参考椭球面

参考椭球面
参考椭球面

处理大地测量成果而采用的与地球大小、形状接近并进行定位的椭球体表面。

地球体从整体上看,十分接近于一个规则的旋转椭球体。地球椭球由三个椭球元素:长半轴,短半轴和扁率表示。形状、大小一定且已经与大地体作了最佳拟合的地球椭球称为参考椭球。我国的最佳拟合点,也称为大地原点,位于陕西省西安市泾阳县永乐镇。

参考椭球面是测量、计算的基准面。

各国为处理大地测量的成果,往往根据本国及其他国家的天文,大地,重力测量结果采用适合本国的椭球参数并将其定位。

我国在成立之前采用海福特椭球参数,新中国成立之初采用克拉索夫斯基椭球参数(其大地原点在前苏联,对我国密合不好,越往南方误差越大)。目前采用的是1975年国际大地测量学与物理学联合会(IUGG)推荐的椭球,在我国称为“1980年国家大地坐标系”。坐标原点即是前面提到的“陕西省咸阳市泾阳县永乐镇”。2008年7月1日我国启动了2000国家大地坐标系,计划用8~10年完成现行国家大地坐标系到2000国家大地坐标系的过渡与转换工作。(现在2011年,在我国很多的地方任然采用的“54北京坐标系”坐标系的转换工作的难度和工作量可想而知)

松开的记忆,飘落的莫名的尘埃,像起伏的微风,拂过脑海,留下一份情愁。一条街,没有那些人,那些身影,却能来回徘徊穿梭。街,行走时,纵然漫长,漫长,有时只为听一颗流动的心的呓语。沉默,倔强,回望,忘记,记住,一切像断了的弦,有时希望生活简单就好,有时却又莫名的颓废其中。

有些路,只能一个人走;有些事,只能一个人去经历。粗读加缪、萨特的存在主义,它告诉我,人就是非理性的存在。光秃秃的枝桠、清寂的清晨、流动的阳光,飘落于心,或快意,或寂寥,映照心境,然而,有时却只属于那一刻。总之,一切只是心情。

人生的画面一幅幅地剪辑,最后拼凑出的是一张五彩斑斓的水彩画,有艳丽的火红色,凝重的墨黑以及一抹忧郁的天蓝色。人的记忆很奇特,那些曾经的过往,就像一幅幅的背景图,只有一个瞬间,却没有以前或以后。比如,只能记得某个瞬间的微笑,只能在记忆的痕迹寻觅某时刻骑着单车穿过路口拐角的瞬间,却都不知晓为何微笑,为何穿过街角。

一切,有时荒诞得像一场莫名情景剧。然而,这就是生活。

曾经的梦,曾经的痛,曾经的歌,曾经的热情相拥,曾经的璀璨星空。

也许,多年以后,再也见不到的那些人,和着记忆的碎片飘荡而来,曾经伴着我们走过春华秋实。天空蔚蓝,杜鹃纷飞,飞过季节,曾经萍水相逢,欢聚一堂,蓦然回首,唯歌声飘留。让人忆起《米拉波桥》里的诗句:夜幕降临,钟声悠悠,时光已逝,唯我独留。

人在天涯,绵绵的思绪随着微风飘浮,从布满礁石的心灵海滩上穿过千山万水,来到游荡的身躯里,刻下一篇篇笺章。而这,或许在多年以后,当再次翻动时,原以为什么都已改变,

松开的记忆,飘落的莫名的尘埃,像起伏的微风,拂过脑海,留下一份情愁。一条街,没有那些人,那些身影,却能来回徘徊穿梭。街,行走时,纵然漫长,漫长,有时只为听一颗流动的心的呓语。沉默,倔强,回望,忘记,记住,一切像断了的弦,有时希望生活简单就好,有时却又莫名的颓废其中。

有些路,只能一个人走;有些事,只能一个人去经历。粗读加缪、萨特的存在主义,它告诉我,人就是非理性的存在。光秃秃的枝桠、清寂的清晨、流动的阳光,飘落于心,或快意,或寂寥,映照心境,然而,有时却只属于那一刻。总之,一切只是心情。

人生的画面一幅幅地剪辑,最后拼凑出的是一张五彩斑斓的水彩画,有艳丽的火红色,凝重的墨黑以及一抹忧郁的天蓝色。人的记忆很奇特,那些曾经的过往,就像一幅幅的背景图,只有一个瞬间,却没有以前或以后。比如,只能记得某个瞬间的微笑,只能在记忆的痕迹寻觅某时刻骑着单车穿过路口拐角的瞬间,却都不知晓为何微笑,为何穿过街角。

一切,有时荒诞得像一场莫名情景剧。然而,这就是生活。

曾经的梦,曾经的痛,曾经的歌,曾经的热情相拥,曾经的璀璨星空。

也许,多年以后,再也见不到的那些人,和着记忆的碎片飘荡而来,曾经伴着我们走过春华秋实。天空蔚蓝,杜鹃纷飞,飞过季节,曾经萍水相逢,欢聚一堂,蓦然回首,唯歌声飘留。让人忆起《米拉波桥》里的诗句:夜幕降临,钟声悠悠,时光已逝,唯我独留。

人在天涯,绵绵的思绪随着微风飘浮,从布满礁石的心灵海滩上穿过千山万水,来到游荡的身躯里,刻下一篇篇笺章。而这,或许在多年以后,当再次翻动时,原以为什么都已改变,

松开的记忆,飘落的莫名的尘埃,像起伏的微风,拂过脑海,留下一份情愁。一条街,没有那些人,那些身影,却能来回徘徊穿梭。街,行走时,纵然漫长,漫长,有时只为听一颗流动的心的呓语。沉默,倔强,回望,忘记,记住,一切像断了的弦,有时希望生活简单就好,有时却又莫名的颓废其中。

有些路,只能一个人走;有些事,只能一个人去经历。粗读加缪、萨特的存在主义,它告诉我,人就是非理性的存在。光秃秃的枝桠、清寂的清晨、流动的阳光,飘落于心,或快意,或寂寥,映照心境,然而,有时却只属于那一刻。总之,一切只是心情。

人生的画面一幅幅地剪辑,最后拼凑出的是一张五彩斑斓的水彩画,有艳丽的火红色,凝重的墨黑以及一抹忧郁的天蓝色。人的记忆很奇特,那些曾经的过往,就像一幅幅的背景图,只有一个瞬间,却没有以前或以后。比如,只能记得某个瞬间的微笑,只能在记忆的痕迹寻觅某时刻骑着单车穿过路口拐角的瞬间,却都不知晓为何微笑,为何穿过街角。

一切,有时荒诞得像一场莫名情景剧。然而,这就是生活。

曾经的梦,曾经的痛,曾经的歌,曾经的热情相拥,曾经的璀璨星空。

也许,多年以后,再也见不到的那些人,和着记忆的碎片飘荡而来,曾经伴着我们走过春华秋实。天空蔚蓝,杜鹃纷飞,飞过季节,曾经萍水相逢,欢聚一堂,蓦然回首,唯歌声飘留。让人忆起《米拉波桥》里的诗句:夜幕降临,钟声悠悠,时光已逝,唯我独留。

人在天涯,绵绵的思绪随着微风飘浮,从布满礁石的心灵海滩上穿过千山万水,来到游荡的身躯里,刻下一篇篇笺章。而这,或许在多年以后,当再次翻动时,原以为什么都已改变,

松开的记忆,飘落的莫名的尘埃,像起伏的微风,拂过脑海,留下一份情愁。一条街,没有那些人,那些身影,却能来回徘徊穿梭。街,行走时,纵然漫长,漫长,有时只为听一颗流动的心的呓语。沉默,倔强,回望,忘记,记住,一切像断了的弦,有时希望生活简单就好,有时却又莫名的颓废其中。

有些路,只能一个人走;有些事,只能一个人去经历。粗读加缪、萨特的存在主义,它告诉我,人就是非理性的存在。光秃秃的枝桠、清寂的清晨、流动的阳光,飘落于心,或快意,或寂寥,映照心境,然而,有时却只属于那一刻。总之,一切只是心情。

人生的画面一幅幅地剪辑,最后拼凑出的是一张五彩斑斓的水彩画,有艳丽的火红色,凝重的墨黑以及一抹忧郁的天蓝色。人的记忆很奇特,那些曾经的过往,就像一幅幅的背景图,只有一个瞬间,却没有以前或以后。比如,只能记得某个瞬间的微笑,只能在记忆的痕迹寻觅某时刻骑着单车穿过路口拐角的瞬间,却都不知晓为何微笑,为何穿过街角。

一切,有时荒诞得像一场莫名情景剧。然而,这就是生活。

曾经的梦,曾经的痛,曾经的歌,曾经的热情相拥,曾经的璀璨星空。

也许,多年以后,再也见不到的那些人,和着记忆的碎片飘荡而来,曾经伴着我们走过春华秋实。天空蔚蓝,杜鹃纷飞,飞过季节,曾经萍水相逢,欢聚一堂,蓦然回首,唯歌声飘留。让人忆起《米拉波桥》里的诗句:夜幕降临,钟声悠悠,时光已逝,唯我独留。

人在天涯,绵绵的思绪随着微风飘浮,从布满礁石的心灵海滩上穿过千山万水,来到游荡的身躯里,刻下一篇篇笺章。而这,或许在多年以后,当再次翻动时,原以为什么都已改变,

参考椭球面:实则就是我们所做的参考椭球表面是一个理想化的球面,可以完全利用数学公式表示球面上的点, 大地水准面:设想一个与静止的平均海水面重合并延伸到大陆内部的包围整个地球的封闭的重力位水准面。大地水准面是大地测量基准之一,确定大地水准面是国家基础测绘中的一项重要工程。它将几何大地测量与物理大地测量科学地结合起来,使人们在确定空间几何位置的同时南极地区布格大地水准面,还能获得海拔高度和地球引力场关系等重要信息。大地水准面的形状反映了地球内部物质结构、密度和分布等信息,对海洋学、地震学、地球物理学、地质勘探、石油勘探等相关地球科学领域研究和应用具有重要作用。 似大地水准面:似大地水准面——从地面点沿正常重力线量取正常高所得端点构成的封闭曲面。似大地水准面严格说不是水准面,但接近于水准面,只是用于计算的辅助面。它与大地水准面不完全吻合,差值为正常高与正高之差。正高与正常高的差值大小,与点位的高程和地球内部的质量分布有关系,在我国青藏高原等西部高海拔地区,两者差异最大可达3米,在中东部平原地区这种差异约几厘米。在海洋面上时,似大地水准面与大地水准面重合。 关系以及用途是这样的: 正高是指从一地面点沿过此点的重力线到大地水准面的距离。是天文地理坐标(Ψ,λ,Hg)的高程分量。因此,大地水准面则是正高的定义基础。 正常高是指从一地面点沿过此点的正常重力线到似大地水准面的距离。因此,似大地水准面则是正常高的定义前提。我国规定采用的高程系统是正常高系统。如果不是进行科学研究,只是一般使用,正常高系统结果在国内也可以称为海拔高度。 大地高是指从一地面点沿过此点的地球椭球面的法线到地球椭球面的距离。是大地地理坐标(B,L,H)的高程分量H。 大地高与正常高的差异叫做高程异常,GPS测定的是大地高,要求正常高必须先知高程异常。在局部GPS网中巳知一些点的高程异常(它由GPS水准算得),考虑地球重力场模型,利用多面函数拟合法求定其它点的高程异常和正常高。

高斯-克吕格投影与UTM投影 高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。从投影几何方式看,高斯-克吕格投影是“等角横切圆柱投影”,投影后中央经线保持长度不变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996。从计算结果看,两者主要差别在比例因子上,高斯-克吕格投影中央经线上的比例系数为1, UTM投影为0.9996,高斯-克吕格投影与UTM投影可近似采用 X[UTM]=0.9996 * X[高斯],Y[UTM]=0.9996 * Y[高斯],进行坐标转换(注意:如坐标纵轴西移了500000米,转换时必须将Y 值减去500000乘上比例因子后再加500000)。从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经度为-177°,因此高斯-克吕格投影的第1带是UTM的第31带。此外,两投影的东伪偏移都是500公里,高斯-克吕格投影北伪偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。 高斯-克吕格投影与UTM投影坐标系 高斯- 克吕格投影与UTM投影是按分带方法各自进行投影,故各带坐标成独立系统。以中央经线(L0)投影为纵轴X,赤道投影为横轴Y,两轴交点即为各带的坐标原点。为了避免横坐标出现负值,高斯- 克吕格投影与UTM北半

1 地图投影: 大地水准面:指平均海平面通过大陆延伸勾画出的一个连续的封闭曲面。大地水准面包围的球体称为大地球体。从大地水准面起算的陆地高度,称为绝对高度或海拔。 地球椭球体(拟地球椭球体、似地球椭球体):近似的代表地球大小和形状的数学曲面,一般采用旋转椭球。其大小和形状常用长半径a 和扁率α表示。1980年中国国家大地坐标系采用国际大地测量学与地球物理学联合会第十六届大会推荐的1975年椭球参考值:a=6378140,α=1∶298257。 参考椭球体:形状、大小一定,且经过定位,定向的地球椭球体称为参考椭球。是与某个区域如一个国家大地水准面最为密和的椭球面。 参考椭球面是测量计算的基准面,法线是测量计算的基准线。我国的大地原点,即椭球定位做最佳拟合的参考点位于陕西省泾阳县永乐镇。

大地基准面:用于尽可能与大地水准面密合的一个椭球曲面,是人为确定的。椭球面和地球肯定不是完全贴合的,因而,即使用同一个椭球面,不同的地区由于关心的位置不同,需要最大限度的贴合自己的那一部分,因而大地基准面就会不同。椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的大地基准面显然是不同的。 每个国家或地区均有各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体(IAG75)建立了我国新的大地坐标系--西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。WGS1984基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心,目前GPS测量数据多以WGS1984为基准。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。

3.2地球椭球体基本要素 3.2.1地球椭球体 我们称大地水准面包围形成的形体为大地球体。由于地球体内部物质分布的不均匀,导致重力方向的变化,因此与重力方向成正交的大地水准面也是不规则的,仍不能利用数学方法表达。大地水准面的形状虽然十分复杂,但从整体上看,起伏是微小的,它是一个接近绕自转轴(短轴)旋转的椭球体。所以,在测量和制图中就用旋转椭球体来代替大地球体,这个旋转球体通常称为地球椭球体,简称椭球体。 地球椭球体表面是一个规则的数学表面。椭球体的大小通常用两个半径:长半径a和短半径b或者由一个半径和扁率来决定。扁率α表示椭球的扁平程度,扁率的计算公式为:α=(a-b)/a。这些地球椭球体的基本元素a、b和α等,由于推求它的年代、使用的方法以及测定的地区不同,其结果并不一致,故地球椭球体的参数值有很多种,现将世界常用的地球椭球体的参数值列于表3-1。 表3-1各种地球椭球体模型的参数值 椭球体名称年代长半轴(m)短半轴(m)扁率 埃维尔斯特(Everest)1830 6377276 6356075 1:300.8 贝赛尔(Bessel)1841 6377397 6356079 1:299.15 克拉克(Clarke)1866 6378206 6356584 1:295.0 克拉克(Clarke)1880 6378249 6356515 1:293.5 海福特(Hayford)1910 6378388 6356912 1:297 克拉索夫斯基1940 6378245 6356863 1:298.3 I.U.G.G 1967 6378160 6356775 1:298.25 中国在1952年以前采用海福特椭球体,从1953—1980年采用克

参考椭球与高斯投影计算 §1参考椭球元素计算 测量中,高程的基准面是大地水准面,地表某点距离大地水准面的垂直距离称为该点的高程H;大地坐标系的基准是参考椭球,用大地经度L 和大地纬度B表示点在参考椭球表面的位置,用大地方位角A表示球面上边长的方向。定义参考椭球大小的元素值为: a——长半轴 b——短半轴 f——扁率 a b a f - =e——第一偏心率 2 2 2 2 a b a e - = 'e——第二偏心率 2 2 2 2' b b a e - = c——极曲率半径 b a c 2 = 我国采用过的两个参考椭球元素值以及GPS测量使用的参考椭球元素值:

通过参考椭球面上任意一点的法线,可以作无数个法截面,法截面与参考椭球面的交线称为法截线,球面上不同纬度及方向法截弧的曲率半径是不相同的。 ①子午圈曲率半径M 通过参考椭球旋转轴南北极的法截面(也称子午面)与参考椭球面相截形成的闭合圈称为子午圈,其曲率半径M 的计算公式为: 3V c M = 式中2 1η+=V ,B e cos '=η 所以, 322) cos '1(B e c M += ②卯酉圈曲率半径N 与该点子午面相垂直的法截面与参考椭球面相截形成的闭合圈称为卯酉圈,其曲率半径N 的计算公式为: V c N = B e a B e c N 2 222s i n 1c o s '1-= += ③平均曲率半径R 2V c MN R = = 由于V >1,所以有N > R > M 。 ④任意法截弧的曲率半径A R 方位角为A 方向法截弧的曲率半径A R 的计算公式为 A N R A 22cos 1η+= 当0=A 时,M R A =;当90=A 时,N R A = §2高斯投影正算与子午线收敛角的计算 将大地经纬度为L 、B 的点投影到高斯平面上并求出其坐标x 、y 称高斯投影正算,令γ为子午线收敛角。

地球近似一个球体,它的自然表面是一个极其复杂而又不规则的曲面。在大陆上,最高点珠穆朗玛峰8844.43米,在海洋中,最深点为马利亚纳海沟-11034米,二点高差近两万米。由于地球表面的不规则,必须寻找一个形状和大小都很接近地球的球体或椭球体来代替它。 通过天文大地测量、地球重力测量、卫星大地测量等精密测量,发现:地球不是一个正球体,而是一个极半径略短、赤道半径略长,北极略突出、南极略扁平,近于梨形的椭球体。见图3-3。 随着现代对地观测技术的迅猛发展,人们已经发现地球的形状也不是完全对称的,椭球子午面南北半径相差42米,北半径长了10米,南半径短了32米;椭球赤道面长短半径相差72米,长轴指向西经31°。地球形状更接近于一个三轴扁梨形椭球,且南胀北缩,东西略扁。但是,这与地球表面起伏和地球极半径与赤道半径之差都在20公里相比,是十分微小的。 二、地球体的物理表面——大地水准面 由于地球表面高低起伏,且形态极为复杂,显然不能作为测量与制图的基准面,这就提出了用一个什么样的曲面来代替地球表面的问题?大地水准面——将一个与静止海水面相重合的水准面延伸至大陆,所形成的封闭曲面。 大地水准面所包围的球体称为大地体。大地水准面作为测量的基准面,铅垂线作为测量的基准线。但是由于地球内部物质分布的不均匀性,因此,大地水准面也是一个不规则的曲面,它也不能作为测量计算和制图的基准面。 三、地球体的数学表面——地球椭球面 由于大地水准面的不规则性,不能用一个简单的数学模型来表示,因此测量的成果也就不能在大地水准面上进行计算。所以必须寻找一个与大地体极其接近,又能用数学公式表示的规则形体来代替大地体——地球椭球体。它的表面称为地球椭球面,作为测量计算的基准面。 为了便于测绘成果的计算,我们选择一个大小和形状同它极为接近的旋转椭球面来代替,即以椭圆的短轴(地轴)为轴旋转面成的椭球面,称之为地球椭球面。它是一个纯数学表面,可以用简单的数学公式表达,有了这样一个椭球面,我们即可将其当作投影面,建立与投影面之间一一对应的函数关系。 地球椭球体的形状和大小常用下列符号表示(图3-6):长半径a(赤道半径)、短半径b,(极轴半径)、扁率α,笫一偏心率e和第二偏心率e′,这些数据又称为椭球体元素。它们的数学表达式为: 扁率(3-1) 笫一偏心率(3-2) 第二偏心率(3-3) 四、地球的三级逼近 1.地球形体的一级逼近: 大地体即大地水准面对地球自然表面的逼近。大地体对地球形状的很好近似,其面上高出与面下缺少的相当。 2.地球形体的二级逼近 在测量和制图中就用旋转椭球体来代替大地球体,这个旋转椭球体通常称为地球椭球体,简称椭球体。它是一个规则的数学表面,所以人们视其为地球体的数学表面,也是对地球形体的二级逼近,用于测量计算的基准面。 3.地球的三级逼近

参考椭球坐标系统转换 不同参考系坐标转化需进行如下处理: 一、 高斯投影平面坐标求大地坐标 二、 正常高到大地高换算 三、 大地坐标求地心坐标 四、 参考椭球间的转化 五、 地心坐标求大地坐标 六、 大地坐标求高斯投影平面坐标 七、 大地高到正常高换算 一.高斯投影平面到大地坐标系的换算 直接求解公式: { ()()6 4 2 54 2 22232 459061720935242y t t N M t y t t N M t y N M t B B f f f f f f f f f f f f f f f f ++- -+++ - =η η (4-1) ()()5 2 224 253 2238624285cos 1201 21cos 61cos 1y t t t B N y t B N y B N l f f f f f f f f f f f f f η ηη +++++ ++- = 式中,B f 为底点纬度,下标“f ”表示与B f 有关的量。 )]} sin (sin [sin {2sin 02 6402 202 000B K K B K B K B B B f ++++=

( )0 2 01A e a X B -= )16384 11025512350644543(2186420e e e e K +++= )16384 5823951211086463(318 642e e e K ++- = )16384 68484512604(318 64e e K += )16384 26328(318 8e K -= f f B e a N 2 2 sin 1-= ,() f f B e e a M 2 2 2 sin 11--= f f B t tan = ()f B L L m cos 0-= f f B e cos '=η ,() 2 2 2 a b a e -= ,()2 2 2 'b b a e -= 二.大地高与正常高之间的换算 高斯投影平面坐标和摄影测量坐标一般采用正常高,而GPS 等导航设备获取的是大地高。如图1-1所示。 P H N ’ h ε似大地水准面 参考椭球面 大地高与正常高之间的转换需要知道该点的垂线偏差ε和似大地水准面与椭球面之间的差异N ’。理论表达式为:

§6.2 椭球面上的常用坐标系及其相互关系 6.2.1大地坐标系 P 点的子午面NPS 与起始子午面NGS 所构成的二面角 L , 叫做P 点的大地经度,由起始子午面起算,向东为正,叫东经(0°~180°),向西为负,叫西经(0o ~180°)。 P 点的法线Pn 与赤道面的夹角B , 叫做P 点的大地纬度。由赤道面起算,向北为正,叫北纬(0°~90°);向南为负,叫南纬(0°~90°)。 大地坐标系是用大地经度L 、大地纬度B 和大地高H 表示地面点位的。过地面点P 的子午面与起始子午面间的夹角叫P 点的大地经度。由起始子午面起算,向东为正,叫东经(0°~180°),向西为负,叫西经(0°~-180°)。过P 点的椭球法线与赤道面的夹角叫P 点的大地纬度。由赤道面起算,向北为正,叫北纬(0°~90°),向南为负,叫南纬(0°~-90°)。从地面点P 沿椭球法线到椭球面的距离叫大地高。大地坐标坐标系中,P 点的位置用L ,B 表示。如果点不在椭球面上,表示点的位置除L ,B 外,还要附加另一参数——大地高H ,它同正常高正常H 及正高正H 有如下关系 ?? ???+=+=)() (大地水准面差距高程异常正正常N H H H H ζ 6.2.2空间直角坐标系 以椭球体中心O 为原点,起始子午面与赤道面交线为X 轴,在赤道面上与X 轴正交的方向为Y 轴,椭球体的旋转轴为Z 轴,构成右手坐标系O -XYZ ,在该坐标系中,P 点的位置用Z Y X ,,表示。 地球空间直角坐标系的坐标原点位于地球质心(地心坐标系)或参考椭球中心(参心坐标系),z 轴指向地球北极,x 轴指向起始子午面与地球赤道的交点,y 轴垂直于XOZ 面并构成右手坐标系。 6.2.3子午面直角坐标系 设P 点的大地经度为L ,在过P 点的子午面上,以子午圈椭圆中心为原点,建立y x ,平面直角坐标系。在该坐标系中,P 点的位置用L ,y x ,表示。

将地面观测值归算至椭球面 6.4.1 概述 参考椭球面是测量计算的基准面。在野外的各种测量都是在地面上进行,观测的基准线不是各点相应的椭球面的法线,而是各点的垂线,各点的垂线与法线存在着垂线偏差。因此不能直接在地面上处理观测成果,而应将地面观测元素(包括方向和距离等)归算至椭球面。在归算中有两条基本要求:(1)以椭球面的法线为基准;(2)将地面观测元素化为椭球面上大地线的相应元素。 6.4.2 将地面观测的水平方向归算至椭球面 1.垂线偏差改正u δ 地面上所有水平方向的观测都是以垂线为根据的,而在椭球面上则要求以该点的法线为依据。把以垂线为依据的地面观测的水平方向值归算到以法线为依据的方向值而应加的改正定义为垂线偏差改正,以u δ表示。 如图所示,以测站A 为中心作出单位半径的辅助球,u 是垂线偏差,它在子午圈和卯酉圈上的分量分别以ηξ,表示,M 是地面观测目标m 在球面上的投影。 垂线偏差改正的计算公式是: 1cot )cos sin (Z A A m m u ηξδ''-''-='' 1tan )cos sin (αηξm m A A ''-''-= 式中:ηξ,为测站点上的垂线偏差在子午圈及卯酉圈上的分量,它们可在测区的垂线偏差分量图中内插取得;m A 为测站点至照准点的大地方位角;1Z 为照准点的天顶距;1α为照准点的垂直角。 垂线偏差改正的数值主要与测站点的垂线偏差和观测方向的天顶距(或垂直角)有关。 2.标高差改正h δ 标高差改正又称由照准点高度而引起的改正。不在同一子午面或同一平行圈上的两点的法线是不共面的。当进行水平方向观测时,如果照准点高出椭球面某一高度,则照准面就不能通过照准点的法线同椭球面的交点,

§4.4 椭球面 一、概念: 在空间直角坐标系下,由方程 ++=1 所表示的曲面叫做椭球面,或称椭圆面,通常假定a≥b≥c>0. 该方程叫做椭球面的标准方程. 二、图形(如图4-4): 1.讨论方法: 一般地,运用解析方法对曲面标准方程进行讨论的步骤可概括为: (1) 曲面的对称性:讨论图形各部分之间的关系; (2) 曲面的范围:讨论图形存在的范围; (3) 曲面和坐标轴、坐标平面的关系:以便对图形的大概轮廓有所了解; (4) 确切研究曲面的弯曲变化情况:主要方法是平行截割法. 它是用一族平行平面来截割曲面,研究截口曲线是怎样变化的,也叫平行截面法,或平行截口线法. 2.讨论过程: (1) 曲面的对称性:椭球面关于三坐标平面、三坐标轴、坐标原点都对称. 椭球面的对称平面、对称轴与对称中心依次叫做椭球面的主平面、主轴与中心. (2) 曲面与坐标轴的交点:椭球面的三条对称轴与椭球面的交点叫做椭球面的顶点, 因此椭球面的顶点为 (±a, 0, 0), (0, ±b, 0), (0, 0, ±c). 同一条轴上的两顶点间的线段以及它们的长度2a, 2b, 2c叫做椭球面的轴,它的一半叫做半轴. 当a>b>c>0时,2a, 2b, 2c 分别叫做椭球面长轴、中轴、短轴,而a, b, c分别叫做椭球面的长半轴、中半轴、短半轴. (3) 曲面的存在范围:椭球面完全被封闭在一个长方体的内部,这个长方体由六个平面:x=±a, y=±b, z=±c所围成. (4) 被坐标面所截得的曲线: ①②③ 分别为xOy, xOz, yOz坐标面上的椭圆,它们叫做椭球面的主截线(或主椭圆). (5) 被坐标面的平行平面所截得的曲线:考虑截线 或④椭球面可以看成由此椭圆族④所生成,这些椭圆所在平面与xOy坐标面平行,而椭圆的两双顶点分别在另外两个椭圆②与③上. 用平行于其他坐标面的平面来截割椭球面,结论类似. 3. 椭球面的参数方程为 (0≤θ≤π, 0≤?<2π)

§6.2 椭球面上的常用坐标系及其相互关系6.2.1大地坐标系 点的子午面NPS 与起始子午面NGS 所构成的二面P 角,叫做点的大地经度,由起始子午面起算,向东L P 为正,叫东经(0°~180°),向西为负,叫西经 (0o ~180°)。点的法线与赤道面的夹角,叫做P Pn B 点的大地纬度。由赤道面起算,向北为正,叫北纬P (0°~90°);向南为负,叫南纬(0°~90°)。大地坐标系是用大地经度L 、大地纬度B 和大地高H 表示地面点位的。过地面点P 的子午面与起始子午面间的夹角叫P 点的大地经度。由起始子午面起算,向东为正,叫东经(0°~180°),向西为负,叫西经(0°~-180°)。过P 点的椭球法线与赤道面的夹角叫P 点的大地纬度。由赤道面起算,向北为正,叫北纬(0°~90°),向南为负,叫南纬(0°~-90°)。从地面点P 沿椭球法线到椭球面的距离叫大地高。大地坐标坐标系中,点的位置用,表示。如果点不在椭球面上,表示P L B 点的位置除,外,还要附加另一参数——大地高,L B H 它同正常高及正高有如下关系 正常H 正H ?????+=+=)() (大地水准面差距高程异常正正常N H H H H ζ 6.2.2空间直角坐标系以椭球体中心为原点,起始子午面与赤道面交O 线为轴,在赤道面上与轴正交的方向为轴,X X Y 椭球体的旋转轴为轴,构成右手坐标系-,Z O XYZ 在该坐标系中,点的位置用表示。P Z Y X ,,地球空间直角坐标系的坐标原点位于地球质心(地心坐标系)或参考椭球中心(参心坐标系),z 轴指向地球北极,x 轴指向起始子午面与地球赤道的交点,y 轴垂直于XOZ 面并构成右手坐标系。6.2.3子午面直角坐标系 设点的大地经度为,在过点的子午面上,以 P L P 子午圈椭圆中心为原点,建立平面直角坐标系。在该 y x ,坐标系中,点的位置用,表示。P L y x ,

§6.3 几种主要的椭球公式 过椭球面上任意一点可作一条垂直于椭球面的法线,包含这条法线的平面叫做法截面,法截面同椭球面交线叫法截线(或法截弧)。包含椭球面一点的法线,可作无数多个法截面,相应有无数多个法截线。椭球面上的法截线曲率半径不同于球面上的法截线曲率半径都等于圆球的半径,而是不同方向的法截弧的曲率半径都不相同。 6.3.1子午圈曲率半径 子午椭圆的一部分上取一微分弧长ds DK =, 相应地有坐标增量dx ,点n 是微分弧dS 的曲率中 心,于是线段Dn 及Kn 便是子午圈曲率半径M 。 任意平面曲线的曲率半径的定义公式为: dB dS M = 子午圈曲率半径公式为: 32)1(W e a M -= 3V c M = 或 2 V N M = M 与纬度B 有关.它随B 的增大而增大,变化规律如下表所示: 6.3.2卯酉圈曲率半径 过椭球面上一点的法线,可作无限个法截 面,其中一个与该点子午面相垂直的法截面同椭 球面相截形成的闭合的圈称为卯酉圈。在图中 E PE '即为过P 点的卯酉圈。卯酉圈的曲率半径 用N 表示。 为了推导N 的表达计算式,过P 点作以O ' 为中心的平行圈PHK 的切线PT ,该切线位于垂 直于子午面的平行圈平面内。因卯酉圈也垂直于 子午面,故PT 也是卯酉圈在P 点处的切线。即 PT 垂直于Pn 。 所以PT 是平行圈PHK 及卯酉圈E PE '在P 点处的公切线。 卯酉圈曲率半径可用下列两式表示:

W a N = V c N = 6.3.3 任意法截弧的曲率半径 子午法截弧是南北方向,其方位角为0°或180°。卯 酉法截弧是东西方向,其方位角为90°或270°。现在来讨 论方位角为A 的任意法截弧的曲率半径A R 的计算公式。 任意方向A 的法截弧的曲率半径的计算公式如下: A B e N A N R A 22222cos cos 1cos 1'+=+=η (7-87) 6.3.4 平均曲率半径 在实际际工程应用中,根据测量工作的精度要求,在一定范围内,把椭球面当成具有适当半径的球面。取过地面某点的所有方向A R 的平均值来作为这个球体的半径是合适的。这个球面的半径——平均曲率半径R : MN R = 或 )1(2222e W a V N V c W b R -==== 因此,椭球面上任意一点的平均曲率半径R 等于该点子午圈曲率半径M 和卯酉圈曲率半径N 的几何平均值。 6.3.5 子午线弧长计算公式 子午椭圆的一半,它的端点与极点相重合;而赤道又把子午线分成对称的两部分。 如图所示,取子午线上某微分弧dx P P =',令P 点纬度为B , P '点纬度为dB B +,P 点的子午圈曲率半径为M ,于是有: MdB dx = 从赤道开始到任意纬度B 的平行圈之间的弧长可由下列积分求 出: ?=B MdB X 0 式中M 可用下式表达: B a B a B a B a a M 8cos 6cos 4cos 2cos 86420+-+-=

Unit 13 Geoid and Reference Ellipsoid(大地水准面和参考椭球) The Earth’s physical surface is a reality upon which the surveying observations are made and points are located.(地球物理表面【或者说,地球自然表面】是一个实体,测量工作【observation观测】在其上进行,点位在其上进行定位。) However, due to its variable topographic surface and overall shape, it cannot be defined mathematically and so position cannot be computed on its surface.(然而,由于【due to】它的起伏不定的【variable可变的、不定的,这里按中文习惯译为起伏不定的】地形表面和总的【overall】形状,它不能被数学的定义,因此点位也不能在其上进行计算。)It is for this reason that in surveys of limited extent, the Earth is treated as flat and plane trigonometry used to define position.(正是因为这个原因,在有限范围内的测量中,地球被当成平的,并用平面三角学【trigonometry三角学】来确定位置。) If the area under consideration is of limited extent, orthogonal projection of this area onto a plane surface may result in negligible distortion.(如果在考虑中的【under consideration 在考虑中的】区域是有限范围的,该区域在一个平面【plane surface】上的正交投影【orthogonal projection】导致的【直译为导致,可以意译为:其结果】是可以忽略的【negligible可以忽略的】变形【distortion】) Plane surveying techniques could be used to capture field data and plane trigonometry used to compute position.(平面测量技术可以被用来获取外业数据,平面三角学用来计算位置坐标) However, if the area extended to a large area beyond limitation and treated as a flat surface the effect of the Earth’s curvature will produce unacceptable distortion.(然而,如果该区域延伸【extend】为一个大的区域超过了限度,把它当成一个平面,地球的曲率影响

地球椭球 由于地球真实形状的不规则性,要在地面上开展一系列大地测量计算,必须选定一规则曲面作为测量计算的基准面。例如,常规地面测量通过野外观测只能获得地面点间的方向、距离和天文方位角,为了求得水平控制网点的坐标,要进行一系列的计算,这就需要选定计算的基准面。 适于大地测量计算的基准面应当满足以下三个要求: (1)应是接近地球自然形体的曲面,这样可使地面观测量归算的改正数很微小; (2)这个曲面应是一个便于计算的数学曲面,从而能保证由观测量计算坐标的可行性; (3)这个曲面与大地体的位置要固定下来,即能建立起地面点与基准面上点的一一对应。 大地水准面是接近地球形体的一个不规则曲面,但这种不规则性很微小,因为它的起伏主要是地壳层的物质质量分布不均匀引起的,而地壳质量仅占地球总质量的1/65。所以大地水准面在总体上应非常接近于一个规则形体,十七世纪以来的大地测量结果表明,这个规则形体是一个南北稍扁的旋转椭球面。

旋转椭球是由一个椭圆绕其短轴旋转而成的几何形体。图5.4表示以O为中心,以NS为旋转轴的椭球。 大地测量中,用来代表地球形状和大小的旋转椭球称为地球椭球,简称椭球,它是对地球形状的几何概括,是地球真实形状的数学化模型。 包含椭球旋转轴(短轴)的平面称为大地子午面,子午面与椭球面的截线称为子午圈(子午线)。通过椭球中心且垂直于旋转轴的平面称为大地赤道面,赤道面与椭球面的截线称为赤道。平行于赤道的平面与椭球面的截线称为平行圈(平行线),也称纬圈。椭球面上旋转轴的两端点N、S分别称为北极和南极。 地球椭球中常用的几何参数有以下6个: 以上6个参数中只要给定一个长度参数和其它任意一个参数就可确定椭球的形状和大小。大地测量中常用长半径和扁率来表示地球椭球。 在经典大地测量中,地球椭球的几何参数是根据天文、大地和重力测量资料推算出来的。六十年代以后,应用卫星大地测量观测数据推算出了许多更精确的地球椭球。表5.1是我国采用的椭球参数表。 表5.1 我国采用的地球椭球参数表

§6.2椭球面上的常用坐标系及其相互关系 6.2。1大地坐标系 P 点的子午面NPS 与起始子午面NGS 所构 成的二面角L ,叫做P 点的大地经度,由起始子午 面起算,向东为正,叫东经(0°~180°),向西为 负,叫西经(0o ~180°).P 点的法线n P 与赤道面的夹角B ,叫做P 点的大地纬度.由赤道面起算,向北为正,叫北纬(0°~90°);向南为负,叫南纬(0°~90°). 大地坐标系是用大地经度L 、大地纬度B 和大地高H 表示地面点位的.过地面点P 的子午面与起始子午面间的夹角叫P 点的 大地经度。由起始子午面起算,向东为正,叫东 经(0°~180°),向西为负,叫西经(0°~— 180°)。过P 点的椭球法线与赤道面的夹角叫P 点的大地纬度。由赤道面起算,向北为正,叫北 纬(0°~90°),向南为负,叫南纬(0°~-90°)。 从地面点P 沿椭球法线到椭球面的距离叫大地 高。大地坐标坐标系中,P 点的位置用L ,B 表示.如果点不在椭球面上,表示点 的位置除L ,B 外,还要附加另一参数—-大地高H ,它同正常高正常H 及正高正H 有

如下关系 ?? ???+=+=)()(大地水准面差距高程异常正正常N H H H H ζ 6。2.2空间直角坐标系 以椭球体中心O 为原点,起始子午面与赤道 面交线为X 轴,在赤道面上与X 轴正交的方向 为Y 轴,椭球体的旋转轴为Z 轴,构成右手坐标 系O -XYZ ,在该坐标系中,P 点的位置用Z Y X ,,表示。 地球空间直角坐标系的坐标原点位于地球质心(地心坐标系)或参考椭球中心(参心坐标系),z 轴指向地球北极,x 轴指向起始子午 面与地球赤道的交点,y 轴垂直于XOZ 面并构成右 手坐标系。 6.2。3子午面直角坐标系 设P 点的大地经度为L ,在过P 点的子午面上,以子午圈椭圆中心为原点,建立y x ,

处理大地测量成果而采用的与地球大小、形状接近并进行定位的椭球体表面。 地球体从整体上看,十分接近于一个规则的旋转椭球体。地球椭球由三个椭球元素:长半轴,短半轴和扁率表示。形状、大小一定且已经与大地体作了最佳拟合的地球椭球称为参考椭球。我国的最佳拟合点,也称为大地原点,位于陕西省西安市泾阳县永乐镇。 参考椭球面是测量、计算的基准面。 各国为处理大地测量的成果,往往根据本国及其他国家的天文,大地,重力测量结果采用适合本国的椭球参数并将其定位。 我国在成立之前采用海福特椭球参数,新中国成立之初采用克拉索夫斯基椭球参数(其大地原点在前苏联,对我国密合不好,越往南方误差越大)。目前采用的是1975年国际大地测量学与物理学联合会(IUGG)推荐的椭球,在我国称为“1980年国家大地坐标系”。坐标原点即是前面提到的“陕西省咸阳市泾阳县永乐镇”。2008年7月1日我国启动了2000国家大地坐标系,计划用8~10年完成现行国家大地坐标系到2000国家大地坐标系的过渡与转换工作。(现在2011年,在我国很多的地方任然采用的“54北京坐标系”坐标系的转换工作的难度和工作量可想而知)

松开的记忆,飘落的莫名的尘埃,像起伏的微风,拂过脑海,留下一份情愁。一条街,没有那些人,那些身影,却能来回徘徊穿梭。街,行走时,纵然漫长,漫长,有时只为听一颗流动的心的呓语。沉默,倔强,回望,忘记,记住,一切像断了的弦,有时希望生活简单就好,有时却又莫名的颓废其中。 有些路,只能一个人走;有些事,只能一个人去经历。粗读加缪、萨特的存在主义,它告诉我,人就是非理性的存在。光秃秃的枝桠、清寂的清晨、流动的阳光,飘落于心,或快意,或寂寥,映照心境,然而,有时却只属于那一刻。总之,一切只是心情。 人生的画面一幅幅地剪辑,最后拼凑出的是一张五彩斑斓的水彩画,有艳丽的火红色,凝重的墨黑以及一抹忧郁的天蓝色。人的记忆很奇特,那些曾经的过往,就像一幅幅的背景图,只有一个瞬间,却没有以前或以后。比如,只能记得某个瞬间的微笑,只能在记忆的痕迹寻觅某时刻骑着单车穿过路口拐角的瞬间,却都不知晓为何微笑,为何穿过街角。 一切,有时荒诞得像一场莫名情景剧。然而,这就是生活。 曾经的梦,曾经的痛,曾经的歌,曾经的热情相拥,曾经的璀璨星空。 也许,多年以后,再也见不到的那些人,和着记忆的碎片飘荡而来,曾经伴着我们走过春华秋实。天空蔚蓝,杜鹃纷飞,飞过季节,曾经萍水相逢,欢聚一堂,蓦然回首,唯歌声飘留。让人忆起《米拉波桥》里的诗句:夜幕降临,钟声悠悠,时光已逝,唯我独留。 人在天涯,绵绵的思绪随着微风飘浮,从布满礁石的心灵海滩上穿过千山万水,来到游荡的身躯里,刻下一篇篇笺章。而这,或许在多年以后,当再次翻动时,原以为什么都已改变,

椭球面双曲面抛物面§7.9 二次曲面 三元二次方程所表示的曲面称着二次曲面。相应地,将平面叫做一次曲面。 一般的三元方程F x y z (,,)=0所表示的曲面形状,已难以用描点法得到, 那未怎样了解它的形状呢? 利用坐标面或用平行于坐标面的平面与曲面相截,考察其交线( 即截痕 )的形状,然后加以综合,从而了解曲面的全貌,这种方法叫做截痕法。 下面,我们用截痕法来讨论几个特殊的二次曲面。 一、椭球面 由方程 x a y b z c 2 2 2 2 2 2 1 ++= (1) 所表示的曲面叫做椭球面。 1、由(1)可知: x a y b z c ≤≤≤ ,, 这表明:椭球面(1)完全包含在以原点为中心的长方体内,这长方体的六个面的方程为 x a y b z c =±=±=± ,, 其中常数a b c ,,叫做椭球面的半轴。 2、为了进一步了解这一曲面的形状,先求出它与三个坐标面的交线 x a y b z y b z c x x a z c y 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 += = ????? += = ? ? ? ?? += = ? ? ? ?? 这些交线都是椭圆。 3、用平行于xoy坐标面的平面z z z c =≤ 11 () 去截椭球面,其截痕(即交线) 为

x a c c z y b c c z z z 222122 2212 1 1()()-+-==??????? 这是位于平面 z z =1内的椭圆,它的两个半轴分别等于 a c c z 21 2 -与 b c c z 21 2 -,其椭圆中心均在z 轴上,当z 1 由0渐增大到c 时, 椭圆的截面 由大到小,最后缩成一点。 4、以平面 y y y b =≤11()或 x x x a =≤11()去截椭球面分别可得与 上述类似的结果。 综上讨论知:椭球面(1)的形状如图所示。 5、特别地,若a b =,而a c ≠,则 (1) 变为 x a y a z c 22222 21++= 这一曲面是xoz 坐标面上的椭圆 x a z c 22 2 21+=绕z 轴旋转而成的旋转曲面,因 此,称此曲面为旋转椭球面。 它与一般椭球面不同之处在于 如用平面z z z c =≤11()与旋转椭球面相截时,所得的截痕是圆心在z 轴上的圆

§7.1地球椭球的基本几何参数及相互关系 7.1.1地球椭球的基本几何参数 地球椭球 参考椭球 具有一定的几何参数、定位及定向的用以代表某一地区大地水准面的地球椭球叫做参考椭球。地面上一切观测元素都应归算到参考椭球面上,并在该面上进行计算,它是大地测量计算的基准面,同时又是研究地球形状和地图投影的参考面。 有关元素 O 为椭球中心; NS 为旋转轴; a 为长半轴; b 为短半轴; 子午圈(或径圈或子午椭圆); 平行圈(或纬圈); 赤道。 旋转椭球的形状和大小是由子午椭圆的五个基本几何参数(元素)来决定的,即: 椭圆的长半轴: a 椭圆的短半轴: b 椭圆的扁率: α=-a b a (7-1)

椭圆的第一偏心率: a b a e 22-= (7-2) 椭圆的第二偏心率: b b a e 22 -=' (7-3) 其中:a 、b 称为长度元素; 扁率α反映了椭球体的扁平程度,如α=0时,椭球变为球体;α=1时,则为平面。 e 和e /是子午椭圆的焦点离开中心的距离与椭圆半径之比,它们也反映了椭球体的扁平程度,偏心率越大,椭球愈扁。 五个参数中,若知道其中的两个参数就可决定椭球的形状和大小,但其中至少应已知一个长度元素(如a 或b ),人们习惯于用a 和α表示椭球的形状和大小,便于级数展开。引入下列符号: b a c 2 = tgB t = B e 222cos '=η (7-4) 式中B 为大地纬度,c 为极曲率半径(极点处的子午线曲率半径), 两个常用的辅助函数,W 第一基本纬度函数,V 第二基本纬度函数, B e V B e W 2222cos 1sin 1'+=-= (7-5) 传统大地测量利用天文大地测量和重力测量资料推求地球椭球的几何参数,自1738年(法国)布格推算出第一个椭球参数以来,200多年间各国大地测量工作者根据某一国或某一地区的资料,求出了数目繁多,数值各异的椭球参数。由于卫星大地测量的发展,使推求总地球椭球体参数成

第七章 椭球面上的基本计算 §1 地球椭球的基本知识 一、地球形状的概念 地球的自然表面——不规则;不能在上面进行计算; 大地水准面——平均海水面延伸得到的封闭曲面,最接近大地自然表面; ∵大地水准面具有性质:大地水准面上任一点处的垂线(重力方向)与该点处切面正交; 又:重力是离心力与地心引力的合力(离心力与地心引力之比约1:300),而大地水准面上各点处引力不等,造成各点处垂线方向各异。 ∴各点处切面组成的曲面——大地水准面亦不规则,有微小起伏,是一个具有物理性质的曲面。 实践和理论均可证明:1)在各水准面(与大地水准面的不平行性不很明显)上测得的水平角,因归化到大地水准面上改正极微小,完全可以看成大地水准面上的角值;2)各高程面上测得之边长也可化算到大地水准面上;3)地面点的高程亦从大地水准面起算。 结论:大地水准面是测量外业的基准面;但它是物理曲面而非数学曲面,所以不能作为测量计算的基准面。 大地体——大地水准面包围的形体; 地球椭球——代表地球形体的旋转椭球体;椭球面上处处法线与该点的切面正交,是一个具有数学性质的曲面; 总地球椭球——与大地体最接近的地球椭球。应满足: ①其中心应与地球质心重合; ②旋转轴应与地轴重合,赤道应与地球赤道重合; ③体积应与大地体体积相等; ④总椭球面与大地水准面之间的高差平方和最小。 参考椭球——与某一局部大地水准面密切配合的椭球。 二、椭球的几何元素与参数 1.椭球的元素 长半径:a 短半径:b 2.椭球的参数 扁率: α=(a -b)/a 第一偏心率: a b a e /22-= 第二偏心率: b b a e /22-=' 式中:22b a -——椭圆的焦距,即椭圆的焦点到椭圆中心的距离

相关文档
最新文档