,从而得到向量的夹角; 【详解】解:设向量a r ,b r的夹角为θ,222||||||2||||cos 48a b a b a b θθ+=++=++r r r r r r12θ=+,222||||||2||||cos 4812a b a b a b θθθ-=+-=+-=-r r r r r,所以2222||||144128cos 80a b a b θ+⋅-=-==r r r r ,21cos 2θ∴=,因为[0,)θπ∈,故4πθ=或34π,故选:A. 【点睛】本题考查平面向量的数量积的运算律,及夹角的计算,属于中档题.7.已知向量a v ,b v 满足a b a b +=-r rv v ,且||a =v ||1b =r ,则向量b v 与a b -v v 的夹角为( ) A .3πB .23π C .6π D .56π 【答案】B 【解析】 【分析】对a b a b +=-v v v v 两边平方,求得0a b ⋅=v v ,所以a b ⊥v v .画出图像,根据图像确定b v 与a b-v v 的夹角,并根据它补角的正切值求得对应的角的大小.【详解】因为a b a b +=-v v v v ,所以222222a a b b a a b b +⋅+=-⋅+v v v v v v v v ,即0a b ⋅=v v ,所以a b ⊥v v .如图,设AB a =u u u v v ,AD b =u u u v v,则向量b v 与a b -v v 的夹角为BDE ∠,因为tan 3BDA ∠=,所以3BDA π∠=,23BDE π∠=.故选B.【点睛】本题考查平面向量的模以及夹角问题,考查运算求解能力,考查数形结合的数学思想方法.属于中档题.8.如图,圆O 是等边三角形ABC 的外接圆,点D 为劣弧AC 的中点,则OD =u u u r( )A .2133BA AC +u uu r u u u rB .2133BA AC -u uu r u u u rC .1233BA AC +u uu r u u u rD .4233BA AC +u uu r u u u r【答案】A 【解析】 【分析】连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,列出相应式子得出结论. 【详解】解:连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,则()()221121332333OD BO BE BA BC BA BA AC BA AC ===⨯+=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u uu r u u u r . 故选:A.【点睛】本题考查向量的表示方法,结合几何特点,考查分析能力,属于中档题.9.在ABC V 中,E 是AC 的中点,3BC BF =u u u r u u u r ,若AB a =u u u r r ,AC b =u u u r r ,则EF =u u u r( )A .2136a b -r rB .1133a b +r rC .1124a b +r rD .1133a b -r r【答案】A 【解析】 【分析】根据向量的运算法则计算得到答案.【详解】1223EF EC CF AC CB =+=+u u u r u u u r u u u r u u u r u u u r ()12212336AC AB AC AB AC =+-=-u u u r u u u r u u u r u u ur u u u r 2136a b =-r r .故选:A . 【点睛】本题考查了向量的基本定理,意在考查学生的计算能力和转化能力.10.设x ,y 满足102024x x y x y -≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m的最小值为( ) A .125B .125-C .32D .32-【答案】B 【解析】 【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r,由a b ⊥r r得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭,∴416122555m y x =-=-=-, 故选:B.【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.11.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且3a 2+3c 2-3b 2=2ac ,BA u u u r ⋅BC uuur =2,则△ABC 的面积为( ) A 2B .32C .22D .42【答案】C 【解析】 【分析】利用余弦定理求出B 的余弦函数值,结合向量的数量积求出ca 的值,然后求解三角形的面积. 【详解】在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且3a 2+3c 2﹣3b 2=2ac ,可得cosB 222123a c b ac +-==,则sinB 23=BA u u u r ⋅BC =u u u r 2,可得cacosB =2,则ac =6,∴△ABC 的面积为:11226223acsinB =⨯⨯=2 故选C . 【点睛】本题考查三角形的解法,余弦定理以及向量的数量积的应用,考查计算能力.12.已知向量(b =r ,向量a r 在b r方向上的投影为6-,若()a b b λ+⊥r r r ,则实数λ的值为( ) A .13B .13-C .23D .3【答案】A 【解析】 【分析】设(),a x y =r ,转化条件得62x +=-,()4x λ=-,整体代换即可得解.【详解】 设(),a x y =r,Q a r 在b r方向上的投影为6-,∴6a b b⋅==-r rr 即12x +=-.又 ()a b b λ+⊥r r r,∴()0a b b λ+⋅=r r r 即130x y λ++=,∴()4x λ+=-即124λ-=-,解得13λ=. 故选:A. 【点睛】本题考查了向量数量积的应用,属于中档题.13.在边长为2的等边三角形ABC 中,若1,3AE AC BF FC ==u u u v u u u v u u u v u u u v ,则BE AF ⋅=u u u v u u u v( )A .23-B .43-C .83-D .2-【答案】D 【解析】 【分析】运用向量的加减运算和向量数量积的定义计算可得所求值. 【详解】在边长为2的等边三角形ABC 中,若13AE AC =u u u r u u u r,则BE AF ⋅=u u u r u u u v (AE AB -u u u r u u u r )•12(AC AB +u u ur u u u r )=(13AC AB -u u u r u u u r )•12(AC AB +u u ur u u u r )1123AC =u u u r (2AB -u u u r 223AB -u u u r •AC =u u u r )142142222332⎛⎫--⨯⨯⨯=- ⎪⎝⎭故选:D 【点睛】本题考查向量的加减运算和向量数量积的定义和性质,向量的平方即为模的平方,考查运算能力,属于基础题.14.已知向量(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r,则当,1[]2t ∈-时,a tb-r r 的最大值为( )A BC .2D 【答案】D 【解析】 【分析】根据(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r,得到1a =r ,1b =r ,0a b ⋅=r r ,再利用a tb -==r r 求解.【详解】因为(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r,所以1a =r ,1b =r ,0a b ⋅=r r,所以a tb -==r r当[]2,1t ∈-时,maxa tb-=r r故选:D 【点睛】本题考查向量的模以及数量积的运算,还考查运算求解能力,属于中档题.15.在ABC ∆中,2AB =,3AC =,3BAC π∠=,若23BD BC =u u u v u u u v ,则AD BD ⋅=u u u v u u u v( )A .229B .229-C .169D .89-【答案】A 【解析】 【分析】本题主要是找到两个基底向量AB u u u v ,AC u u u v ,然后用两个基底向量表示AD u u u v ,BD u u u v,再通过向量的运算即可得出结果. 【详解】解:由题意,画图如下:则:()22223333BD BC AC AB AB AC ==-=-+u u u v u u u v u u u v u u u v u u uv u u u v , 2233AD AB BD AB AB AC =+=-+u u u v u u u v u u u v u u u v u u u v u u u v 1233AB AC =+u u u v u u u v .∴12223333AD BD AB AC AB AC ⎛⎫⎛⎫⋅=+⋅-+ ⎪ ⎪⎝⎭⎝⎭u u u v u u u v u u u v u u u v u u u v u u u v22242999AB AC AB AC =-⋅+⋅-⋅⋅u u uv u u u v u u u v u u u v24249cos 999AB AC BAC =-⋅+⋅-⋅⋅⋅∠u u uv u u u v82423cos 993π=-+-⋅⋅⋅229=. 故选A . 【点睛】本题主要考查基底向量的建立以及用两个基底向量表示别的向量,考查平面向量的数量积的计算.本题属基础题.16.已知平面向量,,a b c r r r 满足||||2a b ==r r ,a b ⊥r r,()()a c b c -⊥-r r r r ,则(a b c ⋅r r r +)的取值范围是( ) A .[0,2] B .[0,2]C .[0,4]D .[0,8]【答案】D 【解析】 【分析】以点O 为原点,OA u u u r ,OB uuu r分别为x 轴,y 轴的正方向建立直角坐标系,根据AC BC ⊥,得到点C 在圆22(1)(1)2x y -+-=,再结合直线与圆的位置关系,即可求解. 【详解】设,,OA a OB b OC c ===u u u r r u u u r r u u u r r,以点O 为原点,OA u u u r ,OB uuu r分别为x 轴,y 轴的正方向建立直角坐标系,则(2,0),(0,2)A B ,依题意,得AC BC ⊥,所以点C 在以AB 为直径的圆上运动,设点(,)C x y ,则22(1)(1)2x y -+-=,()22a b c x y +⋅=+r r r ,由圆心到直线22x y t +=的距离2222222t d +-=≤+,可得[0,8]t ∈.故选:D .【点睛】本题主要考查了向量的数量积的坐标运算,以及直线与圆的位置关系的综合应用,着重考查了转化思想,以及推理与运算能力. 17.如图,向量a b -r r 等于A .1224e e --u r u u rB .1242e e --u r u u rC .123e e -r u u rD .123e e -+r u u r 【答案】D【解析】【分析】【详解】 由向量减法的运算法则可得123a e b e -=-+r r r u u r ,18.在四边形ABCD 中,若12DC AB =u u u r u u u r ,且|AD u u u r |=|BC uuu r |,则这个四边形是( ) A .平行四边形 B .矩形C .等腰梯形D .菱形【答案】C【解析】由12DC AB =u u u r u u u r 知DC ∥AB ,且|DC|=12|AB|,因此四边形ABCD 是梯形.又因为|AD u u u r |=|BC uuu r |,所以四边形ABCD 是等腰梯形.选C19.在OAB ∆中,已知2OB =u u u v ,1AB u u u v =,45AOB ∠=︒,点P 满足(),OP OAOB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v 的最小值为( ) A .35 B .25 C .6 D .62【答案】A【解析】【分析】 根据2OB =u u u r ,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r .再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】 在OAB ∆中,已知2OB =u u u r ,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OB AOB OAB=∠∠u u u r u u u r 代入22=解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22,22⎛ ⎝⎭所以2222OA ⎛= ⎝⎭u u u r ,)2,0OB =u u u r 因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r则)22OP λμ⎛ =+ ⎝⎭u u ur ,22λλ⎛⎫ ⎪ ⎪⎝⎭=则OP =u u u r=因为23λμ+=,则32μλ=-代入上式可得==所以当95λ=时, min OP ==u u u r 故选:A【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题. 20.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒,则||EB =u u u r () A .4BC .2D 【答案】A【解析】【分析】根据向量的线性运算可得3144EB AB AC =-u u u r u u u r u u u r ,利用22||B EB E =u u r u u u r u 及||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒计算即可.【详解】因为11131()22244EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以22229311216441||6EB AB AB B AC AC E =-⨯=⨯⋅+u u u r u u u r u u u r u u u r u u r u u u r u 229311112()2168216=⨯-⨯⨯⨯-+⨯1916=,所以||4EB =u u u r , 故选:A【点睛】 本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.。

高考数学压轴专题新备战高考《平面向量》真题汇编含答案

高考数学压轴专题新备战高考《平面向量》真题汇编含答案

高中数学《平面向量》复习知识点 一、选择题

1.设x,y满足102024xxyxy,向量2,1axr,1,bmyr,则满足abrr的实数

m

的最小值为( ) A.125 B.125 C.32 D.

3

2

【答案】B 【解析】 【分析】 先根据平面向量垂直的坐标表示,得2myx,根据约束条件画出可行域,再利用m的几何意义求最值,只需求出直线2myx过可行域内的点C时,从而得到m的最小值即可. 【详解】

解:不等式组表示的平面区域如图所示:因为2,1axr,1,bmyr, 由abrr得20xmy,∴当直线经过点C时,m有最小值,

由242xyxy,得8545xy,∴84,55C, ∴416122555myx, 故选:B.

【点睛】 本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.

2.已知5MNabuuuurrr,28NPabuuurrr,3()PQabuuurrr,则( )

A.,,MNP三点共线 B.,,MNQ三点共线 C.,,NPQ三点共线 D.,,MPQ三点共线

【答案】B 【解析】 【分析】 利用平面向量共线定理进行判断即可. 【详解】 因为28NPab

uuurr

r

,3()PQab

uuurr

r

所以2835NQNPPQababab

uuuruuuruuurrrrrrr

,

因为5MNabuuuurrr,所以MNNQuuuuruuur

由平面向量共线定理可知,MNuuuur与NQuuur为共线向量, 又因为MNuuuur与NQuuur有公共点N,所以,,MNQ三点共线. 故选: B 【点睛】 本题考查利用平面向量共线定理判断三点共线;熟练掌握共线定理的内容是求解本题的关键;属于中档题、常考题型.

高考数学压轴专题新备战高考《平面向量》真题汇编及答案

高考数学压轴专题新备战高考《平面向量》真题汇编及答案

新高考数学《平面向量》练习题一、选择题1.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.2.已知O 是平面上一定点,满足()||cos ||cos AB ACOP OA AB B AC Cλ=++u u u r u u u ru u u r u u u r u u ur u u u r ,[0λ∈,)+∞,则P 的轨迹一定通过ABC ∆的( )A .外心B .垂心C .重心D .内心【答案】B 【解析】 【分析】可先根据数量积为零得出BC uuu r 与()||cos ||cos ABAC AB B AC Cλ+u u u ru u u ru u ur u u u r 垂直,可得点P 在BC 的高线上,从而得到结论.【详解】Q ()||cos ||cos AB ACOP OA AB B AC Cλ=++u u u r u u u ru u u r u u u r u u ur u u u r , ∴()||cos ||cos AB ACOP OA AB B AC C λ-=+u u u r u u u ru u u r u u u r u u ur u u u r , 即()||cos ||cos AB ACAP AB B AC Cλ=+u u u r u u u ru u u r u u ur u u u r , Qcos BA BCB BA BC ⋅=u u u r u u u r u u u r u u u r ,cos CA CB C CA CB⋅=u u u r u u u r u u u r u u u r , ∴()0||cos ||cos AB ACBC BC BC AB B AC C⋅+=-+=u u u r u u u ru u u r u u u r u u u r u u u r u u u r , ∴BC uuu r 与()||cos ||cos AB ACAB B AC Cλ+u u u r u u u ru u ur u u u r 垂直, 即AP BC ⊥uu u r uu u r,∴点P 在BC 的高线上,即P 的轨迹过ABC ∆的垂心.故选:B . 【点睛】本题重点考查平面向量在几何图形中的应用,熟练掌握平面向量的加减运算法则及其几何意义是解题的关键,考查逻辑思维能力和转化能力,属于常考题.3.在平面直角坐标系中,()1,2A -,(),1B a -,(),0C b -,,a b ∈R .当,,A B C 三点共线时,AB BC ⋅u u u r u u u r的最小值是( )A .0B .1CD .2【答案】B 【解析】 【分析】根据向量共线的坐标表示可求得12b a =-,根据数量积的坐标运算可知所求数量积为()211a -+,由二次函数性质可得结果.【详解】由题意得:()1,1AB a =-u u u r ,(),1BC b a =--u u u r,,,A B C Q 三点共线,()()111a b a ∴⨯-=⨯--,即12b a =-,()1,1BC a ∴=-u u u r, ()2111AB BC a ∴⋅=-+≥u u u r u u u r ,即AB BC ⋅u u u r u u u r 的最小值为1.故选:B . 【点睛】本题考查平面向量的坐标运算,涉及到向量共线的坐标表示和数量积的坐标运算形式,属于基础题.4.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r恒成立,则实数t 的取值范围是( ).A .,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .3⎛⎫+∞ ⎪ ⎪⎝⎭D .,3⎛⎫+∞ ⎪ ⎪⎝⎭【答案】B 【解析】 【分析】根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0<n ,即可求得结果. 【详解】因为ABC V 是边长为1的等边三角形,所以1cos1202AB BC ⋅=︒=-u u u r u u u r ,由||1k AB tBC +>u u u r u u u r 两边平方得2222()2()1k AB kt AB BC t BC +⋅+>u u u r u u u r u u u r u u u r ,即2210k kt t -+->,构造函数22()1f k k tk t =-+-, 由题意,()22410t t ∆--<=,解得t <或t >. 故选:B. 【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.5.已知向量(sin ,cos )a αα=r ,(1,2)b =r , 则以下说法不正确的是( )A .若//a b rr,则1tan 2α=B .若a b ⊥rr,则1tan 2α=C .若()f a b α=⋅rr 取得最大值,则1tan 2α= D .||a b -r r 1【答案】B 【解析】 【分析】根据向量平行、垂直、模以及向量的数量积的坐标运算即可判断. 【详解】A 选项,若//a b r r,则2sin cos αα=,即1tan 2α=,A 正确. B 选项,若a b ⊥r r,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,若()f a b α=⋅r r取得最大值时,则())f ααϕ=+,取得最大值时,()sin 1αϕ+=,2,2k k Z παϕπ+=+∈,又tan 2ϕ=,则1tan 2α=,则C 正确.D 选项,||a b -==r r的最大值为1=,选项D 正确.故选:B . 【点睛】本题主要考查向量的坐标运算,以及模的求法,掌握向量平行、垂直、数量积的坐标运算是解题的关键,是基础题.6.若向量(1,1)a =r ,(1,3)b =-r ,(2,)c x =r 满足(3)10a b c +⋅=r r r,则x =( )A .1B .2C .3D .4【答案】A 【解析】 【分析】根据向量的坐标运算,求得(3)(2,6)a b +=rr ,再根据向量的数量积的坐标运算,即可求解,得到答案. 【详解】由题意,向量(1,1)a =r,(1,3)b =-r ,(2,)c x =r ,则向量(3)3(1,1)(1,3)(2,6)a b +=+-=rr ,所以(3)(2,6)(2,)22610a b c x x +⋅=⋅=⨯+=r r r,解得1x =,故选A.【点睛】本题主要考查了向量的坐标运算,及向量的数量积的坐标运算的应用,其中解答中熟记向量的数量积的坐标运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.7.已知点M 在以1(,2)C a a -为圆心,以1为半径的圆上,距离为23的两点,P Q 在圆222:8120C x y y +-+=上,则MP MQ ⋅u u u r u u u u r的最小值为( )A .18122-B .19122-C .18122+D .19122+【答案】B 【解析】 【分析】设PQ 中点D ,得到,MP MD DP MQ MD DQ =+=+u u u r u u u u r u u u r u u u u r u u u u r u u u r ,求得23MP MQ MD ⋅=-u u u r u u u u r u u u u r ,再利用圆与圆的位置关系,即可求解故()23223MP MQ ⋅≥--u u u r u u u u r ,得到答案.【详解】依题意,设PQ 中点D ,则,MP MD DP MQ MD DQ =+=+u u u r u u u u r u u u r u u u u r u u u u r u u u r ,所以23MP MQ MD ⋅=-u u u r u u u u r u u u u r ,22222()12PQ C D QC =-=Q ,D ∴在以1为半径,以2C 为圆心的圆上, 22221[(2)4]2(3)1832C C a a a =+--=-+≥Q ,1221min min MD C C C D MC ∴=--故()2322319122MP MQ ⋅≥--=-u u u r u u u u r.【点睛】本题主要考查了圆的方程,圆与圆的位置关系的应用,以及平面向量的数量积的应用,着重考查了推理论证能力以及数形结合思想,转化与化归思想.8.若向量a b r r ,的夹角为3π,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( )A .12-B .12C.2D. 【答案】A 【解析】 【分析】由|2|||a b a b -=+r r r r 两边平方得22b a b =⋅r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r,可得20t a a b ⋅+⋅=r r r,即可得出答案.【详解】由|2|||a b a b -=+r r r r两边平方得2222442a a b b a a b b -⋅+=+⋅+r r r r r r r r .即22b a b =⋅r r r ,也即22cos 3b a b π=r r r ,所以b a =r r .又由()a ta b ⊥+r r r ,得()0a ta b ⋅+=r r r,即20t a a b ⋅+⋅=r r r .所以2221122ba b t a b⋅=-=-=-r r r r r 故选:A 【点睛】本题考查数量积的运算性质和根据向量垂直求参数的值,属于中档题.9.在ABC V 中,D 、P 分别为BC 、AD 的中点,且BP AB AC λμ=+u u u r u u u r u u u r,则λμ+=( ) A .13- B .13C .12-D .12【答案】C 【解析】 【分析】由向量的加减法运算,求得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r,进而得出()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r,列式分别求出λ和μ,即可求得λμ+.【详解】解:已知D 、P 分别为BC 、AD 的中点, 由向量的加减法运算, 得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r,2AB AD DB BD PD =+=-+u u u r u u u r u u u r u u u r u u u r ,2AC AD DC BD PD =+=+u u u r u u u r u u u r u u u r u u u r ,又()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r Q ,则1221μλλμ-=⎧⎨+=-⎩,则12λμ+=-. 故选:C.【点睛】本题考查平面向量的加减法运算以及向量的基本定理的应用.10.如图,已知1OA OB ==u u u v u u u v ,2OC =u u u v ,4tan 3AOB ∠=-,45BOC ∠=︒,OC mOA nOB u u u v u u u v u u u v =+,则mn等于( )A .57B .75C .37D .73【答案】A 【解析】 【分析】依题意建立直角坐标系,根据已知角,可得点B 、C 的坐标,利用向量相等建立关于m 、n 的方程,求解即可. 【详解】以OA 所在的直线为x 轴,过O 作与OA 垂直的直线为y 轴,建立直角坐标系如图所示:因为1OA OB ==u u u r u u u r ,且4tan 3AOB ∠=-,∴34cos sin 55AOB AOB ∠=-∠=,,∴A (1,0),B (3455-,),又令θAOC ∠=,则θ=AOB BOC ∠-∠,∴413tan θ413--=-=7,又如图点C 在∠AOB 内,∴cos θ2,sin θ72,又2OC u u u v =C (1755,), ∵OC mOA nOB =+u u u r u u u r u u u r ,(m ,n ∈R ),∴(1755,)=(m,0)+(3455n n -,)=(m 35n -,45n ) 即15= m 35n -,7455n =,解得n=74,m=54,∴57m n =, 故选A . 【点睛】本题考查了向量的坐标运算,建立直角坐标系,利用坐标解决问题是常用的处理向量运算的方法,涉及到三角函数的求值,属于中档题.11.已知椭圆2222:1(0)x y T a b a b +=>>3F 且斜率为()0k k >的直线与T 相交于A ,B 两点,若3AF FB =uu u r uu r,则k =( )A .2B 3C 2D .1【答案】C 【解析】 【分析】 由3e =3a =,3b =,可设椭圆的方程为222334x y c +=,()()1122,,,A x y B x y ,并不妨设B 在x 轴上方,由3AF FB =uu u r uu r得到12123430x x c y y +=⎧⎨+=⎩,再由22211334x y c +=,22222334x y c +=得到A 、B 两点的坐标,利用两点的斜率公式计算即可. 【详解】因为c e a ===,所以2a b =,所以a =,b =,则椭圆方程22221x y a b+=变为222334x y c +=. 设()()1122,,,A x y B x y ,不妨设B 在x 轴上方,则210,0y y ><, 又3AF FB =uu u r uu r,所以()()1122,3,c x y x c y --=-,所以()121233c x x c y y ⎧-=-⎨-=⎩,12123430x x cy y +=⎧⎨+=⎩因为A ,B 在椭圆上,所以22211334x y c +=,① 22222334x y c +=②. 由①—9×②,得2121212123(3)(3)3(3)(3)84x x x x y y y y c +-++-=-,所以21234(3)84c x x c ⨯-=-,所以12833x x c -=-, 所以123x c =,2109x c =,从而13y =-,29y c =所以2(,)33A c -,10(,)99B c c,故9102393c k c c +==- 故选:C. 【点睛】本题考查直线与椭圆的位置关系,当然本题也可以利用根与系数的关系来解决,考查学生的数学运算求解能力,是一道中档题.12.已知向量(b =r ,向量a r 在b r方向上的投影为6-,若()a b b λ+⊥r r r ,则实数λ的值为( ) A .13B .13-C .23D .3【答案】A【解析】 【分析】设(),a x y =r ,转化条件得62x +=-,()4x λ=-,整体代换即可得解.【详解】 设(),a x y =r,Q a r 在b r方向上的投影为6-,∴6a b b⋅==-r rr 即12x +=-.又 ()a b b λ+⊥r r r,∴()0a b b λ+⋅=r r r 即130x y λ++=,∴()4x λ+=-即124λ-=-,解得13λ=. 故选:A. 【点睛】本题考查了向量数量积的应用,属于中档题.13.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O 点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r ,所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.14.已知向量,a b r r满足||a =r ||4=r b ,且()4a b b +⋅=r r r ,则a r 与b r 的夹角为( ) A .6π B .3π C .23π D .56π 【答案】D【解析】【分析】由()4a b b +⋅=r r r ,求得12a b ⋅=-r r,再结合向量的夹角公式,求得cos ,2a b 〈〉=-r r ,即可求得向量a r 与b r 的夹角.【详解】由题意,向量,a b r r满足||a =r ||4=rb , 因为()4a b b +⋅=r r r ,可得2164a b b a b ⋅+=⋅+=r r r r r ,解得12a b ⋅=-r r ,所以cos ,2||||a b a b a b ⋅〈〉===-r r r r r r 又因a r 与b r 的夹角[0,]π∈,所以a r 与b r 的夹角为56π. 故选:D .【点睛】本题主要考查了向量的数量积的应用,其中解答中熟记向量的数量积的计算公式,以及向量的夹角公式,准确计算是解答的关键,着重考查了计算能力.15.在ABC ∆中,2AB =,3AC =,3BAC π∠=,若23BD BC =u u u v u u u v ,则AD BD ⋅=u u u v u u u v ( )A .229B .229-C .169D .89-【答案】A【解析】【分析】 本题主要是找到两个基底向量AB u u u v ,AC u u u v ,然后用两个基底向量表示AD u u u v ,BD u u u v ,再通过向量的运算即可得出结果.【详解】解:由题意,画图如下:则:()22223333BD BC AC AB AB AC ==-=-+u u u v u u u v u u u v u u u v u u u v u u u v , 2233AD AB BD AB AB AC =+=-+u u u v u u u v u u u v u u u v u u u v u u u v 1233AB AC =+u u u v u u u v . ∴12223333AD BD AB AC AB AC ⎛⎫⎛⎫⋅=+⋅-+ ⎪ ⎪⎝⎭⎝⎭u u u v u u u v u u u v u u u v u u u v u u u v 22242999AB AC AB AC =-⋅+⋅-⋅⋅u u u v u u u v u u u v u u u v 24249cos 999AB AC BAC =-⋅+⋅-⋅⋅⋅∠u u u v u u u v 82423cos 993π=-+-⋅⋅⋅ 229=. 故选A .【点睛】本题主要考查基底向量的建立以及用两个基底向量表示别的向量,考查平面向量的数量积的计算.本题属基础题.16.设()1,a m =r ,()2,2b =r ,若()2a mb b +⊥r r r ,则实数m 的值为( ) A .12 B .2 C .13- D .-3【答案】C【解析】【分析】 计算()222,4a mb m m +=+r r ,根据向量垂直公式计算得到答案.【详解】 ()222,4a mb m m +=+r r ,∵()2a mb b +⊥r r r ,∴()20a mb b +⋅=r r r ,即()22280m m ⋅++=,解得13m =-. 故选:C . 【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.17.如图,AB ,CD 是半径为1的圆O 的两条直径,3AE EO =u u u v u u u v ,则•EC ED u u u v u u u v的值是( )A .45-B .1516-C .14-D .58- 【答案】B【解析】【分析】根据向量表示化简数量积,即得结果.【详解】 ()()()()•••EC ED EO OC EO OD EO OC EO OC =++=+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2221151416EO OC ⎛⎫=-=-=- ⎪⎝⎭u u u v u u u v ,选B. 【点睛】本题考查向量数量积,考查基本分析求解能力,属基础题.18.下列命题为真命题的个数是( ) ①{x x x ∀∈是无理数},2x 是无理数;②若0a b ⋅=r r ,则0a =r r 或0b =r r;③命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”的逆否命题为真命题; ④函数()x xe ef x x--=是偶函数. A .1B .2C .3D .4【答案】B【解析】【分析】利用特殊值法可判断①的正误;利用平面向量垂直的等价条件可判断②的正误;判断原命题的真假,利用逆否命题与原命题的真假性一致的原则可判断③的正误;利用函数奇偶性的定义可判断④的正误.综合可得出结论.【详解】对于①中,当x =时,22x =为有理数,故①错误; 对于②中,若0a b ⋅=r ,可以有a b ⊥r r ,不一定要0a =r r 或0b =r r ,故②错误;对于③中,命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”为真命题,其逆否命题为真命题,故③正确;对于④中,()()x x x xe e e ef x f x x x-----===-, 且函数的定义域是(,0)(0,)-∞+∞U ,定义域关于原点对称,所以函数()x xe ef x x--=是偶函数,故④正确. 综上,真命题的个数是2.故选:B.【点睛】本题考查命题真假的判断,涉及全称命题的真假的判断、逆否命题真假的判断、向量垂直等价条件的应用以及函数奇偶性的判断,考查推理能力,属于中等题.19.向量1,tan 3a α⎛⎫= ⎪⎝⎭r ,()cos ,1b α=r ,且//a b r r ,则cos 2πα⎛⎫+= ⎪⎝⎭( ) A .13 B. C.D .13- 【答案】D【解析】【分析】根据向量平行的坐标运算以及诱导公式,即可得出答案.【详解】//a b ∴r r1cos tan sin 3ααα∴=⋅= 1cos sin 23παα⎛⎫∴+=-=- ⎪⎝⎭故选:D【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.20.已知1F 、2F 分别为双曲线22146x y -=的左、右焦点,M 为双曲线右支上一点且满足120MF MF ⋅=u u u u v u u u u v ,若直线2MF 与双曲线的另一个交点为N ,则1MF N ∆的面积为( ) A .12 B. C .24 D.【答案】C【解析】【分析】 设1MF m =,2MF n =,根据双曲线的定义和12MF MF ⊥,可求出6m =,2n =,再设2NF t =,则14NF t =+根据勾股定理求出6t =即可求出三角形的面积.【详解】解:设1MF m =,2MF n =,∵1F 、2F 分别为双曲线22146x y -=的左、右焦点, ∴24m n a -==,122210F F c ==.∵120MF MF ⋅=u u u u v u u u u v , ∴12MF MF ⊥,∴222440m n c +==,∴()2222m n m n mn -=+-,即2401624mn =-=,∴12mn =,解得6m =,2n =,设2NF t =,则124NF a t t =+=+,在1Rt NMF ∆中可得()()222426t t +=++,解得6t =,∴628MN =+=,∴1MF N ∆的面积111862422S MN MF =⋅=⨯⨯=. 故选C .【点睛】本题考查了双曲线的定义和向量的数量积和三角形的面积,考查了运算能力和转化能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020高考数学新题分类汇编 平面向量(高考真题+模拟新题) 大纲文数7.F1[2020·四川卷] 如图1-2,正六边形ABCDEF中,BA→+CD→+EF→=( )

图1-2 A.0 B.BE→ C.AD→ D.CF→ 大纲文数7.F1[2020·四川卷] D 【解析】 BA→+CD→+EF→=BA→+AF→-BC→=BF→-BC→=CF→,所以选D.

大纲理数4.F1

图1-1 [2020·四川卷] 如图1-1,正六边形ABCDEF中,BA→+CD→+EF→=( ) A.0 B.BE→ C.AD→ D.CF→ 大纲理数4.F1[2020·四川卷] D 【解析】 BA→+CD→+EF→=BA→+AF→-BC→=BF→-BC→=CF→,所以选D. 课标理数10.F2[2020·北京卷] 已知向量a=(3,1),b=(0,-1),c=(k,3).若a-2b与c共线,则k=________.

课标理数10.F2[2020·北京卷] 1 【解析】 因为a-2b=(3,3),由a-2b与c共

线,有k3=33,可得k=1.

课标文数11.F2[2020·北京卷] 已知向量a=(3,1),b=(0,-1),c=(k,3).若a-2b与c共线,则k=

________________________________________________________________________. 课标文数11.F2[2020·北京卷] 1 【解析】 因为a-2b=(3,3),由a-2b与c共

线,有k3=33,可得k=1.

课标文数3.F2[2020·广东卷] 已知向量a=(1,2),b=(1,0),c=(3,4).若λ为实数,(a+λb)∥c,则λ=( )

A.14 B.12 C.1 D.2 课标文数3.F2[2020·广东卷] B 【解析】 因为a+λb=(1,2)+λ(1,0)=(1+λ,2),又因为(a+λb)∥c,

所以(1+λ)×4-2×3=0,解得λ=12.

课标文数13.F2[2020·湖南卷] 设向量a,b满足|a|=25,b=(2,1),且a与b的方向相反,则a的坐标为________. 课标文数13.F2[2020·湖南卷] (-4,-2) 【解析】 因为a与b的方向相反,根据共线向量定义有:a=λb(λ<0),所以a=(2λ,λ). 由||a=25,得2λ2+λ2=25⇒λ=-2或λ=2(舍去),故a=(-4,-2).

课标理数12.F2[2020·山东卷] 设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若A1A3→=λA1A2→(λ∈R),A1A4→=μA1A2→(μ∈R),且1λ+1μ=2,则称A3,A4调和分割A1,A2,已知平面上的点C,D调和分割点A,B,则下面说法正确的是( ) A.C可能是线段AB的中点 B.D可能是线段AB的中点 C.C、D可能同时在线段AB上 D.C、D不可能同时在线段AB的延长线上

课标理数12.F2[2020·山东卷] D 【解析】 若C、D调和分割点A;B,则AC→=λAB→(λ∈R),AD→=μAB→(μ∈R),且1λ+1μ=2.

对于A:若C是线段AB的中点,则AC→=12AB→⇒λ=12⇒1μ=0,故A选项错误;同理B选项错误; 对于C:若C、A同时在线段AB上,则02,C选项错误;对于D:

若C、D同时在线段AB的延长线上,则λ>1,μ>1⇒1λ+1μ<2,故C、D不可能同时在线段AB的延长线上,D选项正确. 课标文数12.F2[2020·山东卷] 设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若A1A3→=λA1A2→(λ∈R),A1A4→=μA1A2→(μ∈R),且1λ+1μ=2,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,0)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是( ) A.C可能是线段AB的中点 B.D可能是线段AB的中点 C.C、D可能同时在线段AB上 D.C、D不可能同时在线段AB的延长线上

课标文数12.F2[2020·山东卷] D 【解析】 由新定义知,AC→=λAB→,即(c,0)=λ(1,0),∴λ=c.同理AD→=μAB→,即(d,0)=μ(1,0),∴μ=d,又1λ+1μ=2,∴1c+1d=2.若点C

为线段AB中点,则1λ=2,与1λ+1μ=2矛盾,所以C不为线段AB中点,同理D不为线段AB中点.若点C,D同在线段AB上,则1c+1d>2,∴只能一个点在线段AB上,另一个点在线

段AB的延长线上.

课标理数14.F2[2020·天津卷] 已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|PA→+3PB→|的最小值为________.

课标理数14.F2[2020·天津卷] 5 【解析】 建立如图1-6所示的坐标系,设DC=h,则A(2,0),B(1,h). 设P(0,y),(0≤y≤h)

则PA→=(2,-y),PB→=(1,h-y), ∴||PA→+3PB→=25+3h-4y2≥25=5.

图1-7 课标文数14.F2[2020·天津卷] 已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|PA→+3PB→|的最小值为________.

课标文数14.F2[2020·天津卷] 5 【解析】 建立如图1-6所示的坐标系,设DC=h,则A(2,0),B(1,h).设P(0,y),(0≤y≤h)

则PA→=(2,-y),PB→=(1,h-y),∴|PA→+3PB→|=25+3h-4y2≥25=5.

图1-6 课标理数14.F2[2020·浙江卷] 若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是________. 课标理数14.F2[2020·浙江卷] π6,5π6 【解析】 由题意得:||α||βsinθ=12,∵||α=1,||β≤1,∴sinθ=12||β≥12. 又∵θ∈(0,π),∴θ∈π6,5π6. 课标文数15.F2[2020·浙江卷] 若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α和β的夹角θ的取值范围是________.

课标文数15.F2[2020·浙江卷] π6 ,5π6 【解析】 由题意得,|α||β|sinθ=12,∵|α|=1,|β|≤1,∴sinθ=12|β|≥12.又∵θ∈(0,π),∴θ∈π6,5π6. 课标文数14.F3[2020·安徽卷] 已知向量a,b满足(a+2b)·(a-b)=-6,且|a|=1,|b|=2,则a与b的夹角为________.

课标文数14.F3[2020·安徽卷] 【答案】 π3 【解析】 设a与b的夹角为θ,依题意有(a+2b)·(a-b)=a2+a·b-2b2=-7+2cosθ=-6,所以cosθ=12.因为0≤θ≤π,故θ=π3.

课标理数13.F3[2020·安徽卷] 已知向量a,b满足(a+2b)·(a-b)=-6,且|a|=1,|b|=2,则a与b的夹角为________.

课标理数13.F3[2020·安徽卷] π3 【解析】 设a与b的夹角为θ,依题意有(a+

2b)·(a-b)=a2+a·b-2b2=-7+2cosθ=-6,所以cosθ=12.因为0≤θ≤π,故θ=π3.

大纲文数3.F3[2020·全国卷] 设向量a,b满足|a|=|b|=1,a·b=-12,则|a+2b|=( ) A.2 B.3 C.5 D.7 大纲文数3.F3[2020·全国卷] B 【解析】 ||a+2b2=(a+2b)2=||a2+4a·b+4||b

2=3,则||a+2b=3,故选B.

课标理数8.E5,F3[2020·福建卷] 已知O是坐标原点,点A(-1,1),若点M(x,y)为

平面区域 x+y≥2,x≤1,y≤2上的一个动点,则OA→·OM→的取值范围是( ) A.[-1,0] B.[0,1] C.[0,2] D.[-1,2] 课标理数8.E5,F3[2020·福建卷] C 【解析】 画出不等式组表示的平面区域(如图1-2),

又OA→·OM→=-x+y,取目标函数z=-x+y,即y=x+z,作斜率为1的一组平行线,

图1-2 当它经过点C(1,1)时,z有最小值,即zmin=-1+1=0; 当它经过点B(0,2)时,z有最大值,即zmax=-0+2=2.

∴ z的取值范围是[0,2],即OA→·OM→的取值范围是[0,2],故选C.

课标文数13.F3[2020·福建卷] 若向量a=(1,1),b=(-1,2),则a·b等于________. 课标文数13.F3[2020·福建卷] 1 【解析】 由已知a=(1,1),b=(-1,2),得a·b=1×(-1)+1×2=1. 课标理数3.F3[2020·广东卷] 若向量a,b,c满足a∥b且a⊥c,则c·(a+2b)=( ) A.4 B.3 C.2 D.0 课标理数3.F3[2020·广东卷] D 【解析】 因为a∥b且a⊥c,所以b⊥c,所以c·(a+2b)=c·a+2b·c=0.

课标文数2.F3[2020·湖北卷] 若向量a=(1,2),b=(1,-1),则2a+b与a-b的夹角等于( )

A.-π4 B.π6 C.π4 D.3π4 课标文数2.F3[2020·湖北卷] C 【解析】 因为2a+b=()2,4+()1,-1=()3,3,a-b=()0,3,所以||2a+b=32,||a-b=3.设2a+b与a-b的夹角为θ,则cosθ

=()2a+b·()a-b||2a+b||a-b=()3,3·()0,332×3=22,又θ∈[]0,π,所以θ=π4.

课标理数14.F3[2020·湖南卷] 在边长为1的正三角形ABC中,设BC→=2BD→,CA→=3CE→,则AD→·BE→=________. 课标理数14.F3[2020·湖南卷] -14 【解析】 由题知,D为BC中点,E为CE三等分

点,以BC所在的直线为x轴,以AD所在的直线为y轴,建立平面直角坐标系,可得A0,32,D(0,0),B-12,0,E13,36,故AD→=0,-32,BE→=56,36,

所以AD→·BE→=-32×36=-14. 课标理数11.F3[2020·江西卷] 已知|a|=|b|=2,(a+2b)·(a-b)=-2,则a与b的夹角为________.

相关文档
最新文档