钼矿常规选矿方法简单介绍

钼矿常规选矿方法简单介绍
钼矿常规选矿方法简单介绍

钼矿常规选矿方法简单介绍

【我来说两句】 2006-2-24 18:58:55 中国选矿技术网浏览3243 次收藏【摘要】:钼矿的选矿方法主要是浮选法,回收的钼矿物是辉钼矿。有时为了提高钼精矿质量、去除杂质、将钼精矿再进行化学选矿外理。

钼矿的选矿方法主要是浮选法,回收的钼矿物是辉钼矿。有时为了提高钼精矿质量、去除杂质、将钼精矿再进行化学选矿外理。

辉钼矿晶体呈六方层状或板状结构,由沿层间范氏健的S—Mo—S结构和层内极性共价键S—Mo形成的。层与层间的结合力很弱,而层内的共价键结合力甚强。所以辉钼矿极易沿结构层间解裂呈片状或板状产出,这是辉铜矿天然可浮性良好的原因。实践证明:在合适的磨矿细度下,辉钼矿晶体解离发生在S—Mo—S 层间,亲水的S—Mo面占很小比例。但过磨时,S—Mo面的比例增加,可浮性下降,虽然此时加入一定量极性捕收剂如黄药类,有利于辉钼矿的回收,但过磨产生的新矿泥影响浮选效果。因此对辉钼矿的选别要避免和防止过磨,在生产上需要采用分段磨矿和多段选别流程,逐步达到单体解离,确保钼精矿的高回收率。

钼矿的破碎一般都采用三段一闭路流程,破碎最终产品粒度为12~15毫米。

磨矿通常用球磨机或棒磨-球磨流程。亨德森是唯一采用半自磨流程的。浮选采用优先浮选法。粗选产出钼粗精矿,粗扫选尾矿回收伴生矿物或丢弃。钼粗精矿采用两、三段再磨,四,五次精选获得最终钼精矿。

钼矿的浮选药剂以非极性油类作捕收剂,同时添加起泡剂。美国和加拿大用表面活性剂辛太克斯(Syntex)作油类乳化剂。根据矿石性质,用石灰作调整剂,水玻璃作脉石抑制剂,有时加氰化物或硫化物抑制其他重金属矿物。

为保证钼精矿质量,对钼精矿中所含的铜、铅、铁等重金属矿物和氧化钙以及炭质矿物需进一步进行分离:

一般使用硫化钠或硫氢化钠,氰化物或铁氰化物制铜和铁;用重铬酸盐或诺克斯(Nokes)抑制铅。如果使用抑制剂,杂质含量还达不到质量标准,尚需辅以化学选矿处理:次生硫化铜用氰化物浸出;黄铜矿用三氯化铁溶液浸出; 方铅矿用盐酸和三氯化铁溶液浸出,均可达到标准含量。

含氧化钙的脉石易泥化,因此,对于含此类脉石的矿石切忌过磨。生产上往往添加水玻璃,六聚偏磷酸钠或有机胶作脉石抑制剂或分散剂;也可用活性炭加CMC(羧甲基纤维素)抑制碳酸盐脉石。最终可用盐酸或盐酸加三氯化铁溶液浸出处理。

含炭质矿物的分离,首先要查明炭质是属石墨类、沥青类或煤类。这些炭质矿物的可浮性与辉钼矿相近,但密度较小,一般可用重选法进行脱除;使用六聚偏磷酸钠和CMC抑炭浮钼;或加三氯化铁、水玻璃和六聚偏磷酸钠抑制炭质也有效;采用焙烧除去有机炭,也是办法之一。应该指出的是,所有这些炭质矿物的分离方法,目前还不能令人满意,还是一个尚未完全解决的问题。

脉石中SiO

(二氧化硅)含量太高,常常是影响钼精矿品位的原因。经查定:

2

含量随着钼精矿品位提高而下降,两者有相互消费的趋势。只要钼矿物达到SiO

2

含量一般可降到标准以下。加活性炭吸附钼表面的油药,再单体解离细度,SiO

2

含量也可降到标准以下。

加CMC抑制硅酸盐脉石,SiO

2

辉钼矿冶炼技术研究进展

一、引言

我国属于钼资源大国和生产大国,每年钼出口量占总产量的一半以上,产品以钼铁、钼精矿、钼酸铵为主。由于选冶工艺相对落后,大部分产品中杂质超标,因此急待发展钼工业的选冶研究,特别是钼提取工艺的研究,具有十分重要的经济和社会意义。提取钼的主要原料为辉钼矿,处理钼精矿的工艺主要分为火法工艺(焙烧-氨浸)和全湿法工艺两大类,其中占主导地位的是火法工艺。

二、火法工艺

该工艺是将辉钼矿进行焙烧得到钼焙砂,然后通过升华法或湿法制得三氧化钼,再经氢还原生产金属钼粉。根据焙烧设备或添加组分的不同,可将辉钼矿的焙烧工艺分为回转窑焙烧工艺、反射炉焙烧工艺、多膛炉焙烧工艺、流化床焙烧工艺、闪速炉焙烧工艺。

(一)传统焙烧工艺

目前国内大部分中小企业均采用回转窑焙烧工艺。与多膛炉相比,回转窑投资小,设备及工艺简单。回转窑焙烧工艺的主要问题是生产能力小,炉体寿命短,

高,影响后续氨浸工序钼的提取率,因此国外很少用这生产率低,焙砂含MoO

2

种工艺。

反射炉是一种古老的工艺方法,目前国内部分小企业仍采用反射炉生产

。辉钼矿焙烧时的加料、出料及炉料的搅拌都是人工操作,焙烧热量由煤重MoO

3

油或煤气燃烧供给,结合炉门控制焙烧温度。

国外企业多采用多膛炉焙烧工艺,climax公司较早采用多膛炉焙烧工艺处

理辉钼矿,我国目前最大规模的多膛炉为金堆城钼业公司的12层四耙臂多膛炉。多膛炉的缺点是处理量有限,可移动部件太多,炉子寿命短,温差大。

钼精矿的流态化焙烧被认为是目前较为理想的焙烧方式。流化床焙烧是一种较先进的焙烧技术,具有氧化脱硫率高的优点,广泛用于硫化矿的冶炼生产。1998年堤岸化学公司设计并生产出由振动给料、气流分配装置、流化气预热装置和膨胀器等构成流化床焙烧炉。该炉已代替了使用了60多年的多膛炉,取得了好的效果,氧化钼转化率可达99%。

不少学者进行了辉钼矿闪速炉焙烧的试验研究,取得了满意的结果,但未见工业化的报道。采用闪速焙烧的方法处理钼精矿是采用闪速炉焙烧生产MoO

3

。钼精矿经预热(650~750℃)后从顶部加入闪速炉中,与预热的富氧空气或氧气和二氧化硫混合气逆流接触。焙烧过程中通过炉膛中的冷却水管调节反应带的温度为550~650℃,以便控制辉钼矿的氧化速度,保证物料中大部分铼的升华,并尽可能防止钼的挥发,并通过烟气回收铼。钼、铼的回收率均很高,其中铼的回收率在95%左右。由于焙烧过程氧气利用较充分,烟气中二氧化硫可以通过液化制备液态二氧化硫,从而避免了含硫烟气的环境污染。

焙烧工艺的研究主要集中在改进焙烧炉或焙烧方式,利用焙烧工艺处理硫化

钼精矿得到MoO

3

,该工艺存在很多问题:⑴钼精矿焙烧过程中产生大量烟气,严

重污染环境。烟气中含大量SO

2

,且浓度低不易回收。此外,还含有大量金属粉尘。⑵在焙烧过程中,约有3%左右的钼以粉尘形式从烟气中损失,在后续氨浸过程中又有5%以上的钼以渣形式损失掉,整个生产过程钼回收率仅为85%~90%,辉钼精矿中伴生的稀有元素铼几乎全部随烟气跑掉,目前国内只有极少数厂家进行回收,且铼回收率仅在70%左右。⑶传统工艺不适合处理低品位矿石和复杂矿,随着钼工业的发展,高品位和容易处理的含钼矿石会越来越少,而低品位和复杂矿的比例会逐渐增加。

(二)改进的焙烧工艺

为解决以上问题对焙烧工艺进行了改进,主要有以下几个方面:

1、添加碱性物质焙烧工艺。为解决辉钼精矿在焙烧过程中含SO

2

烟气环境污染和铼的回收问题,在焙烧时添加石灰,使钼和铼分别转化成为钼酸钙和高铼

酸钙。精矿中的硫元素转化为硫酸钙,从烟气中排放出来的SO

2

大为减少,且得到的焙砂可以采用稀硫酸浸出,从而方便地实现钼(铼)与杂质(硫酸钙、不溶残渣)的分离。

针对石灰焙烧工艺中生成不溶于水的钼酸盐CaMoO

4

,而采用苏打灰焙烧则一

步生成可溶性的钼酸盐Na

2MoO

4

。因此容易用酸或碱进一步处理,得到三氧化钼

(MoO

3)。添加Na

2

CO

3

焙烧辉钼矿,能选择性地将钼和铼转变成可溶的钠盐,焙砂

经水浸出后可实现钼和铼与其他不溶性杂质的分离,浸出液净化后用活性炭吸附分离钼和铼,精矿中的硫转入硫酸钠中,可抑制部分SO

2

的生成。添加纯碱焙烧工艺适宜于处理低品位钼精矿,既可从钼焙砂碱浸渣中回收钼,也可从废催化剂

中回收钼。

石灰强化还原工艺使用H

2

、CO和C作为还原剂,将辉钼矿还原成钼金属。

MoS

2

的石灰强化碳热还原工艺具有一系列的优点,包括强化该反应在热力学上的

可行性;改进动力学和硫的固定,以致于不会有SO

2

逸散到大气中。因此,它在从钼的硫化物或硫化矿石中提取钼和其他多种贱金属(例如铜、镍、锌)均具有吸引力。

2、部分还原焙烧工艺。利用软锰矿的氧化性和硫化矿的还原性, 20世纪70年代发展了硫化矿物(如黄铁矿、闪锌矿、黄铜矿)与软锰矿的联合浸出工艺。软锰矿来源广,且价格低廉,曾用于含硫烟气的湿法脱硫工艺,它松散多孔且疏水,在辉钼矿中分散均匀,利于气体的传输,增大有效反应面积和反应活性中心;

另外,MnO

2

氧化性极强,在较低温度下能直接或促进辉钼矿的氧化分解,产生的

SO

2气体能被MnO

2

氧化转化成为较稳定的硫酸锰。该工艺具有流程短、设备简单、

环境污染小的特点,已成功地实现工业化生产,该工艺有望成为能综合回收钼、铼、锰的一种资源化、短流程的洁净冶金工艺。

还可利用锰铁作为还原剂,加入到辉钼精矿中混匀制粒,在石墨坩埚中熔融搅拌,得到的焙烧产物为钼铁,铜、硫含量分别小于0.05%、0.1%。该工艺能使钼的总收率提高1%~2%。添加的氧化铁具有如下作用:①催化作用,传递氧源加速氧化脱硫反应;②分散焙烧物料,抑制MoO

3

熔化而产生的烧结现象;③生成

部分钼盐,可防止MoO

3

在焙烧和冶炼过程中的高温升华。

3、氯化(氧化)分解法。氯气氧化可在固定床中进行,也可在流化床中进行。在火法冶金工艺中,氯化法采用的氯化剂是氯气或者氯与氧的混合物,它们分别

将钼精矿中的钼转化成MoC

15和MoO

2

C

12

。采用在流化床中氯化低品位辉钼矿精矿

回收钼工艺存在环保问题,该工艺释放出的S

2C

l2

和SO

2

气体会污染空气,因此需

要进行繁杂的废气处理,工业上更倾向于采用有氧存在下的混合氯化氧化法,其

原因在于产物MoO

2C

l2

较MoC

l5

具有更低的沸点,可以更好地和氯化铁分离,另外

MoO

2C

l2

很容易溶入水中。

4、直接热解工艺。该工艺利用含硫化钼纯度很高的细微颗粒钼精矿加填充

剂造成小球,将小球放在高温真空条件下充分反应,分解硫化钼,并抽出硫等挥发性物质,在高温和真空条件下通入氢气流继续热处理,提纯多孔隙的金属钼并提取残留硫,此后得到的热处理过的小球含有不少于90%的金属钼。真空冶金对环境无污染或极少污染,流程短,金属回收率高,占地少,消耗少,效益好,能完成一些常压冶金解决不了的问题。

三、湿法

20世纪70年代末80年代初,钼的全湿法氧化浸出工艺研制成功,并在工业生产中得到日益广泛的应用,目前已研制出的有硝酸氧化工艺、强酸性(或强碱性)介质中氧压煮工艺、电氧化工艺及其他强氧化剂氧化工艺。辉钼矿的湿法工艺是在矿浆状态下将MoS

2

氧化浸出,过程不会产生任何烟气,且有利于综合

回收多种有价元素,对当前愈来愈迫切的低品位复杂矿石的冶炼具有较强的优势。使钼的浸出率和最终回收率大为提高,且相对能改善车间生产劳动条件,实现连续生产和浸出过程的自动化。

(一)酸性碱性条件下氧化

无论是酸性条件还是碱性条件下的氧压法都是在高压釜内使MoS

2

氧化为可溶性钼酸盐。

氧压煮法和硝酸氧化法主要消耗廉价的氧化剂——空气或纯氧,但过程需要高温高压,对反应设备要求很高,反应条件苛刻,生产技术难度较大,浸出过程中的工艺条件也较难控制,且生产中存在一定的安全隐患,一般较难应用于中小型生产厂家,目前国内已有厂家停用该法。

考虑到软锰矿(MnO

2

)为强氧化剂,而工业生产中为从软锰矿制取硫酸锰需还

原焙烧后再浸出,若将它作为氧化剂处理MoS

2,则在MoS

2

本身被氧化的同时,

MnO

2将直接转化成MnSO

4

,取得一箭双雕的效果。

(二)次氯酸钠法

在处理低品位钼矿物原料时,次氯酸钠是一个很有效的氧化浸出剂。在氧化

浸出过程中,次氯酸钠本身也会缓慢分解析出氧,其他的一些金属硫化物也会被次氯酸钠氧化,这些金属的离子或氢氧化物又会与钼酸根生成钼酸盐沉淀,使进入溶液的钼又返回到渣中。控制适当的进出条件,可以减少其他金属硫化物的氧化浸出。反应式如下:

MoS

2+9OCl-+ 6OH-→MoO

4

2-+9Cl-+2SO

4

2-+3H

2

O

次氯酸钠法尽管反应条件温和,生产易控制,对设备要求不高,设备投资成本低,但原料次氯酸钠消耗量大而造成生产成本过高,该法常用于低品位中矿、尾矿的浸出,其改进工艺———氯碱法虽可适当降低药剂成本,但存在氯源供给限制及氯污染问题。

(三)电氧化法

电氧化法处理辉钼矿是由次氯酸钠法改进而来,即在电解槽中集NaOCl的生成和辉钼矿的氧化为一体。将已经浆化的辉钼矿物料加入到装有氯化钠溶液的电解槽中,在电氧化过程中,电解槽两极电化学过程如下:

阳极电化学反应: 2Cl-→Cl

2

+2e

阴极电化学反应: 2H

2O+2e→2OH-+H

2

阳极产物Cl

2

又与水反应,生成次氯酸根OCl-。OCl-再氧化矿物中的硫化钼,

使钼以钼酸根形态进入溶液中。

电化学方法可提供极强的氧化、还原能力,并能通过改变电化学因素,如电流密度、电极电位、电催化活性及选择性等,较为方便地控制、调节反应的方向、限度、速率。它继承了次氯酸钠法浸出率高、反应条件温和、无污染的特点。

为提高电氧化法的电流效率、降低能耗,过程中引入超声波强化浸出。超声

场可显著减少电极表面的覆盖物,提高电解电流,促进MoS

2

氧化分解。同时在

强酸介质中,媒介Mn3+/Mn2+氧化能力很强,能将MoS

2氧化分解为MoO

3

和硫酸,且

锰离子可以循环利用。符剑刚采用Mn3+/Mn2+间接电氧化法湿法分解辉钼矿,钼的浸出率为88.5%。以上方法提高了经济效益、降低了能耗,同时反应设备易解决、投资小,条件易控制,操作简单。但目前仍处于试验阶段,没有能够实现工业化。

四、结语

就目前而言钼工业多采用焙烧工艺,但焙烧能力仍然处于短缺状态,焙烧能力的不足使氧化钼和钼铁供不应求,焙烧能力的瓶颈会使氧化钼和钼铁价格高居不下。传统的焙烧-氨浸工艺主要朝以下三个趋势发展:⑴焙烧阶段通过添加固硫剂或增加烟气处理工序(柠檬酸吸收法、双碱法等)来减少SO

2

烟气污染,另外通过提高焙烧过程中的自动化程度,来降低能耗,提高焙砂的质量。⑵由于矿的

品位日趋贫、杂,在焙砂浸出前通过增加HCl+NH

4Cl或HNO

3

+NH

4

NO

3

溶液浸取的预

处理工序,来降低杂质含量,提高金属回收率及质量,降低处理成本方向。⑶将焙烧工艺与离子交换法、溶剂萃取法相结合,来降低劳动强度与生产成本,实现自动化生产。如最近一些焙烧厂对焙烧作业进行了改进,可生产出“高溶性工业氧化钼”(在氨液中具有高溶解度),深受钼酸铵生产商的关注与青睐,明显提高了氨浸时钼的回收率。

全湿法工艺其浸出成本及设备问题是制约全湿法工艺发展的主要因素,因此目前全湿法工艺发展的趋势是寻找更为优良廉价的氧化剂,减少工艺流程,降低对生产设备的要求及生产成本,并与溶剂萃取法、离子交换法相结合发展计算机控制的智能化现代生产工艺。

https://www.360docs.net/doc/e812180311.html,/view/d837ad1314791711cc79172f.html

https://www.360docs.net/doc/e812180311.html,/view/d7780220af45b307e8719717.html

https://www.360docs.net/doc/e812180311.html,/view/ebe79bbef121dd36a32d82c1.html

钼矿选矿尾矿水处理

书山有路勤为径,学海无涯苦作舟 钼矿选矿尾矿水处理 优于一般粘土,有利于提高质量。近年耕地保护力度越来越强,无偿取土早已不再,买土难且价格远超过利用尾矿,所以在锦西、河北太行山区都有所见。遗憾的是尾矿中残留的钼白白浪费,委实令人痛惜。 郭献军开展利用钼矿渣制各道路水泥熟料的试验研究,结果表明,以钙铁榴石为主要组成矿物的钼矿渣可以用作水泥原料。钼矿渣中残存的磁黄铁矿与硅灰石在水泥熟料煅烧过程中具有助熔作用,有利于熟料的烧成。用自燃煤矸石为铝质校正原料,既能增加生料中的氧化铝,又能带进一些具有活性的氧化硅和氧化铝,有利于改善生料的易烧性。 有些尾矿材质直接或精选后可以用来制造砖瓦以及附加值更高的瓷砖等建筑陶瓷产品,有些矿山已做过相应的考察和试验,据了解,多因为交通问题而否决。过高的运输成本使得产品很难在建材业内竞争。如果尾矿中能够选出质量较高的陶土、瓷土,倒不如选出来,向陶瓷厂供应原料土。 5 钼尾矿农用实例 钼尾矿农用。已经有了一些成功的探索,包括一定规模的工业试生产和田间肥效试验、示范和应用。以钼尾矿为主要原料制造矿质肥料。2007 年沈宏集团涞源矿业公司以大湾钼尾矿为主要原料,完成1000 吨级矿质肥料(多元硅肥)的工业试验。产品以钙、镁、硅为主,同时含钾及铁、铜、锌、钼等微量元素,在黑龙江省获得多元硅肥肥料登记。在黑、吉、辽、冀、豫的水稻、玉米、冬小麦、果树、大棚蔬菜、大豆、花生多种作物表现增产、抗逆、抗病虫、提高品质的功效。2008 年通过环境科学学会技术鉴定,并由中国科学技术协会发布为2009 年全国推广的新技术。 钼尾矿制造土壤调理剂。2010 年广东万方集团以白石嶂钼尾矿为主要原料完

选矿生产线流程

选矿设备工艺流程 标签:选矿设备选矿工艺流程选矿设备厂家选矿设备价格 在国家经济转型大背景下,选矿行业经济虽不景气,选矿设备价格低廉,但从金矿、铜矿选矿工艺流程,铅锌矿、萤石矿、钼矿选矿工艺,钾长石、锂矿、硅灰石、石英砂选矿工艺在河南选矿设备厂家荥矿机械近年来国内外现场案例中不难看出,市场需求还是相对火热的。 选矿设备工艺流程即选矿设备和选矿工艺,两者在选矿生产线中缺一不可,选矿设备的选型、配置咨询l56-37l⒍l999以及选矿工艺的合理性、高效性直接影响选矿产量、回收率、选矿品位等。 不同矿石性质、伴生矿物、嵌布粒度等不同决定了其选矿工艺流程也不同,同种矿石选矿工艺设计虽也会因为矿石性质不同有所差异,但基本上大同小异。下文荥矿机械工程师将会对金矿、铜矿、铅锌矿、萤石矿、钾长石等比较热门的选矿工艺流程做一下汇总,希望能够为广大新老用户打开方便之门。 1、金矿选矿设备工艺流程: 金矿种类有砂金矿、脉金矿、岩金矿、铂金、氧化金、硫化金等,砂金矿选矿常采用重选或重选-浮选工艺,本文重点讲解金矿选矿工艺中最常用的浮选工艺和碳浆吸附氰化工艺。 金矿浮选工艺流程: 开采金矿由矿车运来卸入料仓,保证金矿选矿生产线持续给料。经振动给料机均匀给料,输送到鄂式破碎机粗碎,破碎工艺可根据选矿工艺采用两段闭路或三段开路,破碎后的矿料由皮带输送机送到多层振动筛进行筛分,筛上矿料重返破碎工艺,筛下矿料储存到粉矿仓,保证下段球磨机24小时磨矿作业。 磨矿工艺阶段由格子球磨机与螺旋分级机组成一段闭路,为了保证浮选粒度,荥矿机械结合三十年来选金工艺经验,磨矿浓度为80-85%,分级机溢流度为35-40%,磨矿细度为60-65%-200目。根据选矿工艺,如需布置二段磨矿,可配置球磨机与旋流器组成闭路磨矿,旋流器溢流浓度为35-37%,磨矿细度为90%-200目。 浮选流程为提高选矿品位,可布置两段浮选。一段浮选采用一次粗选,两次精选,一次扫选,浮选机组配置要大于17槽,避免短路问题;二段浮选采用一次粗选,三次精选,二次扫选,浮选机组配置仍要大于17槽。 浮选精矿经浓缩机、过滤机两段脱水后,再通过回转烘干机烘干便可冶炼。

钼矿选矿工艺

钼矿常规选矿工艺 钼矿的选矿方法主要是浮选法,回收的钼矿物是辉钼矿。有时为了提高钼精矿质量、去除杂质、将钼精矿再进行化学选矿外理。 辉钼矿晶体呈六方层状或板状结构,由沿层间范氏健的S—Mo—S 结构和层内极性共价键S—Mo形成的。层与层间的结合力很弱,而层内的共价键结合力甚强。所以辉钼矿极易沿结构层间解裂呈片状或板状产出,这是辉铜矿天然可浮性良好的原因。实践证明:在合适的磨矿细度下,辉钼矿晶体解离发生在S—Mo—S层间,亲水的S—Mo面占很小比例。但过磨时,S—Mo面的比例增加,可浮性下降,虽然此时加入一定量极性捕收剂如黄药类,有利于辉钼矿的回收,但过磨产生的新矿泥影响浮选效果。因此对辉钼矿的选别要避免和防止过磨,在生产上需要采用分段磨矿和多段选别流程,逐步达到单体解离,确保钼精矿的高回收率。 钼矿的破碎一般都采用三段一闭路流程,破碎最终产品粒度为12~15毫米。 磨矿通常用球磨机或棒磨-球磨流程。亨德森是唯一采用半自磨流程的。浮选采用优先浮选法。粗选产出钼粗精矿,粗扫选尾矿回收伴生矿物或丢弃。钼粗精矿采用两、三段再磨,四,五次精选获得最终钼精矿。 钼矿的浮选药剂以非极性油类作捕收剂,同时添加起泡剂。美国和加拿大用表面活性剂辛太克斯(Syntex)作油类乳化剂。根据矿石性质,用石灰作调整剂,水玻璃作脉石抑制剂,有时加氰化物或硫化物抑制其他重金属矿物。 为保证钼精矿质量,对钼精矿中所含的铜、铅、铁等重金属矿物和氧化钙以及炭质矿物需进一步进行分离: 一般使用硫化钠或硫氢化钠,氰化物或铁氰化物制铜和铁;用重铬酸盐或诺克斯(Nokes)抑制铅。如果使用抑制剂,杂质含量还达不到质量标准,尚需辅以化学选矿处理:次生硫化铜用氰化物浸出;黄铜矿用三氯化铁溶液浸出; 方铅矿用盐酸和三氯化铁溶液浸出,均可达到标准含量。 含氧化钙的脉石易泥化,因此,对于含此类脉石的矿石切忌过磨。生产上往往添加水玻璃,六聚偏磷酸钠或有机胶作脉石抑制剂或分散

选矿实验流程

选矿试验的要求 选矿试验资料是选矿工艺设计的主要依据。选矿试验成果不仅对选矿设计的工艺流程、设备选型、产品方案、技术经济指标等的合理确定有着直接影响,而且也是选矿厂投产后能否顺利达到设计指标和获得经济效益的基础。因此,为设计提供依据的选矿试验,必须由专门的试验研究单位承担。选矿试验报告应按有关规定审查批准后才能作为设计依据。在选矿试验进行之前,选矿工艺设计者应对矿床资源特征、矿石类型和品级、矿石特征和工艺性质、以及可选性试验等资料充分了解,结合开采方案,向试验单位提出试验要求,在“要求”中,一般不必详述试验单位通常都应做到的内容,而应着重提出需要试验单位解决的特殊内容和主要问题。 一、选矿试验类型的划分 选矿试验按研究的目的可分为可选性试验、工艺流程试验和选矿单项技术试验三种,按试验规模可分为试验室试验、半工业试验和工业试验三种。为便于明确选矿试验要求和叙述的方便,概括上述两种分类,将选矿试验类型划分为可选性试验、试验室小型流程试验、试验室扩大连续试验、半工业试验、工业试验和选矿单项技术试验六种。 (1)可选性试验。一般由地质勘探部门完成。在地质普查、初勘和详勘阶段,应循序渐进地提高和加深可选性试验研究深度。可选性试验着重研究和探索各种类型和品级矿石的性质与可选性差别,基本选矿方法与可能达到的选矿指标,有害杂质剔除的难易,伴生成分综合回收的可能性等。试验研究的内容和深度应能判定被勘探的矿床矿石的利用在技术上是否可行、经济上是否合理,能为制订工业指标和矿床评价提供依据。可选性试验是在试验室装置或小型试验设备上进行的,一般只作矿床评价用。 (2)试验室小型流程试验。试验室小型流程试验是在矿床地质勘探完成之后,可行性研究或初步设计之前进行。它着重对矿石矿物特征和选矿工艺特性、选矿方法、工艺流程结构、选矿指标、工艺条件及产品(包括某些中间产品)等进行试验研究和分析,并应进行两个以上方案的试验对比。试验研究的内容和深度。一般应能满足设计工作中初步制订工艺流程和产品方案、选择主要工艺设备及进行设计方案比较的要求。由于试验室小型流程试验规模小、试料少、灵活性大、入力物力花费较少,因此允许在较大范围内进行广泛的探索,又因它的试料容易混匀,分批操作条件易于控制,因此是各项试验的最基本试验。但是,它是在试验室小型非连续(或局部连续)试验设备上进行的,其模拟程度和试验结果的可靠性虽优于可选性试验,但不及试验室扩大连续试验。 (3)试验室扩大连续试验。试验室扩大连续试验是在小型流程试验完成之后,根据小型流程试验确定的流程,用试验室设备模拟工业生产过程的磨矿、选别乃至脱水作业的连续试验。它着重考察流程动态平衡条件下(包括中矿返回)的选矿指标和工艺条件。各试验研究单位连续试验设备的能力很不一致,一般为 40 一 200kg/h。试验室扩大连续试验比小型流程试验的模拟性较好,可靠性较小型流程试验高些。 (4)半工业试验。半工业试验是在专门建立的半工业试验厂或车间进行的,试验可以是全流程的连续,也可以是局部作业的连续或单机的半工业试验。试验的目的主要是验证试验室试验的工艺流程方案,并取得近似于生产的技术经济指标,为选矿厂设计提供可靠的依据或为进一步做工业试验打下基础。半工业试验所用的设备为小型工业设备,试验厂的规模尚无明确的规定,一般为 1~5t/h。 (5)工业试验。工业试验是在专门建立的工业试验厂或利用生产选矿厂的一个系列甚至全厂进行的局部或全流程的试验,由于其设备、流程、技术条件与生产或今后的设计基本相同,故技术经济指标和技术参数比半工业试验更为可靠。

钼矿钼矿选矿工艺钼矿浮选工艺样本

钼矿-钼矿选矿工艺-钼矿浮选工艺 一、钼矿的历史及性质 钼是18世纪后期才发现的, 而且在自然条件下没有金属形态的钼存在。尽管如此, 钼的主要矿物-辉钼矿在古代时就早已得到了应用, 只是辉钼矿和铅、方铅矿及石墨都很相似, 不易区分, "molybdos"这个词在希腊文里就是铅的意思。 曾在14世纪的一把日本武剑中发现含有钼。到1778年, 瑞典科学家卡尔.威廉.谢勒( Carl Wilhelm Scheele) 才证实了钼的存在。她将辉钼矿在空气中进行加热, 从而产生了一种白色的氧化粉末。此后不久, 到1782年, 彼得.雅各布.耶尔姆( Peter Jacob Hjelm) 用碳成功地还原了这种氧化物, 获得一种黑色金属粉末, 她称这种金属粉末为”钼”。 19世纪钼基本上是作为实验品, 后来才逐渐生产。1891年, 法国的斯奈德Schneider)公司率先有钼作为合金元素生产了含钼装甲板, 她们马上发现, 钼的密度仅是钨的一半, 这样以来, 在许多钢铁合金应用领域钼有效地取代了钨。 钼具有较高熔点(2625℃)、沸点(4600℃)、硬度(5.5)和密度(10.2g/cm3), 是电和热的良导体.相对原子量95.94g/g, 在元素周期表中为VI B 族元素, 原子序数42, 原子体积9.42 cm3/mol。 在常温下钼在空气或水中都是稳定的, 但当温度达到400℃时开始发生轻微的氧化, 当达到600℃后则发生剧烈的氧化而生成MoO3 。盐酸、氢氟酸、稀硝酸及碱溶液对钼均不起作用。钼可溶于硝酸、王水或热硫酸溶液中。

二、钼矿的用途 1、钼大量用于合金添加剂、生产不锈钢、工具钢、耐温钢等。 2、钼钢广泛用于金属压力加工行业、冶金行业、建材行业、机械行业、宇航军及工业、核工业、化工纺织工业和农业。 3、钼还可作为化工原料, 生产催化剂、润滑剂、颜料和肥料等。 4、在冶金工业中, 钼作为生产各种合金钢的添加剂, 或与钨、镍、钴, 锆、钛、钒、铼等组成高级合金, 以提高其高温强度、耐磨性和抗腐性。金属钼大量用作高温电炉的发热材料和结构材料、真空管的大型电极和栅极、半导体及电光源材料。在化学工业中, 钼主要用于润滑剂、催化剂和颜料。 三、钼资源及分布 自然界中已知的钼矿物及含钼矿物约有30种, 其中具有工业价值的是辉钼矿MoS2 , 其它较常见的还有钼华、钼铅矿、蓝钼矿、铁钼矿等。 钼在地壳中的平含量为1.1×10-4%, 属稀有金属。集中分布在美国、加拿

钨矿选矿废水利用

世上无难事,只要肯攀登 钨矿选矿废水利用 钨废水主要分为洗矿废水、破碎系统废水、选矿废水和冲洗废水,并具有以下特点:①水量大,约占整个矿山采选废水量的34%~79%,浮选用水量1t 原矿石废水排放为原矿石的3.5~4.5 倍,浮选-磁选法1t 原矿石,废水排放量为原矿石的5~10 倍;②废水的悬浮物主要是泥沙和尾矿粉,由于粒度极细,呈细分散的近胶态不易自然沉降,另外尾砂粉中含有重金属元素,在酸、碱和其他生化作用下,重金属元素易溶出,造成重金属元素污染;③选矿作业中加入大量的浮选药剂,这些药剂残留在选矿厂排出的废弃液中,部分金属离子、固体悬浮物、有机和无机药剂的分解物质等也残存在选矿废弃液中,直接排放会对流域内的土地、水体产生严重污染,对生态造成压力。因此,有效地处理选矿废水是各个矿山长期以来亟待解决的重大问题,也是选矿工艺过程中必须考虑解决的技术难题。实行选矿废水循环使用是解决该难题的重要技术措施,也是实现选矿废水资源化综合利用的重要前提。钨选矿过程中加入大量水玻璃和捕收剂,且选矿废水细粒含量多、沉降缓慢,选矿废水的直接回用将严重影响选矿指标。特别是将尾矿水直接回用到磨矿和硫化矿浮选,将对硫化矿浮选和后续钨的回收产生较大影响。生产上多采用回水分质分流回用,即回水返回到相应的作业,即硫化矿尾矿水返回磨矿和硫化矿浮选,氧化矿浮选尾矿水返回到氧化矿浮选系统;或者将总尾矿水只返回氧化矿浮选系统,在甘肃小柳沟选厂实现了选矿厂回水100%的利用。 针对选钨废水的絮凝剂和沉降技术,近年来也进行了大量的研究。 某白钨矿选矿水中含有大量的固体悬浮物,水样浑浊,COD、Cr 值较高,含有大量有机物以及还原性无机物,且含有少量的Al、As、Cu、Fe、Mn 等重金属离子。孙伟等[106]采用磁化絮凝技术大幅缩短了絮凝沉降所需的时间,且

白钨矿黑钨矿的浮选药剂方案精选.

白钨矿、黑钨矿的浮选药剂方案实例 钨的矿物可分为白钨矿和黑钨矿两大类。一般来说白钨矿要比黑钨矿易浮得多。 A 白钨矿浮选 (1)白钨矿的浮选方法。白钨矿的分子式为CaWO4,由于分子式中含有钙,对脂肪酸类容易发生化学吸附和化学反应。常用的捕收剂为植物油酸和731氧化石蜡皂。植物油油酸中山苍子油酸有优良的选择性和捕收性。731氧化石蜡皂有较好的选择性,但是捕收力较差。近年来生产的白钨矿新药剂中南选钨剂ZN633具有耐低温、选择性和捕收性能好的特点,大大提供品位和回收率。 白钨矿由于常和各种钙镁的磷酸盐、硫酸盐、碳酸盐、氟化物共生,它们的可浮性相似,往往难以选出合格精矿。为了加强过程的选择性,可以使用下列方法: 1)用硫化钠、氰化物、铬酸盐等抑制其伴生硫化矿物(硫化矿物多时,必须先单独浮选);用水玻璃、单宁、多聚偏磷酸钠、铬酸盐等抑制其脉石矿物:用水玻璃或碳酸钠将矿浆的PH值调至9.5~10,精选时可为11~12。 2)“石灰—浮选”法。其要点是:用石灰(约0.5kg/t)调浆,再加入碳酸钠(约0.15kg/t)和水玻璃(约2.2kg/t),最后用油酸和环烷酸(二者之比为1:1)捕收。该法的特点是使矿浆中的Ca2+先吸附在脉石矿物的表面,当加入碳酸钠以后,吸附在脉石表面的Ca2+就变成较易被抑制的CaCO3薄膜。因而能大大地提高精矿品位。 3)采用大量水玻璃加温精选法(即彼得罗夫法)。即将低品位的粗精矿,加入40~90kg/t的水玻璃,升温到60~90℃煮一段时间,搅拌,脱水(实质上脱去了脉石表面过量的药剂),然后调浆,再精选4~8次,即可得到品位较高的精矿。如果精矿中还含有较多的重晶石,可用烷基硫酸盐或磺酸盐在PH值等于1.5~3以下反浮选重晶石,当精矿含磷不合格时,可以用盐酸浸出精选精矿,以溶解其中的磷酸盐矿物,固液分离和洗涤以后,白钨精矿中的含磷量,即可合格。 在白钨矿床中,往往也有一些共生矿物(如锡、钼等),这些共生矿物在重选过程中都会进入到白钨精矿,影响精矿的质量,因此,在白钨矿浮选时,也有钨锡和钨钼分离的问题。白钨矿与锡石的分离,可以用电选也可以用浮选。浮选分离时,用脂肪酸捕收白钨矿,用水玻璃抑制锡石。当白钨矿含有铝时,由于钼的可浮性好,因此可先浮钼矿,然后再浮白钨矿。 (2)白钨矿浮选实例。某钨矿原矿中主要金属矿物有自然金、辉锑矿、白钨矿、含金黄铁矿,其次是黄铁矿、黑钨矿、闪锌矿等。主要脉石矿物有石英,其次有方解石、磷灰石、叶蜡石等。白钨矿一般呈粗粒状和不规则块状产于石英脉中,有时也呈薄层状及片状赋存于辉锑矿中,还有少量呈细线状产于围岩中。 该厂用重-浮联合流程,重选与浮选均产白钨精矿。重选所产白钨精矿质量较高,接近特级品,浮选所得白钨精矿质量稍低,常与重选产品混合出厂。浮选作业的给矿为重选(摇床)尾矿。浮选原则流程如图1所示。

钼矿石选矿

钼矿石选矿 创建时间:2008-08-02 钼矿石选矿(processing of molybdenum ores) 从含钼矿石中分离与富集钼矿物的过程。选矿产品为钼精矿,用以冶炼生产钼合金钢、钼基合金及钼化工产品。 矿物与资源自然界钼矿物有30余种,有工业意义的钼矿物主要是辉钼矿,其次为钼钨钙矿、彩钼铅矿、铁钼华等(见表)。钼矿石工业类型有单一钼矿石、铜钼矿石、钨钼矿石、铀钼矿石、含钼多金属矿石等。中国钼矿资源丰富,储量居世界前列。钼矿山分布面很广,多集中于陕西、河南、吉林、辽宁四省;主要钼矿山有陕西金堆城钼矿,辽宁杨家杖子钼矿与河南滦川钼矿。中国钼矿特点是品位较低,共生矿多,储量大,主要为地下开采。此外,世界上的钼矿主要集中于南北美洲科迪勒拉山系。重要产钼国家有美国、加拿大、智利、秘鲁、墨西哥以及俄罗斯、亚美尼亚等。 工艺流程根据钼矿物硬度小,嵌布粒度细,但可浮性好的特点,钼矿石选矿多采用分段浮选,多次精选的工艺流程。钼矿石的选矿流程分为单一钼矿石选矿与含钼多金属共生矿石选矿两类流程。 单一钼矿石选矿采用一段闭路磨矿粗选,粗选尾矿经过2~3次扫选排出最终尾矿,粗选精矿再磨后多次精选(4~12次)得钼精矿。 含钼多金属共生矿石选矿根据伴生矿物的可选性差异而采用不同的选矿工艺流程。铜钼共生矿石多采用铜一钼混合浮选,丢弃大量尾矿,混合精矿再磨后进行铜钼分离的工艺流程;钼钨共生矿石,伴生白钨矿采用优先浮选,伴生黑钨矿用浮选重选联合流程;钼铀共生矿一般采用浮选一水冶联合工艺流程。浮选是回收辉钼矿,分离钼矿物与伴生金属矿物的有效方法。浮选以烃类油(煤油、变压器油等)作捕收剂,松油、二甲酚、高级脂肪醇作起泡剂。伴生硫化矿的抑制剂有氰化钠、硫化钠、诺克斯(Nokes)等。当矿石含Mo0.09%~0.3%时,选出的钼精矿钼品位为47%~55%,回收率80%~90%。典型选矿厂金堆城钼业公司第三选矿厂位于中国陕西省华县。1984年投产,生产规模1.5万t/d,为中国最大的钼矿选厂。矿石中主要金属矿物为辉钼矿,其次为磁铁矿、黄铜矿,以及方铅矿、闪锌矿、辉铋矿和锡石等。脉石矿物主要为石英、长石,其次有萤石、白云母、黑云母、绢云石、方解石等。选矿工艺流程由破碎、粗选与精选三部分组成;破碎为三段一闭路;粗选为一次粗选、二次精选、二次扫选;精选为一段再磨,九次精选。原矿钼品位0.118%,精矿钼品位46.87%,回收率80.66%。 小寺沟铜钼矿选矿厂位于中国河北省平泉县。1971年建成,经几次扩建与改建,1991年生产规模达3000t/d。小寺沟矿石属细脉浸染斑岩铜钼矿,主要金244属矿物为辉钼矿、黄铁矿、黄铜矿,其次为闪锌矿、辉铜矿、斑铜矿、方铅矿。脉石矿物主要为石英、长石,其次为绢云母、白云母、绿泥石等。选矿工艺流程由三段一闭路碎矿,铜钼混合浮选,铜钼分离浮选工艺构成。产品有钼精矿与铜精矿。1987年指标:原矿含Mo0.064%,含CuO.129%;镅精矿含Mo46.67%,回收率74.96%;铜精矿含Cul6.15%,回收率50.91%。 相关词条: 钼矿石选矿原矿和产品的运输

钼矿的选矿工艺与药剂

书山有路勤为径,学海无涯苦作舟 钼矿的选矿工艺与药剂 钼矿的选矿方法主要是浮选法,回收的钼矿物是辉钼矿。有时为了提高钼精矿质量、去除杂质、将钼精矿再进行化学选矿外理。钼矿的选矿:辉钼矿晶体呈六方层状或板状结构,由沿层间范氏健的SMoS 结构和层内极性共价键SMo 形成的。层与层间的结合力很弱,而层内的共价键结合力甚强。所以辉钼矿极易沿结构层间解裂呈片状或板状产出,这是辉铜矿天然可浮性良好的原因。实践证明:在合适的磨矿细度下,辉钼矿晶体解离发生在SMoS 层间,亲水的SMo 面占很小比例。但过磨时,SMo 面的比例增加,可浮性下降,虽然此时加入一定量极性捕收剂如黄药类,有利于辉钼矿的回收,但过磨产生的新矿泥影响浮选效果。因此对辉钼矿的选别要避免和防止过磨,在生产上需要采用分段磨矿和多段选别流程,逐步达到单体解离,确保钼精矿的高回收率。 钼矿的选矿:钼矿的破碎一般都采用三段一闭路流程,破碎最终产品粒度为12~15 毫米。 磨矿通常用球磨机或棒磨-球磨流程。亨德森是唯一采用半自磨流程的。浮选采用优先浮选法。粗选产出钼粗精矿,粗扫选尾矿回收伴生矿物或丢弃。钼粗精矿采用两、三段再磨,四,五次精选获得最终钼精矿。 钼矿的浮选药剂以非极性油类作捕收剂,同时添加起泡剂。美国和加拿大用表面活性剂辛太克斯(Syntex)作油类乳化剂。根据矿石性质,用石灰作调整剂,水玻璃作脉石抑制剂,有时加氰化物或硫化物抑制其他重金属矿物。 为保证钼精矿质量,对钼精矿中所含的铜、铅、铁等重金属矿物和氧化钙以及炭质矿物需进一步进行分离: 钼矿的选矿药剂:一般使用硫化钠或硫氢化钠,氰化物或铁氰化物制铜和铁; 用重铬酸盐或诺克斯(Nokes)抑制铅。如果使用抑制剂,杂质含量还达不到质量

钼矿有哪些选矿方法

书山有路勤为径,学海无涯苦作舟 钼矿有哪些选矿方法 钼矿的选矿方法主要是浮选法,回收的钼矿物是辉钼矿。有时为了提高钼精矿质量、去除杂质、将钼精矿再进行化学选矿外理。辉钼矿晶体呈六方层状或板状结构,由沿层间范氏健的SMoS 结构和层内极性共价键SMo 形成的。层与层间的结合力很弱,而层内的共价键结合力甚强。所以辉钼矿极易沿结构层间解裂呈片状或板状产出,这是辉铜矿天然可浮性良好的原因。实践证明:在合适的磨矿细度下,辉钼矿晶体解离发生在SMoS 层间,亲水的SMo 面占很小比例。但过磨时,SMo 面的比例增加,可浮性下降,虽然此时加入一定量极性捕收剂如黄药类,有利于辉钼矿的回收,但过磨产生的新矿泥影响浮选效果。因此对辉钼矿的选别要避免和防止过磨,在生产上需要采用分段磨矿和多段选别流程,逐步达到单体解离,确保钼精矿的高回收率。钼矿的破碎一般都采用三段一闭路流程,破碎最终产品粒度为12~15 毫米。 磨矿通常用球磨机或棒磨-球磨流程。亨德森是唯一采用半自磨流程的。浮选采用优先浮选法。粗选产出钼粗精矿,粗扫选尾矿回收伴生矿物或丢弃。钼粗精矿采用两、三段再磨,四,五次精选获得最终钼精矿。 钼矿的浮选药剂以非极性油类作捕收剂,同时添加起泡剂。美国和加拿大用表面活性剂辛太克斯(Syntex)作油类乳化剂。根据矿石性质,用石灰作调整剂,水玻璃作脉石抑制剂,有时加氰化物或硫化物抑制其他重金属矿物。 为保证钼精矿质量,对钼精矿中所含的铜、铅、铁等重金属矿物和氧化钙以及炭质矿物需进一步进行分离:一般使用硫化钠或硫氢化钠,氰化物或铁氰化物制铜和铁;用重铬酸盐或诺克斯(Nokes)抑制铅。如果使用抑制剂,杂质含量还达不到质量标准,尚需辅以化学选矿处理:次生硫化铜用氰化物浸出;黄铜矿用三氯化铁溶液浸出;方铅矿用盐酸和三氯化铁溶液浸出,均可达到标准含量。

钼矿选矿基本常识了解

书山有路勤为径,学海无涯苦作舟 钼矿选矿基本常识了解 钼矿的选矿方法主要是浮选法,回收的钼矿物是辉钼矿。有时为了提高钼精矿质量、去除杂质、将钼精矿再进行化学选矿外理。辉钼矿晶体呈六方层状或板状结构,由沿层间范氏健的SMoS 结构和层内极性共价键SMo 形成的。层与层间的结合力很弱,而层内的共价键结合力甚强。所以辉钼矿极易沿结构层间解裂呈片状或板状产出,这是辉铜矿天然可浮性良好的原因。实践证明:在合适的磨矿细度下,辉钼矿晶体解离发生在SMoS 层间,亲水的SMo 面占很小比例。但过磨时,SMo 面的比例增加,可浮性下降,虽然此时加入一定量极性捕收剂如黄药类,有利于辉钼矿的回收,但过磨产生的新矿泥影响浮选效果。因此对辉钼矿的选别要避免和防止过磨,在生产上需要采用分段磨矿和多段选别流程,逐步达到单体解离,确保钼精矿的高回收率。钼矿的破碎一般都采用三段一闭路流程,破碎最终产品粒度为12~15 毫米。磨矿通常用球磨机或棒磨-球磨流程。亨德森是唯一采用半自磨流程的。浮选采用优先浮选法。粗选产出钼粗精矿,粗扫选尾矿回收伴生矿物或丢弃。钼粗精矿采用两、三段再磨,四,五次精选获得最终钼精矿。钼矿的浮选药剂以非极性油类作捕收剂,同时添加起泡剂。美国和加拿大用表面活性剂辛太克斯(Syntex)作油类乳化剂。根据矿石性质,用石灰作调整剂,水玻璃作脉石抑制剂,有时加氰化物或硫化物抑制其他重金属矿物。为保证钼精矿质量,对钼精矿中所含的铜、铅、铁等重金属矿物和氧化钙以及炭质矿物需进一步进行分离:一般使用硫化钠或硫氢化钠,氰化物或铁氰化物制铜和铁;用重铬酸盐或诺克斯(Nokes)抑制铅。如果使用抑制剂,杂质含量还达不到质量标准,尚需辅以化学选矿处理:次生硫化铜用氰化物浸出;黄铜矿用三氯化铁溶液浸出; 方铅矿用盐酸和三氯化铁溶液浸出,均可达到标准含量。含氧化钙的脉石易泥

选矿工艺流程

工艺流程试验是为选矿厂设计(或现有选矿厂的技术改造)提供依据,在选矿厂初步设计(或拟定现场技术改造方案)前进行。一般选进行试验室试验,然后在试验室试验的基础上,根据情况决定是否进行半工业或工业试验。 选矿工艺流程试试验内容和必要的资料收集,一般由试验研究单位负责制订,有条件的可由试验、设计和生产部门三结合洽商确定。 一、收集资料的一般内容如下,但具体工程需根据条件的不同,区别对待 (一)了解上级机关下达任务的目地和委托单位提出的要求,例如:选矿厂规模、服务年限;主要有用成分和伴生成综合利用问题;试验阶段的划分;要求试验完成日期;选矿厂处理单一矿床的矿石还是几个矿床、不同类型的矿石;用户对精矿化学成分的特殊要求以及对精矿等级和粒度的要求;建厂地区的水源,选矿药剂,焙烧用燃料等的供应情况和性能分析资料等。 (二)了解有关地质资料,例如:矿床类型;地质储量;矿体产状;矿石类型;品位特征;嵌布特性;围岩脉石等变化情况;远景评价;采样设计等。 (三)了解采矿设计方面的资料,例如:采矿的开拓方案和采矿方法;不同类型矿石的混采、分采;围岩混入率和矿石采出品位;开采设计矿区的矿石类型配比和平均品位;开采设计5-10年内逐年开采的矿石类型配比和平均品位等。 (四)了解选矿方面资料,例如:选矿设计对试验的特殊要求。国内外类似矿石的试验研究和生产实践情况,可能应用的选进技术等。 二、选矿工艺流程试验主要内容有 (一)矿石性质研究 是选择选矿方案和确定选厂设计方案时与类似矿石生产实践作对比分析的依据,其中某些数据是选厂具体设计中必不可少的原始数据。 矿石性质研究包括:光谱定性和半定量,化学全分析,岩矿鉴定,物相分析,粒度分析,磁性分析,重液分析,试金分析,磨矿细度,矿石可磨度,及各种物理性能(比重、比磁化系数、导电率、水分、真比重和假比重、堆积角和摩擦角、硬度、粘度等)。 (二)选矿方法、流程结构,选矿指标和工艺条件 直接关系到选矿厂的设计方案和具体组成,是选厂设计的主要原始资料,必须慎重考虑,要求选矿方法、流程结构合理,选矿指标可靠。

钼矿选矿工艺研究进展-2011

钼矿选矿工艺研究进展 2011-8-4 9:54:56 [导读]叙述了几种钼选矿新工艺,其中包括:矿石经磨碎后,先无捕收剂浮选,得出无捕收剂污染的含碳很低的润滑剂二硫化钼;采用正浮选-反浮选-正浮选工艺分离铜钼精矿,得出高品位、高回收率的钼精矿;用BinghamCanyon选冶联合工艺处理难选的铜钼低品位精矿和采用氧压氧化高铜钼精矿生产低铜钼精矿和电解铜。 一、前言 现代选矿工程正朝着提高资源利用率,扩大可利用资源量和循环再利用资源的方向发展。例如选矿-拜尔法选冶新技术使我国第一大有色金属铝资源的可利用年限从不足10年延长到40年,铜的硫化矿生物冶金新技术可降低可利用铜矿石的品位约20%~40%,可使我国铜矿的可利用资源量增长2倍多。浮选-钼蓝法可有效地利用储量巨大的氧化钼矿,低品位钼精矿-氧压氧化法可使某些难选高氧化率钼矿的可利用率提高15个百分点??。 近年来,传统的选矿工艺面临着挑战,许多研究单位和高等学校通过多年的研究推出许多资源利用高的新奇的选钼工艺和选冶联合工艺。这些工艺的破茧而出十分引人瞩目。 这些新工艺与传统的粗磨粗选,再磨精选,铜钼矿石混合浮选以及简单的铜钼分离比较,显得研究者的匠心独特、细腻,富有创新精神,下面介绍几种,不到之处在所难免。 二、无捕收剂浮选-浮选工艺流程 Amax公司的Deepak.Malhotra等[1~3]研制一种先无捕收剂浮选辉钼矿、粗选尾矿再用强力捕收剂浮选辉钼矿新工艺。 将含Mo0.18%、FeS22.2%、Cu0.007%、Pb0.003%、Zn0.012%的钼矿石,在球磨机中磨至P80=100μm,不加任何辉钼矿的捕收剂,如蒸汽油、柴油和煤油等,只加起泡剂MIBC甲基 异丁基甲醇,经粗选后,得到含Mo约11%的粗精矿,粗选粗精矿钼回收率76.8%,粗精矿经3段砾磨再磨和5次精选,5次精选时,共加水玻璃140g/t,精选尾矿含Mo0.4%,废弃。5次精选精矿含MoS297.5%~98%,和少量含铁硫化物杂质,该最终精矿为润滑剂级二硫化钼,经气流磨磨至0.5~1μm为产品。 这种无捕收剂浮选产出的润滑剂级二硫化钼较用柴油或蒸汽油选出的钼精矿经盐酸—氟氢酸浸出后,再用碱洗后产出的润滑剂级二硫化钼(米特森公司产)含C量要低得多,通常不大于0.7%,其他杂质如Fe、MoO3、油等也比较低。众所周知,目前国内外用煤油浮选出的钼精矿作生产润滑剂级二硫化钼前驱体时,钼精矿含油一般在2%~4%,这种碳氢油在制备润滑剂二硫化钼过程中可转为碳。未转

我国钨产业及选矿工艺发展

我国钨产业及选矿工艺发展导读:近些年来,我国钨产业高速发展,钨及钨产品在国民经济各领域得到广泛应用。已成为现代社会不可或缺的支柱产业。钨是我国为数不多的的优势资源之一,然而现阶段让人堪忧。本文介绍了我国钨资源及钨产业现状,钨及钨产品发展趋势,提出了钨产业应展观点,建立科学合理的运行机制,优化产业结构,开发新产品及应用领域的发拓 钨被称为“工业味精”,是一种十分重要的稀有矿产资源。钨及钨制品具有高熔点,高密度,高硬度特点,应用广泛。自19世纪末,钨第1次被用以生产台金钢和硬化钢以来,其产品由初级到深加工品,种类已达为多种,包括钻头、切削刀具、合金、化学用品、医药、食品到电子器件、穿甲弹等。钨已是现代工业社会不可替代的材料之一。钨产业的健康发展直接影响制造业的发展和国家习家经济.、军事安全。目前,世界上很多国家非常重视钨的勘探和开麦,将钨作为战略性资源加以储备,而我国现状令人堪忧。 一、我国钨资源现状 钨属于稀有元素,在地壳中的丰度为 1.1X10-4%主要矿物为黑钨矿和白钨矿,世界已探明钨储量为290万t,储量基础620万t,中国钨储量180万t, 储量基础620万t

二、我国钨产业概况 钨产业根据钨产品划分为几个垂直关联的阶段如图一所示 三、新中国成立后的发展 中国钨业已有百年发展历史,大致分为3个阶段,如图二 前30年形成了比较完整的钨工业体系;1981-2000年,钨冶金、加工及硬质合金业发展迅速,产品结构发生很大变化,改变了单一钨精矿出口局面;21世纪后,钨业发展进入了全新时期。钨产业的快速发展显露出了越来越多的问题 1)钨矿产资源开采过度; 2)国内外钨品市场价格波动较大; 3)钨产业链中,上、中、下游产业发展不均衡; 4)整个产业分布广、规模小、集中度低; 5)产品单一,高、尖、深、细产品不多, 6)企业自主创新能力低,创新意识不强。这些问题的存在己严重影响我国钨产业的 健康、有序发展,威胁到我国制造业的发展和生产安 四、产品开发 (一)合金钢 很大一部分钨用于生产特种台金钢,其中最主要的是高速切削钢。这种钢一般w 质量分数达8%。高速切削钢可用于制造谷种工,如磨刀、铣刀、型模、压模、气动工具零件等。其他牌号铬钨钢亦有广泛应用。 钨也是磁钢的王要成分。磁钢分为钨钢和钨钻磁钢2种。 (二〕以碳化化钨为基础的硬质合金 硬质台金被誉为“工业的牙齿”,碳化钨是制备硬质台金的主要原料。纳米晶硬质合金是近年发展起来的新型工具材料,它是以纳米级的WC 粉末为基础原料,在添加适当黏结剂和晶拉长大抑制剂下,生产出且有高硬度、高耐磨性和高韧磨性的硬质台金材料。 碳化钨是一种具有高硬度、高热稳定

百花岭钼矿选矿厂

书山有路勤为径,学海无涯苦作舟 百花岭钼矿选矿厂 百花岭选矿厂是金堆城钼业集团有限公司下属的两个选矿厂之一,座落于汶浴河畔,依山傍水,气势雄伟,担负着钼业公司三分之二以上的初级产品生产任务,是亚洲第一、世界第四大钼选矿厂。 该厂于1983 年11 月建成投产,供矿采用电机车运输。目前,选矿厂规模达到年处理矿石720 万吨,品位52%以上,硫精矿24 万吨/年,尾矿经过五级泵站扬送至距选厂8 公里的栗西尾矿库,尾矿库面积10 平方公里,库容量1.65 亿立方米。厂区占地面积18.6 万平方米,主要生产厂房建筑面积6.5 万平方米,下设碎矿车间、磨浮车间、选硫车间、成品车间、尾矿车间、机电车间、选铁车间及十五个科室,产品有钼精矿、硫精矿和铁精矿。百花岭选矿厂现有技术干部111 人,占干部总数的86.7%;有高级工程师4 人。工人队伍中有技师10 人,高级工40 人。管理干部基本上实现了年轻化、专业化。职工整体素质不断提高,形成了一支敢打硬仗,知难而进的干部职工队伍和一批技术精湛、素质过硬的工程技术人员队伍。 百花岭选矿厂采用三段一闭路的破碎工艺,矿石粒度15mm 占88%以上;磨矿浮选工艺采用分段磨矿--阶段选别,优先选钼,粗尾选硫,硫尾选铁,精尾选铜,有用矿物得了综合回收;钼精矿经过浓缩、过滤、干燥三段脱水,得到了品位52%、含水小于8%的钼精矿,尾矿被扬送至尾矿库进行沉积堆存处理。由于工艺不断优化,管理水平不断提高,2001 年,处理矿量达到了731.5 万吨,超能力47.78%;生产钼精矿标准量21492 吨,全员生产率比建厂初期提高了7.4 倍,钼精矿品位52.75%,产品质量达到了世界先进水平。 工艺路线长,重型设备多,设备种类多是百花岭选矿厂设备的主要特点。截 止目前,全厂拥有A 类设备38 台套,各类设备台数达到1540 台套,其中机械

钼矿选矿工艺方法探讨

钼矿选矿工艺方法探讨 摘要: 钼是发现得比较晚的一种金属元素,是一种很重要的资源,由于金属钼具有高强度、高熔点、耐腐蚀、耐磨研等优点,因此在工业上得到了广泛的利用,针对此特点文章对钼矿的选矿工艺方法进行了探讨分析。 关键词:辉钼矿;选矿工艺;浮选;铜钼分离; abstract: molybdenum is a metallic element found quite late, it is a very important resource, molybdenum has a high strength, high melting point and corrosion resistance and wear research in a wide range of industrial use this is a feature article on method of molybdenum ore beneficiation process analysis.key words: molybdenite; beneficiation process; flotation; copper-molybdenum separation 中图分类号:f407.1文献标识码: a 文章编号: 钼是发现得比较晚的一种金属元素,是一种很重要的资源,由于金属钼具有高强度、高熔点、耐腐蚀、耐磨研等优点,因此在工业上得到了广泛的利用,在我国钼是我国六大优势矿产资源之一,资源储量比较丰富。钼矿产量来源主要有3个:(1)原钼矿山的原生钼;(2)铜矿的共生和副产钼;从废弃的含钼催化剂等中回收的钼;其中第一类和第二类钼来源占绝大多数,而相对于原生钼来说,共生钼的生产成本较低。

柿竹园复杂钨多金属矿选矿工艺的进展

柿竹园复杂钨多金属矿选矿工艺的进展

主要内容 简介 1 矿石性质 2 钨多金属矿选矿工艺流程历史沿革3 存在的问题 4

? 湖南柿竹园有色金属有限责任公司是湖南有色金属控股集团的核心企业,是集采、选、冶于一体的大型矿山企业。公司目前 现已形成采掘能力现已形成采掘能力300300300万吨万吨万吨//年,选矿处理能力年,选矿处理能力150150150万吨万吨万吨/ /年,冶炼能力能力320032003200吨 吨/年的生产规模。主要产品有钨、钼、铋、萤石等精矿和高纯铋、氧化钼等冶炼产品。矿和高纯铋、氧化钼等冶炼产品。201120112011年资产总值年资产总值年资产总值19.6719.6719.67亿元, 亿元,销售收入销售收入20.9220.9220.92亿元,利润亿元,利润亿元,利润2.592.592.59亿元。柿竹园有色金属有限责任亿元。柿竹园有色金属有限责任公司与全国多家科研院所和高等院校在“八五”、“九五”、“十五”和“十一五”国家重点科技攻关中,对柿竹园复杂钨钼铋萤石多金属矿选矿工艺进行了一系列的详细研究,取得了丰硕的成果,多项研究成果分别获国家和省部级科技奖,其中钨钼铋复杂多金属矿综合选矿新技术—“柿竹园法”获国家科技进步二等奖、复杂难选黑白钨混合矿石选矿新技术获中国有色金属工业科学技术奖一等奖。

? 柿竹园公司共有五个多金属选厂和一个萤石选厂,柿竹园公司共有五个多金属选厂和一个萤石选厂,它们分别是它们分别是380380380选厂、野鸡尾选厂、柴山选厂、千吨选选厂、野鸡尾选厂、柴山选厂、千吨选厂、二千吨选厂和萤石选厂,五个多金属选厂日处理量共计为共计为4750t/d,4750t/d,4750t/d,主要产品有钨、钼、铋、萤石等精矿,主要产品有钨、钼、铋、萤石等精矿,20112011年产钨精矿折合量年产钨精矿折合量年产钨精矿折合量530853085308吨、钼精矿折合量吨、钼精矿折合量吨、钼精矿折合量138313831383吨、吨、铋金属量铋金属量128212821282吨、萤石精矿量吨、萤石精矿量吨、萤石精矿量9 9万吨。

国内外钨选矿指标

书山有路勤为径,学海无涯苦作舟 国内外钨选矿指标 国内外钨选矿指标见下表1:表1 国内外钨选矿指标序号选矿厂名称规模 t/d 矿床类型及矿物组分工艺流程简介产品名称选矿指标,%备注γαβθε1大吉 山钨矿选矿厂2460 石英脉型黑钨矿床。主要金属矿物为黑钨矿,其次为辉钼矿、辉铋矿、自然铋等。脉石矿物主要为石英,黑云母、方解石等三段一闭路 碎矿。预选为三段:两级反手选、一级光选。重选为三级跳汰。四级摇床,泥 砂分选,贫富分选。精选为重浮工艺钨精矿铋精矿钼精矿 0.360.29889.8817.35350.047584.32 品位指WO3 含量2 西华山钨矿选矿厂2250 石英大脉型黑钨矿床。金属矿物主要为黑钨矿,其次为锡石、绿柱石、白钨矿等。脉石矿物为石英、长石、云母、萤石、柘榴石等三段一闭路碎矿。两级手选,三级跳汰,四级摇床,贫富分选,细泥重选钨精矿锡精矿钼精矿铋精矿铜 精矿0.330.25363.9254571712.50.04283.50 同上3 盘古山钨矿选矿厂石英大脉型黑钨矿。金属矿物为黑钨矿、辉铋矿、泡铋矿、黄铁矿等。脉石矿物主要为石 英两段一闭路碎矿。四级手选。三级跳汰,五级摇床,中矿再磨再选,离心选 矿机回收钨细泥钨精矿铋精矿0.410.32668.880.04387.03 品位指WO3 含量4 浒坑钨矿选矿厂1220 石英大脉型黑钨矿和石英细脉型黑钨矿床。金属矿物以黑 钨矿为主,其次为黄铁矿、闪锌矿、辉铋矿。脉石主要为石英两段一闭路碎 矿。三级手选,粗细分磨,贫富分选,摇床粗粒尾矿与摇床中矿再磨再选钨精 矿锌精矿铋精矿0.490.36865.980.04488.0 同上5 瑶岗仙钨矿选矿厂1300 石英大脉型黑钨矿床。主要金属矿物以黑钨矿、白钨矿为主,其次为锡石、黄铁矿、 黄铜矿、方铅矿、闪锌矿。脉石矿物为石英两段一闭路碎矿。两级手选,三级 跳汰,阶段磨、跳,四级摇床钨精矿0.370.3068.00.04884.10 同上6 荡坪钨矿宝山选矿厂350 矽卡岩白钨矿床。金属矿物主要白钨矿、方铅矿、闪锌矿、黄铜

浮选

浮选 “浮选(flotation)”一词,是漂浮选矿的简称。浮选是根据矿物颗粒表面物理化学性质的不同,从矿石中分离有用矿物的技术方法。 简介 浮选工艺流程(图1) 浮选,漂浮选矿的简称,是根据矿物颗粒表面物理化学性质的不同,按矿物可浮性的差异进行分选的方法。 利用矿物表面的物理化学性质差异选别矿物颗粒的过程,旧称浮游选矿,是应用最广泛的选矿方法。几乎所有的矿石都可用浮选分选。如金矿、银矿、方铅矿、闪锌矿、黄铜矿、辉铜矿、辉钼矿、镍黄铁矿等硫化矿物,孔雀石、白铅矿、菱锌矿、异极矿和赤铁矿、锡石、黑钨矿、钛铁矿、绿柱石、锂辉石以及稀土金属矿物、铀矿等氧化矿物的选别。石墨、硫黄、金刚石、石英、云母、长石等非金属矿物和硅酸盐矿物及萤石、磷灰石、重晶石等非金属盐类矿物和钾盐、岩盐等可溶性盐类矿物的选别。浮选的另一重要用途是降低细粒煤中的灰分和从煤中脱除细粒硫铁矿。全世界每年经浮选处理的矿石和物料有数十亿吨。大型选矿厂每天处理矿石达十万吨。浮选的生产指标和设备效率均较高,选别硫化矿石回收率在90%以上,精矿品位可接近纯矿物的理论品位。用浮选处理多金属共生矿物,如从铜、铅、锌等多金属矿矿石中可分离出铜、铅、锌和硫铁矿等多种精矿,且能得到很高的选别指标。 浮选适于处理细粒及微细粒物料,用其他选矿方法难以回收小于

10μm 的微细矿粒,也能用浮选法处理。一些专门处理极细粒的浮选技术,可回收的粒度下限更低,超细浮选和离子浮选技术能回收从胶体颗粒到呈分子、离子状态的各类物质。浮选还可选别火法冶金的中间产品,挥发物及炉渣中的有用成分,处理湿法冶金浸出渣和置换的沉淀产物,回收化工产品(如纸浆,表面活性物质等)以及废水中的无机物和有机物。 用途 浮选法广泛用于细粒嵌布的金属矿物、非金属矿产、化工原料矿物等的分选。 我国所称的选矿是源自西文的“(oredressing)选矿”,原义可进似地译作矿石调理(是冶炼前的准备工作),现今由于技术内容的扩展,西方通常使用“矿物加工(mineral processing)”一词。目前广为大众学者说接受的浮选,精确地说,应为矿物“泡沫浮选(froth flotation)”。 浮选的另一重要用途是降低细粒煤中的灰分和从煤中脱除细粒硫铁矿。全世界每年经浮选处理的矿石和物料有数十亿吨。大型选矿厂每天处理矿石达十万吨。浮选的生产指标和设备效率均较高,选别硫化矿石回收率在90%以上,精矿品位可接近纯矿物的理论品位。用浮选处理多金属共生矿物,如从铜、铅、锌等多金属矿矿石中可分离出铜、铅、锌和硫铁矿等多种精矿,且能得到很高的选别指标。 浮选适于处理细粒及微细粒物料,用其他选矿方法难以回收小于10μm的微细矿粒,也能用浮选法处理。 浮选分类 浮选按分选有价组分不同可分为正浮选与反浮选,将无用矿物(即脉石矿物)面在矿浆中作为尾矿排出的方法叫正浮选;反之叫反浮选。浮选中常用的浮选药剂有捕收剂、起泡剂、抑制剂、活化剂、pH 调整剂、分散剂、絮凝剂等。常见的浮选机有机械搅拌式、充气式、充气机械搅拌式等。 发展历史

相关文档
最新文档